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SUR LES ÉQUATIONS DIOPHANTIENNES

&+ y2 + z2 t2,+
PAR

F.-J. Duarte (Genève)..

1. — On peut trouver aisément les formules donnant les
solutions entières des équations

X2 + y2 + z2 t2 (^
X3 -j- y3 ,33 p (2)

en se servant d'une méthode analogue à celle que nous avons
employée pour trouver les solutions irrationnelles de xn +yn zn

pour des valeurs particulières de n 1.

En effet, au moyen des substitutions

ix
+ y -f ^ — t — 20

X — y — z + t 2ol

— x Ar y — * -f- t 2ß

— x —y + z + t 2y,

on peut mettre les équations (1) et (2) sous les formes

(0 + a)2 + (9 + ß)2 + (0 + y)2 (0 + a + ß -J- y)2

(0 + a)2 + (0 + ß)2 -f- (0 -f y)» (0 -f a -f ß + y)8 •

ou bien, en développant

02 aß + œT + ßY

203 60 (aß + aY + ßY).+ 3 (a + ß) (a + y) (ß + y) •

(3)

(4)

(5)

(6)

m

1 Sur les solutions irrationnelles et complexes- der Véquation xn + yn z11. Genève
IQO 9
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Ainsi, la résolution des équations (1) et (2) revient à celle des

équations (6) et (7), respectivement. Une fois trouvées les valeurs
de a, ß, y, 0 vérifiant ces dernières équations, on aura celles des

indéterminées x, y, 2, t par les formules

2. — Considérons d'abord l'équation (6); il suffit de donner
des valeurs entières arbitraires aux paramètres 0, a, ß et alors
le quatrième paramètre y sera déterminé rationnellement. Les
formules (8) donneront donc des valeurs rationnelles et les solutions

entières s'en déduisent immédiatement. Il est facile de

constater qu'on obtient ainsi la solution générale.
Mais il est préférable de procéder de la façon suivante: écrivons

l'équation (6) sous la forme

On sera donc certain d'obtenir des solutions entières de
l'équation (1) si, dans les formules (8) on donne aux paramètres
les valeurs suivantes:

/ 0 ac + bd

\ a a2 -f b2 -f ad — bc

6* « (a + ß) + y) - ß*

et alors, en tenant compte de l'identité bien connue

(a2 + h2) (c2 + cl2) — (bc — acl)2 (ac + bd)2

on pourra poser
a + ß a2 + b2

ß + y c2 + d2

ß bc — ad

0 ~ ac -f- bd.

(9)

1 y c2 + d2 -f ad — bc

a, b, c, d désignant des entiers arbitraires.
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Nous allons montrer maintenant que les formules (8) et (9)

fournissent la solution générale de l'équation (1), c'est-à-dire que
si 1 on donne un système de quatre entiers x, z, satisfaisant
cette équation,-il est possible de trouver quatre entiers a,
permettant de reproduire au moyen de ces formules, les valeurs
données de x, y,z, tmultipliées par un facteur constant différent
de zéro. Soient, en effet, x, y,z,t quatre entiers vérifiant l'équation

(1). Les équations (3) déterminent quatre entiers 0, «, ß, y
qui, d après cette hypothèse, vérifieront identiquement l'équation

(6). Or, de la première et la troisième des formules (9) on
tire

0 # + ß è 0 & — ß

ÏTT • '

car a -)- ß 0, à moins que zcas qui correspond à une
solution banale (x y 0).

Si l'on prend
a ba + ß (10)

on aura:

et si l'on substitue les valeurs (10) et (11) dans les formules (9),
on constate que 1 on reproduit les valeurs 0, a, ß, y correspondantes

à la solution donnée multipliées par le facteur constant
différent de zéro 2 (a -f ß). Les formules (8) reproduisent donc
les valeurs données de x,y,z, t multipliées par le même
facteur. C.Q.F.D.

3- Pour obtenir la forme classique 1 des formules de
résolution de l'équation (1), il suffit de faire dans les formules (9)

a q — n b m— p,cn — p +
On obtient, en effet

/ x m? — n2 — p* -J- qz

J y 2mn — 2pq
\ z 2mp + 2nq

l £ -f -j- £2 -j- £2

1 Y. Carmichael, Analyse indéterminée, trad. Sallïn. Paris, 1929, p. 40.
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M. Cahen, dans sa Théorie des Nombres, t. II, Paris, 1924,

p. 597, donne la solution générale de l'équation (1) au moyen de

formules à trois paramètres, en cherchant les points à coordonnées

rationnelles de la sphère

x2 A- y2 A z2 1 •

Ces formules se déduisent aussi aisément des (8) et (9), en

donnant aux paramètres les valeurs suivantes

a — w — u b v c — v — w d u

et il en résulte

ixy

z

t

Dans toutes ces formules on obtiendra les solutions primitives
en débarrassant les valeurs de x, y, z, t de leur plus grand commun
diviseur.

4. — Revenons maintenant à l'équation (2) mise sous la forme
(7). On remarquera, d'après cette équation, que l'une au moins
des quantités oc + ß, a + y, ß + y a des diviseurs communs
avec 6, en particulier, le diviseur 3; supposons que ce soit oc + y
et mettons l'équation (7) sous la forme

2 0 (02 + 3 A) 3 (a + [S) (ß + y) (oc + y -j- 2 8) (14)

Cette équation étant homogène, on peut remplacer les
paramètres 0, oc, ß, y, par leurs valeurs multipliées par un facteur
constant arbitraire X. Faisons un changement de notation, en
posant

2 X OC :=: ŒU—j— Cl2 W-2 "h 0^3

\ 2 X ß Mi ß M2 t ^3 j
(15)

2Xy qu! + c2w2 -f c3

2X0 d^ii^ -}- d%u2 M d$

Nous pouvons disposer de dix des quatorze paramètres

L'Enseignement mathém., 33me année, 1934. 6

- w2

2qw

U2 + V2

2 uw

u2 4- p2 4- w2

(13)
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contenus dans les seconds membres de ces équations. Prenons
d'abord

^1 » ^2 02} Cq —— (IQ

l ^1 8 d2 ==: d>2 ; <^3 =ss 0

de façon à avoir
X(oc + y) d2u2

X(a + y + 20) axu2

d'accord avec la remarque faite précédemment. Substituons les
valeurs (15) et (16) dans l'équation (14); on aura

{ß1 ^2)^ ^2 -f 3 (ttj {b\U\ 4~ M2 "f ^3)2

— -f- ax) -f- (è2 + #2)^2 4" (^3 4~ ^3)]

[(^1 %) ui + (b2 + «2) u2 + (^3 — #3)] •

Nous pouvons encore disposer de quatre paramètres et nous
allons déterminer b2, bSl as de façon à annuler dans cette
équation les coefficients de uxu2, n1} et u2. Cette équation peut
s'écrire ainsi

A.ux -f- Bitj u2 4~ Cw*2 4~ DUi 4~ Ew2 4~ F ==: 0 (17)

les coefficients ayant les valeurs suivantes

A 3 (b\a2 — a\)

B 6^! d2 {ax 4- b2)

G (d2 «i)3 4~ 3a2 [% (a2 4- b2) 4- b2 (ax 4~ ^2)]

D Ç>{bxd2b2 ^1^3) »

E 6a2 b3 (ax 4- b2)

F 3{ct2b2 ^1^3) •

On aura B E D 0, si l'on prend

I b2 dx bx d2
2 2 (18)

^ ds — d2 0g — dx

Dans ces conditions les coefficients A, G, F auront le facteur
commun al — alqui est différent de zéro, car on doit supposer
ai ^ a2i à moins que 0 0, cas qui correspond à des solutions
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banales de l'équation (2) (par exemple x — y, z t). L'équation

(17) se réduit ainsi à la forme simple:

3 u[ + u2 3 a1a2 (19)

qui est la relation que doivent vérifier les quatre paramètres
al5 a2, wl5 u2 à l'aide desquels sont exprimés 0, a, ß, y, pour que
l'équation (14) et, par conséquent, la (2) soient satisfaites.

Or, cette équation (19) montre que u2 est nécessairement
divisible par 3; d'autre part, si l'on suppose que ux et u2 ont un
facteur commun c, on pourra poser

— ne u2 3bc (20)

et l'équation (19) deviendra:

c2 (a2 + 3b2) a2

On satisfera à cette dernière, en conservant l'homogénéité
des formules, si l'on pose:

ai a2 -f 3b2 a2 c2 (21)

Les formules (8) donnent, d'après les formules (15), (16), (18),
(20), (21), les valeurs suivantes, après suppression du facteur
arbitraire 2A

x (a2 + 3b2) (a + 3b) c -j- c4

\
y (a2 + 3b2)2 + C3 (a — 3b)

j i — {a2 + 3b2) (a — 3b) c — cé

1 t — (ci2 ~j~ 3b2)2 -j- c3 (cl -j- 3b)

On donnera dans ces formules des valeurs entières arbitraires
aux trois paramètres a, b,c pour obtenir des nombres entiers
vérifiant l'équation (2).

5. — Nous nous proposons maintenant de résoudre le problème
inverse, c'est-à-dire étant donnée une solution quelconque en
nombres entiers de l'équation (2), déterminer les valeurs entières
des paramètres a,b, c qui fournissent cette solution, à un facteur
constant près. La solution de ce problème prouvera en même
temps que les formules (22) donnent toutes les solutions entières
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de l'équation (2), c'est-à-dire la solution générale en nombres
entiers.

Supposons donnés quatre entiers x, y, z, t vérifiant l'équation
(2). On calculera 0 par la formule

2 0 x -j- y -(- z — t

et on formera les différences x — 0, y — 0, z — 0, — t — 0.

On choisira trois quelconques de ces quatre différences et on les

désignera par a, ß, y, de façon que a + y soit divisible par 3.

Représentons par ^ la fraction a 2 0
réduite à sa plus

simple expression; on aura
m
n

(23)

et les trois premières équations (15) pourront s'écrire, en prenant
X a2:

mux + nu2 + na2 — 2 ncx,

n^ux— mnu2 + m^a2 — 2 n2ß

— mu} -f- nu2 — na2 — 2 n y

Le déterminant de ce système est

m n n

D n2 — mn m2 — 2 n

m n — n

(24)

m n

n2 m2
— 2 n(m* — n*)

qui est toujours différent de zéro, car n ^ 0, m ^ n, si l'on
exclut les solutions banales de (2). On déduit des équations (24)

u2 a + y

m
2n*

Cl2

2 ft2

~D~

n a

n — m ß

— m n y

OTs
!_ n*+ a.) +2mnß + (ï — a) n2]

(25)

u-i — — (a -

m
a2,

et % est donné par l'équation (23)

m
Ct-i — -—CL2

n
(26)
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Si l'on porte les valeurs (25) et (26) dans l'équation (19), on

aura
— (m — n) a(a + y)2 + 12/nft2(aj3 + ay + fy) -f 12 n3 ß2 0

En tenant compte que mein sont proportionnels à oc + Y + 20

et oc + y, respectivement, on constate aisément que la condition
précédente équivaut à l'équation (14) qui est, par hypothèse,
identiquement vérifiée. Les formules (25) et (26) donnent donc
des valeurs proportionnelles à celles des paramètres <aq, a2l wq, u2

correspondants à la solution donnée. L'équation (19) étant
homogène, sera toujours vérifiée si l'on multiplie ces quatre
valeurs par un facteur arbitraire. On pourra toujours choisir
convenablement ce facteur de façon que a2 soit un carré parfait.
On aura alors pour les paramètres a, 6, c les valeurs suivantes

e + aA~2
„ « ~ b g (27)

Exemple. — Soit la solution

383 + 483 q- 793 873

On aura
20 38 + 48 + 79 — 87 78 ; 0 39 ;

38 — 39 -— 1; 48 — 39 9; 79 — 39 40; =-87 — 39 — 126

On pourra prendre, par exemple, a 40, y — 1, ß 9.

Par conséquent
q. q. y 4- 2 0

_ 117 3

a 4~ y 89 1

d'où m — 3} n — 1. Les formules (25) et (26) donnent

U2 39 3.13 ; a2 14 2.7 ; ux 9 32 ; cix 2.3.7

Comme vérification du calcul, on a identiquement

3.34 + 32.132 3.22 3.72

En multipliant les valeurs obtenues par 2.7, on aura les valeurs
définitives

a2 22 72 ux 2.32 7 u2 2.3.7.13,



86 F.-J. DUARTE
et par conséquent, d'après les formules (27)

c14 a9 b13

Si l'on substitue ces valeurs dans les formules (22), on reproduit
les valeurs données de x,y,z, t multipliées par le facteur

constant 24.73.

Le seul critérium pour choisir les valeurs de a et y est que

a + y 0 (mod. 3)

Ainsi, dans l'exemple qui précède on aurait pu prendre
a i, y 40, au lieu de oc 40, y — 1. On aura comme
avant

m 3 n 1 u2 3 13

Mais les valeurs de a2 et de ^ seront

223 252
a2 ~ -TFT 5 U,

13 1
13

On multipliera ces valeurs par 13 et par 223 et on aura les
valeurs définitives

a2 2232 ; Ul « — 252.223 u2 3.132 223

et par conséquent

c 223 a — 252 b 169

Si l'on substitue ces valeurs dans les formules (22), on reproduit
encore les valeurs données de x, y, z, t, mais multipliées maintenant

par 2.13.2233.
On aurait pu prendre aussi dans cet exemple a — 1,

y 40, ß — 126, ou bien a 9, ß 40, y — 126, etc.'

En général, si la valeur de a2 donnée par la formule (25) a des
facteurs de la forme g2«+1, rr, les indéterminées calculées
par les formules (22) seront divisibles par 2fp g2«+3hr. Cependant,
il peut se faire que ax, a2, mx, u2 aient un facteur commun tel
qu en le supprimant, a2 devienne carré parfait. Par exemple,
dans la solution

73 -I- 143 + 178 203 ;
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on a 0 9 et si l'on prend oc 8, y — — 2, ß — 5, on aura:

m 4, n 1, a2 2, w2 2.3, 2. En divisant ces

résultats par 2, on aura comme valeurs définitives: a2 1,

« 3, »! « 1 et a 1, ft l? c 1, valeurs que reproduisent
la solution donnée, sans facteur constant.

6. —- La solution générale de l'équation (2) au moyen de quatre
paramètres a été donnée par Euler dans son Algèbre L

Binet 2 a réduit les formules d'EuLER à deux paramètres,
auxquels il faut attribuer non seulement des valeurs entières,
mais aussi .fractionnaires pour obtenir toutes les solutions
entières. Il suffit de prendre c — — 1 dans les formules (22)

pour obtenir celles de Binet.
D'après M. Fauquembergue 3, Euler avait aussi donné les

formules à trois paramètres (N. Comment., 1756-1757, p. 155).
Les formules de Binet ont été retrouvées par Hermite en

se servant d'une propriété des surfaces cubiques4 et par
M. Mirimanoff à l'aide d'une méthode élégante, consistant à

abaisser au premier degré une des indéterminées, x, dans

l'équation
~h y3 z3 ~h 1

mise sous la forme

(x — 1) (x — a) (x — a2) + yz 33

a étant une racine cubique complexe de l'unité 5.

Les formules de résolution de cette équation du troisième degré
ont été données sous des formes différentes par divers auteurs 6.

1 Elémens d'Algèbre, édition de Lyon, 1795, t. II, p. 360.
2 Comptes rendus, t. XII, 1841, p. 248.
3 L'Intermédiaire des Mathématiciens, t. IV, 1897, p. 63.
4 Nouvelles Annales de Math., t. XI, 1872, p. 5; Œuvres, t. III, 1912, p. 115
5 Nouvelles Annales, t. III, 2me série, 1903, p. 17.
6 Dickson, History of the Theory of Numbers, t. II, 1920, pp. 550-561.
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