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le tableau des valeurs de s pour co variant de 12 en 12°, de 0 à 90°.

Yoici ce tableau:

0° 0 36° 4",23 72° 14",76
12° 0",18 48° 8",58 84° 8",47

24° l",38 60° 13",08 90° 0

Au surplus le maximum de s, qui a lieu pour co — 69° 57' 40",
a pour valeur 14",912.

Cette étonnante précision montre que la solution de M. Kopf
est incontestablement celle qui serre de plus près la solution
rigoureuse non réalisable, au point même que, non en théorie
sans doute, mais en fait, elle peut en être prise pour l'équivalent.

Redisons en quoi elle consiste: I étant le milieu de OO' et
IHIC" égal à — si la droite O' B coupe en B" le cercle de centre G"

et de rayon C"A, la droite 0"B" est, sans aucune erreur appréciable,

parallèle à la trisectrice de Vangle AOB.
Mais, quel que soit le très grand intérêt théorique de cette

curieuse solution normale, on peut en imaginer d'autres plus
simples qui, sans aboutir à d'aussi minimes écarts, n'en
comportent pourtant que de pratiquement négligeables. A ce point
de vue, la solution suivante semble mériter une mention spéciale.

Troisième solution normale (a écart ouvert).

12. — Rappelons tout d'abord qu'une solution normale est
à écart ouvert si l'écart s entre l'angle 0 construit et ^ croît
constamment avec co variant de 0 à 90°. Si la valeur atteinte par
s pour co as 90° est acceptable, la solution est entièrement
valable. Sans qu'il en soit ainsi, s peut atteindre une limite
acceptable pour une valeur X de co comprise entre 45 et 90°;
si d'ailleurs il n'en était pas ainsi, la solution serait à rejeter.
Supposons donc que X satisfasse à la condition requise; alors,
lorsque co est supérieur à X, il suffit de trisecter le complément
de co, qui est, lui, inférieur à X, et de retrancher le tiers obtenu
de l'angle de 30°, construit rigoureusement.



62 M. D'OCAGNE
13. — Tirons maintenant par le milieu M de l'arc AB (donné

par la parallèle OM à 0' B) la parallèle à la trisectrice de l'angle
AOB. Elle a pour équation, si l'origine est, cette fois, prise en 0,

(y sin —^ cos -- (x — cos sin ~

L abscisse de son point de rencontre avec 0#, pour y Or
est donnée par

/<o CO \ w

a -!ülizâ)_ sin6.
_

1

sin| 2sin^ cos^ 2cos^ô 6 6 6

L angle — étant au plus égal à 15°, son cosinus diffère peu de
1 unite et cette abscisse n'est que de peu supérieure en valeur
absolue à j.Defaçon plus précise, le point obtenu sur Ox n'est,
au-delà du milieu I de 00' (dans le sens de 0 vers 0'), qu'à une
distance S de ce milieu I donnée par

CO

1 — COS —
8 1

Le plus grande valeur, pour ^ =15°, est

8 0,01765

grandeur pratiquement négligeable. Si l'on prend, dès lors, pour
direction de la trisectrice celle de la droite IM, le tiers d'angle
approché 0 ainsi construit sera donné par

• to CO

Sjn x sin -
tg 6 i

2" + cos J2cos (30° + cos (30° — ^
Pour co 90°, cette formule donne 0 30° 21'41", donc un

écart de 21 ' 41 " qui ne dépasse le tiers de degré, c'est-à-dire les
20', que de l'41", quantité négligeable. Or, le tiers de degré
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constitue, pour la pratique ordinaire du dessin, un écart parfaitement

admissible. En tout cas, pour co 60°, l'écart n'est plus

que de 6' 14", environ le dixième de degré, grandeur absolument

négligeable; on est donc assuré d'avoir par ce moyen toute la

précision désirable en prenant pour la limite X définie au n° 12

la valeur 60°. Si même on admet pour X la valeur 45°, l'écart

correspondant tombe à 10", ce qui équivaut à une précision

de même ordre que celle donnée par le procédé Kopf.
Finalement, on peut dire qu'avec une précision suffisante

jusqu'à 90° et pleinement satisfaisante jusqu'à 60°, la droite

joignant le milieu I du rayon OO' au milieu M de l'arc AB

parallèle à la trisectrice de l'angle AOB.

Il ne semble pas possible de pousser plus loin la simplicité
de la constrution.

LES FAISCEAUX HOMOPONCTUELS DE COURBES

PLANES

PAR

M. d'Ocagne, Membre de l'Institut (Paris).

1. — Cette note a pour but d'attirer l'attention sur une notion
qui ne semble pas avoir encore été envisagée et qui peut donner
lieu à des exercices non dénués d'intérêt.

Si les courbes d'un certain faisceau (système simplement
infini) découpent sur toutes les tangentes d'une courbe (M) des

ponctuelles semblables entre elles, nous dirons que ce faisceau
est homoponctuel pour la courbe (M) appelée sa base. Si ce
faisceau est homoponctuel pour chacune des courbes qui le

composent, prise pour base, nous le qualifierons, par raison de

simplicité, d: autoponctuel, alors que le terme d'autohomoponctuel
eût sans doute été plus rationnel.
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