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ÉTUDE RATIONNELLE

DU PROBLÈME DE LA TRISECTION DE L'ANGLE

PAR

M. d'Ocagne, Membre de l'Institut (Paris).

Généralités.

t. — Une construction géométrique n'est dite rigoureuse que

si elle peut s'effectuer en toute rigueur au moyen d'un nombre

fini de droites et de cercles tracés sans tâtonnement, ce qui n a

lieu, comme on sait, que si le problème traité ne dépend que

d'équations linéaires ou résolubles par radicaux carrés.

Si cette condition n'est pas remplie, on ne peut avoir recours

qu'à une construction approchée avec laquelle l'erreur commise

soit négligeable, construction qui peut alors être considérée

comme pratiquement exacte.

En fait, même, vu les petites erreurs accidentelles inséparables
de tout tracé de figure géométrique, de telles constructions ne

sont guère moins satisfaisantes que des constructions
rigoureuses.

Mais, parmi ces constructions approchées, j'ai eu l'occasion
de faire remarquer1 qu'il y avait lieu d'établir une distinction
essentielle.

Les unes, exemptes de tout tâtonnement, permettent d'obtenir,
à défaut du résultat théoriquement exact, un résultat approché
n'en différant que d'une quantité, de grandeur déterminée,

pouvant être tenue pour négligeable. Ce sont ces constructions

que j'ai proposé d'appeler normales.

1 Revue générale des sciences, t. XLIV, p. 7; 1933.
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Les autres, au contraire, comportant un certain tâtonnement
dans la mise en place d'une des lignes qui y interviennent
(tâtonnement, d'ailleurs, d'une réalisation toujours rapide et

que peut faciliter l'emploi d'une courbe d'erreur), aboutiraient,
si leur exécution était affranchie de toute erreur, au résultat
théoriquement exact. Je dis de celles-ci qu'elles sont anormales.

2.— Il va sans dire que s'il s'agit d'un problème d'ordre
transcendant, il ne peut être question que de constructions normales.
C'est le cas, par exemple, pour la quadrature du cercle, ou, plus
généralement, pour la rectification d'un arc de cercle quelconque.
On voudra bien, à cette occasion, me permettre de rappeler que

j'ai fait connaître1 de ce dernier problème une solution normale,
d'une extrême simplicité, fournissant en pratique toute la
précision que l'on peut désirer.

Pour les problèmes d'ordré algébrique, on a le choix entre des

solutions normales et des solutions anormales; c'est notamment
le cas du problème de la trisection de l'angle, auquel va être
consacrée cette étude.

La trisection de l'angle.

3. — Il convient de remarquer tout d'abord que l'on peut
se borner au seul cas des angles aigus, attendu que, s'il s'agit
d'un angle obtus, il suffit, pour en avoir le tiers, de retrancher
le tiers de l'angle aigu supplémentaire de l'angle de 60° dont
la construction est rigoureuse.

La plupart des solutions proposées pour le problème de la
trisection sont du type anormal, à commencer par celle, dite de

Nicomède, la plus classique, qui peut s'énoncer ainsi: si un
cercle, de rayon r quelconque, ayant pour centre le sommet 0 de

Vangle AOB à trisecter, coupe les côtés de cet angle en A et B 2, la

droite issue de B qui coupe le cercle en G et la droite OA en D, de

1 Nouvelles Annales de Mathématiques, 4me série, t. VII, p. 1; 1907. Voici cette cons-

truction: si le point C de la corde AB est tel que AC AB et que le rayon OC coupe

2
l'arc AB en D, on a très sensiblement corde AD - arc AB.

2 Le lecteur est prié de faire la figure.


	Généralités.

