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LIGNES ASYMPTOTIQUES
ET ÉQUATION DE LA CHALEUR

PAR

René Guigue (Bonneville, Haute-Savoie).

L — Sur les équations du type parabolique réductibles
À l'équation de la chaleur.

1. — Parmi les équations aux dérivées partielles du second
ordre du type parabolique il en est une dont l'importance est
capitale car elle intervient dans de nombreux problèmes. C'est
l'équation dite de la chaleur

t P- (l)

Considérons d'abord une équation de la forme

r — 2Xs + \2t + ap + bq + cz + d 0 (2)

où X, a, b,c,d sont des fonctions des seules variables x et y.
On sait1 que par un premier changement de variables
convenablement choisi on peut ramener cette équation à la forme

t+ f(x» y)po (3)

(je remets a; et y à la place des nouvelles variables). Il me suffira
donc de considérer des équations (2) déjà mises sous la forme (3).

Ceci étant admis, je vais examiner les possibilités de ramener
une équation (3) à l'équation (1) par un simple changement de
variables.

1 Voir GtOursat, Leçons sur l'intégration des équations aux dérivées partielles du second
ordre, t. I, p. 152 ou Darboux, Leçons sur la théorie des surfaces, t. I, p. 194.



ÉQUATION DE LA CHALEUR 323

Un premier cas très simple où cela peut se faire est celui où
la fonction f (x, y) ne dépend que de x seul, / (x, y) h X. On
constate sans difficulté qu'en conservant la variable y et en
remplaçant la variable x par x' tel que

y dx
* - Jx' (4)

t + Xp 0

bz
à y'2 bx'

On a à effectuer un changement de variables de ce genre quand
on cherche les surfaces qui admettent un système d'asympto-
tiques situées sur des cylindres circulaires de même axe oz.
En coordonnées cylindriques on est conduit à l'équation

qui s'écrit
Ö2£ bz
ö 02 bu '

si l'on pose u — log r.
Ce résultat est dû à Bianchi. On pourra'consulter à ce sujet

un article de M. A. Buhl (Lignes asymptotiques et lignes de
courbure, Journal de Mathématiques, 1929, p. 59).

2. — Prenons maintenant le cas général où la fonction f (x, y)
dépend à la fois de x et y et efforçons-nous de le ramener au
précédent.

Soient
x' X{x y) y' [L (x, y)

les équations qui définissent le changement de variables. On a
alors

àz bz bz bz
P - *x6xï + q -

^2 b2Z
^ ö2£ o b2Z

yyöx'+ P-yy^jï+ A!/J7<« + " + '

l'équation

s'écrit
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L'équation (3) devient

•>2 O-i 2 V ^Z 02
v*xrÀ + v^Vbx'Dy' ^Vby'2 + Wöx' + +

02 / ^z ~+ A*sp + iv-x^, o •

On veut que cette équation ait la forme:

o
oy " ôas

où Xx ne dépendra que de #' seul.
Ceci exige d'abord que Xy soit nul, ce qui entraîne la dispa-

ration des premier, deuxième, quatrième termes du premier
membre; X sera donc fonction de x seul, et en particulier on

pourra conserver la variable x.
L'équation s'écrit maintenant

^Z
I

1
/ I t \ I X

ÔZ n
o?/'2 + „2 ^yy+ ^xhy' + 2 ~ '

On fera disparaître le terme en en prenant pour \x y)

une solution de l'équation (3). Il faudra ensuite que ^-/ soit
y-y

fonction de la seule variable x, ce qui se traduit par

/ 1

,i2 4 X2 ' (5)

en désignant par X une fonction quelconque de ou

r(-t)=0'*yVy!
ou encore

fyV"y ~ ^ * .'(%')

La fonction y' [x (x, y) doit donc vérifier les équations (3)
et (5'). En tenant compte de (3), (5') s'écrit

fy^y + 2/Vx o "(6)
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3. — Onpourra ramener Véquation (3)

^ + n^y)-x= 0

ci la forme de Véquation classique de la chaleur chaque fois qu'on

pourra trouver une intégrale y' *= [i(x, y) cle Véquation du
premier ordre (6) cqui soit en même temps intégrale de Véquation (3).

Le changement de variable y' y (x, y) ramène Véquation (3) à

une équation de même forme ou le coefficient de — est fonction de

x seul. On procède ensuite comme au paragraphe 1.

4. — De la considération simultanée des deux équations:

f 1

Lyy + fLt 0
» -r 4 y, >

[ y

nous allons déduire une conséquence intéressante. La seconde

donne

L'autre conduit à
_3_

LX — X / ~ fy

On obtiendra donc la fonction y par l'équation aux différentielles

totales

_
3 1

da (- x/ *fy) dx + (2 Xf)dy (7)

Ecrivons que la condition d'intégrabilité est vérifiée, soit

î

ou encore:

iffyy+n-fx- Sfy 2 X'
+— .p ^ — ton et. de x seul
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En résumé pour que Véquation (3) puisse être ramenée à Véquation

de la chaleur, il faut que la fonction f (x, y) soit telle que
Vexpression

Vfyy + ïffx-K
f

ne dépende que de la seule variable X;
La condition précédente peut être mise sous une forme plus

remarquable si l'on observe, comme le montre un calcul facile,
que la condition d'intégrabilité (8) peut être mise sous la forme

$(xr*) + f£(xfî)- ». PI)

D'où l'énoncé suivant:
On saura ramener Véquation (3) à Véquation de la chaleur

_
î

chaque fois qu'on connaîtra une fonction X de x telle que X/ 2

soit solution de Véquation (3).

II. — Applications.

5. — Première application. — Comment faut-il choisir les

fonctions X et X1 de x pour que Véquation

1 + (Xy + X°" '10*

soit réductible à Véquation t — p par un changement de variables
L'équation (6) s'écrit ici:

P — (Xy .+ Xx)q 0

Pour obtenir l'intégrale de cette équation on est amené à

considérer l'équation différentielle linéaire

| + Xy + X, 0
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