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constitue, pour la pratique ordinaire du dessin, un écart parfaite-
ment admissible. En tout cas, pour o = 60°, écart n’est plus
que de 6’ 14", environ le dixieme de degré, grandeur absolument
négligeable; on est donc assuré d’avoir par ce moyen toute la
précision désirable en prenant pour la limite A définie au no 12
la valeur 60°. Si méme on admet pour A la valeur 45°, 'écart
correspondant tombe & 10", ce qui équivaut a une précision
de méme ordre que celle donnée par le procédé Kopf.

Finalement, on peut dire quavec une précision suffisante
jusqu’a 90° et pleinement satisfaisante jusqu’a 60°, la droite
joignant le miliew 1 du rayon OO’ au miliew M de Uarc AB est
paralléle a la trisectrice de Uangle AOB.

Il ne semble pas possible de pousser plus loin la simplicité
de la constrution.

LES FAISCEAUX HOMOPONCTUELS DE COURBES
PLANES

PAR

M. p’OcaGNE, Membre de 'Institut (Paris).

1. — Cette note a pour but d’attirer I’attention sur une notion
qui ne semble pas avoir encore été envisagée et qui peut donner
lieu & des exercices non dénués d’intérét.

Si les courbes d’un certain faisceau (systéme simplement
infini) découpent sur toutes les tangentes d’une courbe (M) des
ponctuelles semblables entre elles, nous dirons que ce faisceau
est homoponctuel pour la courbe (M) appelée sa base. Si ce
faisceau est homoponctuel pour chacune des courbes qui le
composent, prise pour base, nous le qualifierons, par raison de
simplicité, d’autoponctuel, alors que le terme d’autohomoponctuel
et sans doute été plus rationnel.
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Une ponctuelle de similitude donnée est entidrement définie
par deux de ses points A et B, attendu que, pour tout autre C

de ses points, le rapport ?—:g— a une valeur fixe . Il en résulte que

tout faisceau homoponctuel est entiérement défini par deux
quelconques de ses courbes (A) et (B) choisies arbitrairement, -
qui en seront dites les fondamentales. Le rapport & par lequel est
déterminée toute autre courbe du faisceau sera dit son indice.

2. — On peut tout d’abord, pour une position donnée de la
tangente AB & la base (M), se proposer de déduire les normales
des diverses courbes du faisceau de celles des fondamentales.
Cette détermination résulte d’un théoréme bien connu de
Mannheim qui dit que si les normales aux courbes (A), (B), (C)

coupent la normale & (M) en a, b, ¢, on a également Z—Z— = k.

Ainsi, les normales aux courbes (C) du faisceau remcontrent la
normale d la base en des poinis ¢ formant une ponctuelle sem-
blable a celle des points C sur la tangente o la base.

Autrement dit, les points ¢ engendrent un faiscean homoponctuel
ayant pour base la développée de (M). |

La construction de ces points ¢ est, au reste, des plus simples.
Si, en effet, les tangentes aux fondamentales (A) et (B) se
coupent en T et leurs normales en N, les triangles TAB et Nab,
ayant leurs cotés deux & deux perpendiculaires sont semblables,
et les droites TC et Ne, homologues dans ces triangles semblables,
sont également perpendiculaires enire elles. |

3. — On peut aussi chercher & déduire les centres de courbure
des courbes du faisceau de ceux des fondamentales. D’apres ce qui
vient d’étre vu, les normales aux courbes décrites par les points ¢
découpent sur la normale a la développée de (M), c’est-a-dire
a la perpendiculaire élevée a la normale My de la base par son
centre de courbure ., une ponctuelle de points ¢’ semblable A
celle des points ¢, ce qui permet de déduire des points a’ et b’
de cette ponctuelle correspondant aux deux fondamentales (A)
et (B), celui ¢’ qui correspond & toute autre courbe (C) du fais-
ceau. Si, dés lors, on trouve la relation géométrique liant cha-
cun de ces points a’, &', ¢’ au centre de courbure correspondant
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«, B, v de (A), (B), (C), le probléme sera entiérement résolu.
Cette relation permettra, en effet, de déduire des centres de
courbure o et B les points a’ et b, puis de ¢’ le centre de cour-
bure v.

Cherchons cette relation, par exemple pour la courbe (A); elle
sera, bien entendu, la méme pour (B) et (C).

La normale & la courbe (a) coupant la normale a la développée
(1) de (M) en a’ (fig. 1) coupe, en outre, la normale a la déve-

” ”
o x _a
o
. a’
04
S~ > -~ /
a, M, JA
Fig. 1

loppée (a) de (A) (c’est-a-dire la perpendiculaire menée par o
a Aa) en o'. Entre les arcs infiniment petits d (M), d (A), d (a)
décrits simultanément par les points M, A, a, on a, en vertu d’une
autre formule bien connue de Mannheim,

dM) My d(A) _ Aa da)  aa’

d(A) ~ Aa’ d(a) ~ ao’ dM) — My’

d’ou, par multiplication de ces trois égalités membre & membre,

_Aoc-cwf’__1
Aa - ao/

?

ou

Aa ao’

Aa  ad

Sila droite aa’ rencontre AM en o, et la paralléle & AM menée
par @ en a”, si, de plus, les perpendiculaires & Ae menées par a

L’Enseignement mathém., 33me année, 1934, 5
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et a’ coupent respectivement. AM en a et ao” en a”, I

précédente donne
_ : Ao, aoa” *
Aa,  aa”

égalité

ce qui montre que les points a,, « et a” sont en ligne droite. Si le
centre de courbure « est donné, la droite @y « coupe la paralléle
menée par ¢ & MA en a” et la perpendiculaire menée par a” & Aa
coupe la normale 3 la développée (1) en a’. Si, au contraire, c’est
la normale aa’ & (a) qui est donnée, la perpendiculaire menée par
a’ & Aa donne a” et la droite a, a” coupe Aa au centre de cour-
"bure «.

Cette construction se simplifie sensiblement dans le cas ot
(A) est une droite, parce que le point « étant alors & linfini sur
Aa, la droite a, « est paralléle & Ag (fig. 2). Elle coupe en a” la

»

a _ Q

Fig. 2.

paralléle & MA menée par a, et la perpendiculaire menée par ¢”
& Aa, donc aussi 4 a, a”, coupe en @’ la normale en p. 4 la déve-
loppée de (M), c’est-a-dire la paralléle & MA menée par p qut
coupe aa, en a,. Les parallélogrammes Aaa’a, et aa"a’a,
montrent que a,a’ = Ag,, ce qui réduit la construction de a’,
sur la normale & la développée, a porter sur cette normale, &
partir de son point de rencontre a, avec aa,, le segment a’ a’

équipollent a Aa,.

4. — Avant d’aller plus loin, une remarque accessoire en
passant. La construction qui vient d’étre obtenue en généralise
a la fois deux autres que j’ai précédemment fait connaitre et que
Je vais rappeler: | |
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1o Si AM est constant, auquel cas (M) est une tractrice de (A),
les points a et . se confondent et le point ¢’ devient le centre de
courbure de la développée (p) de (M). Done, en ce cas, le centre
de courbure o de (A) est sur la droite joignant a, au centre de courbure
de ().

20 Si M se réduit & un point, auquel cas a est extrémité de la
normale polaire de (A) pour le pdle M, les points M et u se
confondent; le point ¢’ est donc sur MA et la figure ag,a’a” est
un parallélogramme. Dés lors, le centre de courbure « est sur la
diagonale aya” de ce parallélogramme.

Il va sans dire que chacun de ces deux théorémes particuliers
permet, comme le théoréme général, de déduire le centre de
courbure « de (A) de la normale aa’ & (a), et vice-versa. Cest
ainsi, notamment, que nous avons utilisé le second pour cons-
truire les centres de courbure des polaires généralisées 1.

Revenons maintenant aux faisceaux homoponctuels.

5. — Il est facile de former les équations sur lesquelles repose
la détermination d’un tel faisceau.

Si 'on appelle (X, Y), (o, %), (%1, ¥1), (x, ) les coordonnées
des points M, A, B, C, les données sont ’équation de la base (M)

F(X,Y) =0, (1)
et celles des fondamentales (A) et (B)
fo(zos ¥o) = 0, fil@y, ) = 0. (2)

L’alignement des points A, B, C sur la tangente en M s’exprime

par
Y  Y—y _ y—y _y—u (3)
dX X—2z xz—z, x—a

Enfin la condition CA = % . CB se traduit par
B~ Ty &= RE . (&)

L’élimination de X, Y, =, y,, 2;, ¥, entre ces sept équations
fera connaitre I'équation en x et y de (C) pour la valeur choisie
de Pindice #.

L Enseignement mathématique, t. 31 (1932), p. 34.
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6. — Le probléme se simplifie notablement lorsque les fonda-
~ mentales (A) et (B) se réduisent & des droites. Si, en effet, on
prend alors ces droites pour axes Oz et Oy, les équations (2)
deviennent, ‘

y0:07 x1=0’
et les équations (3),
@Y _Y—y_ _y _y—y
aX X—=z X — x, x

De 14, en tenant compte de (4), on déduit

daY gy

équation qui permet & son tour, par élimination de y, de trans-
former la premiére des équations (3) en

=X (6
X~ kF=10zF X"

Tout se réduit alors & éliminer X et Y entre (1), (5) et (6).
Tirant d’ailleurs % de I'équation (1) différentiée, on met les

deux derniéres sous la forme
kaFy + yF, =0, (5)
(k—1)2F, + XF, + YF, =0, (67)
ou, si ' est un polynome en X et Y, rendu homogéne au moyen

de la variable ¢, ,
(k—1)zF, —F, =0 . | (6”)

7. — A titre d’application, prenons comme base (M) une hyper-
bole d’asymptotes Oz et Oy, c’est-a-dire d’équation

XY —2=0. | (7)
Ici, : |
Fy=Y, F, =X, F,=_ax,
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Les équations (5') et (6”) sont alors

kY + yX = 0,
(k—12xY 4+ 222 = 0 ,
d’on
2 kA2 — 2%

Ty YT Gene

Ces valeurs portées dans (7) donnent

ry + U(—iki—)zl’ = 0. (8)
Cette équation définit le faisceau de toutes les hyperboles
d’asymptotes Oz et Oy, y compris ce couple d’asymptotes pour
k =0, et I'hyperbole de base pour k= —1, ce qui montre
que ce faisceau d’hyperboles est autoponctuel.
S1 on met Péquation (8) sous la forme

xy — AN =0,
on a
v o
Cette équation, que 1’on peut écrire
MR — 2N — 22Nk 4+ V= 0 (9)

fait connaitre £ si A’ est donné. Elle donne deux valeurs ky et k,
de k parce qu’en effet I’hyperbole (A’) rencontre chaque tangente
a ’hyperbole de base (1) en deux points C; et C,. L’équation (97)
montre que k; ky, = 1, c’est-a-dire que

C,A  C,A

C,B B!
ou

GA  GB

C,B ~ C,A"

ce qui entraine la conséquence que les segments AB et C; G,
ont méme milieu, ainsi qu’il est bien connu.
Si, inversement, on prend pour base du faisceau I’hyperbole
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(A"), I'hyperbole (1) a un indice %’. La relation liant k et k' est
ce qu'on peut appeler Véquation aux indices réciproques du
faisceau. Il est facile de la former. La formule (9) appliquée au
second cas donne, en effet, - |

LK,
w—1

M= —
et, si 'on divise (9) par cette derniére équation, on obtient
(k —1)2 (K —1)? — 164k’ — 0 (10)

qui est I’équation aux indices réciproques cherchée.

8. — Prenons maintenant comme base (M) une pa‘rab'ole de
diamétre oz, tangente en O 3 Oy, c’est-a-dire d’équation

Y?— 22X =0, (11)

A etant le paramétre de la parabole quand les axes sont rec-
tangulaires.
Iei,

’

F, = —22, F, =2Y, F, = — 22X .

Les équations (5') et (6”) sont alors

At — Yy = 0,
(lt—-"l)x-X=0,

X = (k—1)z Y=‘—"-;‘£.

Portées dans (11) ces valeurs donnent

, A2

y-~——————2(k—_1)x=0., (12)

Cette équation définit le faisceau de toutes les paraboles de
diameétre Oz, tangentes en O & Oy, y compris la parabole de base
pour -k = 2. Ce faisceau. de paraboles est done, lui aussi, auto-
ponctuel. ' o |
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Si 'on met I’équation (12) sous la forme

y¥— 2Nz =0,

on a

f e M
W = W) (13)

F. o
A — ANk + &N =0, (13)

Les deux racines k, et k, de cette équation correspondent aux
deux points de rencontre C; et C, de la parabole (A’) avec la
tangente & la parabole de base (1). L’équation (13’) montre
d’ailleurs que

ce qui peut s’écrire

c¢’est-a-dire

Comme au n° précédent, on forme aisément I’é6quation aux
indices réciproques qui est ici

KR? —16(k — 1) (K —1) = 0 . (14)

On peut remarquer I'analogie de forme de (10) et (14) qui
différent I'une de I’autre par la simple permutation du produit
des indices et du produit de leurs compléments a 'unité [car le
produit (k£ — 1) (k" — 1) équivaut & (1 — k) (1 — k'].

9. — On peut se demander s'il existe des faisceaux auto-
ponctuels de coniques, autres que ceux qui ont été trouvés aux
nos 7 et 8.

Remarquons tout d’abord que, tout faisceau de coniques
comprenant trois couples de droites, dont un au moins néces-
sairement réel, on peut toujours adopter les droites de ce couple
comme fondamentales et les prendre pour axes Oz et Oy. Nous
sommes ainsi amenés a rechercher le systeéme autoponctuel le
plus général admettant ces axes pour fondamentales.
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La base (M) du faisceau devant, puisqu’il est autoponctuel,
faire partie de ce faisceau, il faut, si la tangente en M & cette -
base coupe Oz et Oy en A et B, que |

MA

ME =k
ce qui se traduit par |

Yy = kx E‘% ’

équation différentielle o les variables sont immédiatement
séparées, et dont l'intégrale peut étre écrite

z = Ayh (15)

la forme donnée a la constante arbitraire répondant a4 une
raison d’homogénéité. ’ »

Cette équation ne peut donner une conique que dans les deux
seuls cas ou l'on prend soit % — — 1, soit k£ = 2, auxquels
correspondent respectivement les faisceaux trouvés aux nos 7
et 8. Il n’existe done aucun faisceau autoponctuel de coniques en
dehors de ces deuz-ci :

1o Hyperboles de mémes asymptotes;
20 Paraboles de méme direction axiale, toutes tangentes entre |
elles en un méme poin.
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