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326 : - RENE GUIGUE
En résumé pour que I'égquation (3) puisse éire ramende d équa-
tion de la chaleur, il faut que la fonction f (x,y) soit telle que
Pexpression
| 2ff,, + 2721, — 8f,
}CB

ne dépende que de la seule variable x.

La condition précédente peut étre mise sous une forme plus
remarquable si I’on observe, comme le montre un calcul facile,
que la condition d’intégrabilité (8) peut étre mise sous la forme

2 1 1

e (XF D) + 1 (XF) = 0. )

D’ou I’énoncé suivant:
On . saura ramener Véquation (3) & Uéquation de la chaleur

1
chaque fois qu’on connaiira une fonction X de x telle que Xf

soit Solutwn de Déquation (3).

II. — APPLICATIONS.

5. — Premiére application. — Comment fait-il choisir les
fonctions X et X, de x pour que I’'équation

t + (10)

X —U
Xy + X,)2P

soit réductible a I'équation t == p par un changement de vartables.?
L’équation (6 8’écrit ici:

p— (Xy + X)g=0.

Pour obtenir lintégrale de cette équation on est amené a
considérer ’équation différentielle linéaire

dy -
@+X9+X1—‘0
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dont I'intégrale générale résolue par rapport a la constante u
s’écrit, comme on le sait:

u = leefde dz + yed X
Nous prendrons donc 3’ sous la forme
¥ = plu) = {JV(/.Xlefdedx + yefde) )

Ecrivons que cette fonction y’ vérifie ’6quation donnée (10).
On devra avoir:

Pour qu’on ait affaire & une équation différentielle entre W
et u, il faut que le coefficient de ' soit fonction de u, ce que I’on
peut aussi bien écrire

a 4 Xdx
yefde + leefdedx _ F( (Xy + 1}1)ef x\

< I (11)

Constatons tout de suite que ceci a lieu quand X, est iden-
tiquement nul. Nous pouvons donc affirmer que les équations

1 : : )

de la forme t - ;P = 0, ou ce qui revient au méme, de la
Xo2

forme

X
t+"; = O 5 12
7P (12)

ou X désigne une fonction quelconque de x, peuvent se ramener q
Uéquation de la chaleur.

Supposons maintenant que Xy ne soit pas identiquement nul.
St on dérive (11) par rapport a y on a

ed Xdx _ ,fXdxF’ d’ou F' =1

et (11) s’éerit done

. e X X)) Xdx
yed Xdx leeJ Xdx gy — Xy :%1)L~ + a ,
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a désignant une constante arbitraire, ou encore

X /‘.Xiefdedx‘ = X,e/ X 4 54X .

En dérivant par rapport & z on obtient
X’leefdedx = Xl Xdx o g%

i

Si 'on divise membre & membre ces deux derniéres relations
on a

d’ou I'on tire
X, = kX,

k étant une constante. L’équation (10) a alors la forme

e p = 0
+rrt T
qui n’est pas au fond essentiellement différente de celle que nous
“avait donnée le cas ou X, était identiquement nul.

Effectuons maintenant la réduction de ’équation

, x ;
L+ gL = 0 (12)
a celle de la chaleur.
On a successivement :
dx i !
u = ye X :
: / d
y’:loguzlogy-i-f—%x; z = — 3(26

Parmi les équations (12) il en est une qui présente un certain |
intérét historique 1. C’est I’équation

2x .
i — o = 0 . s (12,)
Y P

1 Ed. GOURSAT, Second ordre, t. I, p. 80.
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Cette équation a été étudiée par Ampere qui la déduisait de
I’équation

(@ +qr+2(+qu+ps+y+pPt+2+4qgly+p =0

par l'application d’une transformation de contact. Ampere
la simplifiait ensuite en posant y* = xe’ et obtenait

0%z d 3 5 s .
— — 22— = 0. Or c'est précisément & ce changement de
Oy - QX

la variable y que nous conduit 'application de la formule
dx
y' = logy + f % -

Les équations (12) possedent quelques propriétés intéressantes
que nous allons indiquer maintenant.

D’abord un changement de variable portant sur z seul permet,
d’écrire (12) sous la forme considérée par Ampere (12).

On peut faire entre (12') et 'équation de la chaleur (1), t = p,
un rapprochement du meéme genre que celui qu’on fait, quand
on étudie les équations différentielles linéaires, entre les équations
a coeflicients constants et les équations d’Euler. Le changement
de variables qui permet de passer de (12’) & (1) rappelle celui
qui rameéne une équation d’Euler & une équation a coefficients
constants. On peut faire une remarque analogue en ce qui
concerne les intégrales. L’équation de la chaleur admet une
solution de forme exponentielle (comme les équations a coefli-
cients constants) tandis que I’équation (12') admet une solution
de la forme x*yP qui rappelle celle des intégrales des equations
d’FEuler et a partir de laquelle on pourrait évidemment déduire
d’autres solutions.

Au point de vue de la généralisation d’une solution parti-
culiere de (12') il est encore important d’observer que cette
équation admet la transformation 2’ = ax, ¥y’ = «2y d’ou il
résulte que si u (z, y) est une solution, il en est de méme de
u (ax, @?y).

6. — Seconde application. — Soit I'équation

o
L

L+ vP = 0 (13)

L’Enscignement mathém., 33me année, 1934.

&)
Y
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ou X et Y sont respectivement fonctions de x et y. Déterminer toutes
les formes de ces fonctions pour que cette équation soit réductible
a celle de la chaleur.

On a ici

X
]c(x7y)=?’ fy: Y2
| L’équétion (6) s’écrit
2Xp—Y'qg=0.

C’est une équation a variables séparées. La fonction p (2, y)
est fonction de z et y par I'intermédiaire de la variable u définie

par
o [ |

2 X Y’ |

On a alors - ~
1 1 1, Y |

La fonction p doit satisfaire a I’équation (13), ce qui donne

" Y2 | n\ . r i

Pour que cette égalité soit une équation différentielle entre p.
et u il faut que le coefficient de p’, qui ne dépend que de y, se
réduise & une constante k&, puisque u dépend de x

2YY” — Y’ + 2kY =0 . (14)

Donc léguation (13) est réductible a Déquation de la chaleur
lorsque Y est une fonction de y vérifiant Iéquation différentielle
(14). La fonction X de x pourra étre prise arbitrairement.

Examinons en particulier le cas ou k& est nul. |

Alors (14) devient

®haq?’

Yooy
¥y —v — 0
d’out | :
logY —log Y — cte — log —,, Y = 2a+4/Y .
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On tire de la:
Y = (ay + b)? ,

a et b désignant des constantes 1. On retrouve les résultats obte-
nus dans I’exercice précédent.

Etudions maintenant le cas général ot £ n’est pas nul dans
Iéquation (14).

Pour intégrer cette équation nous prendrons Y comme variable

et ¥y comme inconnue. Posons Y’ = o =P

wo__dp __ _dp
AlOI'S Y == d—y == pﬁ'
L’équation (14) devient

2Yp— = p>*— 2kY .

S1 on pose provisoirement p? = ¢, elle s’écrit

On a une équation linéaire pour déterminer ¢. Son intégrale
générale est
0 =Y (ka®— 2k logY) .

On a ensuite pour déterminer Y intégrale

ay
VY (ha® — 2k log Y)

7. — Troisieme application. — Trouver la forme la plus
genérale de la fonction X de x pour que équation
X

Fr E P =0 (16)

sout réductible a Uéquation de la chaleur par un changement de
variables.

1 On peut aussi intégrer I'équation Y2 — 9VY"” — 0 en dérivant par rapport a Y.
On trouve Y = 0, d’ol1 Y = ey? 4 ¢y + 4. Mais Y ne doit dépendre que de deux
constantes arbitraires. En écrivant que «y? + gy + v vérifie Y2 — QYY" — 0 on
obtient: g2 boy = 0.
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On a ici:
X _—2Xy
z? + y*’ fy _(x2+y2)2‘

[z, y) =

L’équation (6) s’écrit:

pX —qy = 0.
On prendra pour y' = wu(x, ¥) une fonction de
dx ’
B == f—X— + logy .

Il faut que la fonction p soit solution de (16)

1, 1 1, 1,

/

Ve = xx 8 uy=§u, By = 2 — 5 -

On doit avoir, par conséquent,

W _xz_}_yzfl':()a
ou
n” 1 ’
o yzu_o
(%)
X

Il faut donc que la variable u dont dépend la fonction w soit
fonction de }% Ainsi

dx . Ji
S X +logy = ‘P(;>'

On tire de 13, en dérivant successivement par rapport azetay:

En divisant ces deux relations membre a4 membre on est

finalement conduit 4 X = — z.
"Il en résulte que la seule équation de la forme (16) réduciible a

I'équation de la chaleur est

f— 2 p =0, | (17)
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Effectuons la réduction :

(6) s’écrit maintenant px -+ qy = 0, Aot y' = p(z, y) = 5,,(%) ,

A

14 1 4 o
Il faut que " + T = 0, en posant ¥y = uz. On prendra
donc
- 2 + x.? + 2
y = u = log (u + V1 + w2) = log ¥ \/x Ty
L’équation (17) devient alors:
Ya % g
oy ox
On fait ensuite
' = logx
pour obtenir:
0’z 0z
oyt oo
8. — Quatriéme application. — Déterminer la relation qui doit
unir les constantes o et B dans 'équation
02 prd
2z L e (18)

Dyz_{—ocx—{ﬁy@

pour qu’on puisse ramener cette équation a celle de la chaleur.
Cette relation est 2a = B2.

Exemples:
2 1
t —— zy 2t + — =0
+xi2yp 0; +xiyp
III. — SurR UN PROBLEME D’ASYMPTOTIQUES.
9. — Lorsqu’on cherche les surfaces dont les lignes asympto-

tiques de I'un des systémes se projettent sur le plan des zy
sutvant les courbes (I') d’équation

¢z, y) = cte, (19)
on est conduit & ’équation

X(z) = g,r — 20,0,5 + oLt = 0 . (20)




	II. — Applications.

