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50 M. D'OCAGNE

Les autres, au contraire, comportant un certain tâtonnement
dans la mise en place d'une des lignes qui y interviennent
(tâtonnement, d'ailleurs, d'une réalisation toujours rapide et

que peut faciliter l'emploi d'une courbe d'erreur), aboutiraient,
si leur exécution était affranchie de toute erreur, au résultat
théoriquement exact. Je dis de celles-ci qu'elles sont anormales.

2.— Il va sans dire que s'il s'agit d'un problème d'ordre
transcendant, il ne peut être question que de constructions normales.
C'est le cas, par exemple, pour la quadrature du cercle, ou, plus
généralement, pour la rectification d'un arc de cercle quelconque.
On voudra bien, à cette occasion, me permettre de rappeler que

j'ai fait connaître1 de ce dernier problème une solution normale,
d'une extrême simplicité, fournissant en pratique toute la
précision que l'on peut désirer.

Pour les problèmes d'ordré algébrique, on a le choix entre des

solutions normales et des solutions anormales; c'est notamment
le cas du problème de la trisection de l'angle, auquel va être
consacrée cette étude.

La trisection de l'angle.

3. — Il convient de remarquer tout d'abord que l'on peut
se borner au seul cas des angles aigus, attendu que, s'il s'agit
d'un angle obtus, il suffit, pour en avoir le tiers, de retrancher
le tiers de l'angle aigu supplémentaire de l'angle de 60° dont
la construction est rigoureuse.

La plupart des solutions proposées pour le problème de la
trisection sont du type anormal, à commencer par celle, dite de

Nicomède, la plus classique, qui peut s'énoncer ainsi: si un
cercle, de rayon r quelconque, ayant pour centre le sommet 0 de

Vangle AOB à trisecter, coupe les côtés de cet angle en A et B 2, la

droite issue de B qui coupe le cercle en G et la droite OA en D, de

1 Nouvelles Annales de Mathématiques, 4me série, t. VII, p. 1; 1907. Voici cette cons-

truction: si le point C de la corde AB est tel que AC AB et que le rayon OC coupe

2
l'arc AB en D, on a très sensiblement corde AD - arc AB.

2 Le lecteur est prié de faire la figure.
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telle sorte que CD r, est parallèle à la trisectrice cherchée. En

effet, les triangles OBC et COD étant isocèles, on a les égalités

d'angles AOB OBD + ODB, et OBD OCB 20DB, d'où

AOB 30DB.
J'ai, pour ma part, fait connaître1 une propriété fort simple

se traduisant par une autre construction anormale: si la trisectrice

issue de 0 coupe en E la corde AB du cercle et en F le cercle de

centre A et de rayon AO, on a EF — OA. En effet, si l'on pose

AOB 03, les angles AOF et AFO sont égaux à|-, OAB et

OBA à-~"—y, on en déduit que OAF n — puis que

EAF « OAF — OAB ~ ~ et que AEF tt

— EOB — OBA y + y — 2y ; donc EAF AEF ; par suite,

le triangle FAE est isocèle et EF AF ~ r.
Mais les solutions les plus intéressantes, au point de vue du

tracé, sont les solutions normales; nous allons en examiner ici
quelques-unes particulièrement dignes de remarque.

4. — Rappelons tout d'abord qu'il n'est ici question que
d'angles où compris entre 0 et 90°. Toute construction normale

appliquée à un tel angle fournit un angle 0 présentant par

rapport à ^ un certain écart s, d'ailleurs supposé négligeable,

mais qui peut se déterminer mathématiquement et dont la
considération conduit à une nouvelle distinction à observer

parmi ces solutions normales: suivant que, pour co variant de

0 à 90°, e croît constamment à partir de 0 jusqu'à une certaine
valeur S, ou s'annule pour où 0 et où 90°, en présentant un
maximum dans l'intervalle, la solution est dite à écart ouvert
jusqu'à <S,: ou à écart fermé. Notre attention va d'abord se porter sur-

deux solutions à écart fermé, puis sur une troisième à écart ouvert.

Première solution normale (a écart fermé).

5. — Marquons sur l'axe Ox les points 0", 0' et A tels qu'en
suivant le sens positif on ait 0"0' O'O OA 1, les

1 Revue générale cles sciences, t. XLIV, p. 625; 1933.


	trisection de l'angle.

