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LIGNES ASYMPTOTIQUES
ET EQUATION DE LA CHALEUR

PAR

René Guicue (Bouneville, - Haute-Savoie).

I. — SUR LES EQUATIONS DU TYPE PARABOLIQUE REDUCTIBLES
A L’EQUATION DE LA CHALEUR.

1. — Parmi les équations aux dérivées partielles du second
ordre du type parabolique il en est une dont Iimportance est
capitale car elle intervient dans de nombreux problemes Cest
I’équation dite de la chaleur |

it = p. (1)
Considérons d’abord une équation de la forme
r——27\8+)\Vz,t'—l—ap—.f-bq—l—cz-!—dzo,‘ (2)

ou A, a, b, ¢, d sont des fonctions des seules variables z et y.
On sait ! que par un premier changement de variables conve-
nablement choisi on peut ramener cette équation & la forme

t_l_f(x’y)p:() (3)

(je remets z et y & la place des nouvelles variables). Il me suffira |
donc de considérer des équations (2) déja mises sous la forme (3). |

Ceci étant admis, je vais examiner les possibilités de ramener
une équation (3) & I’équation (1) par un simple changement de
variables.

1 Voir GouRrsAT, Legons sur U'intégration des équations aux dérivées partielles du second
ordre, t. I, p. 152 ou DARBOUX, Legons sur la théorie des surfaces, t. I, p. 194.
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Un premier cas trés simple ou cela peut se faire est celui ou
la fonction f (z, y) ne dépend que de z seul, f (2, y) = X. On
constate sans difficulté qu’en conservant la variable y et en
remplacant la variable x par x’ tel que

dx
, . [ax 4
C: J x> (4)
I'équation
t+ Xp =20
s’écrit
o’z 0z
oy: da’

On a & effectuer un changement de variables de ce genre quand
on cherche les surfaces qui admettent un systéme d’asympto-
tiques situées sur des cylindres circulaires de méme axe oz.
En coordonnées cylindriques on est conduit & I’équation

223 03
—_— p— =
0 6* * or 0
qui s’écrit
0’z 0z
002 ou’
si 'on pose u = — log r.

Ce résultat est dit & Brancur. On pourrar consulter & ce sujet
un article de M. A. Bunt (Lignes asymptotiques et lignes de
courbure, Journal de Mathématiques, 1929, p. 59).

2. — Prenons maintenant le cas général ou la fonction f(z, y)
dépend & la fois de z et y et efforcons-nous de le ramener au
précédent.

Soient
=z, y) ., Y o=l y)

les équations qui définissent le changement de variables. On a
alors

03 0z 0% 03z
p = xxOx/ + V‘xoyr ’ q = kyhx/ l‘l‘y@ ’
WY 0z 2 02z 2%z 2 02z
s —_ e —_— 9 — _
l )\yy 0.','6, + {J’yy Oy, + )\y 0:12,2 + "‘7\y “‘y bx' Dy’ + yy byl2 "
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L’équation (3) devient

2 02z 22z 2 3%z . vz vz

)\yg‘a‘:,—z + QAyun -+ y«ygp + lyya’;, + Myyg‘y—, -+
| + 12 xbx + e, xby =0.

On veut que cette équation ait la forme:

02z 03z
\y’2 + le—x’

=0,
ou X; ne dépendra que de z’ seul.

Cecl exige d’abord que A, soit nul, ce qui entraine la dispa-
ration des premier, deuxiéme, quatriéme termes du premier
membre; A sera donc fonctlon de x seul, et en partlcuher on
pourra conserver la variable z.

L’équation s’écrit maintenant

?\2

'l

On fera disparaitre le terme en ob—yz, en prenant pour w(z, y)

. -
une solution de I’équation (3). Il faudra ensuite que —-f soit

y

fonction de la seule variable z, ce qui se traduit par

fo_ 1 | |

”_12,;- =Xz (5)
en désignant par X une fonction quelconque de z, ou

R ﬂ(é) — 0,

oy\uy)

ou encore |

La fonction y' = u (, y) doit donc vérifier les équations (3)
et (9’). En tenant compte de (3), (5') s’écrit

fyty + 2fp, = 0. IR (i
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3. — On pourra ramener U'équation (3)

%z ) 0z

0y~ Y =0

d la forme de Iéquation classique de la chaleur chaque fois qu’on
pourra trouver une intégrale y' = p.(z,y) de Uéquation du pre-
mier ordre (6) qui soit en méme temps intégrale de Uéquation (3).
Le changement de variable y' = p (x, y) raméne 'équation (3) d
une équation de méme forme ou le coefficient de i;;; est fonction de

x seul. On procéde ensuite comme au paragraphe 1.

4. — De la considération simultanée des deux équations:
f 1
byy T fe =0, 5 =153
Hy B

nous allons déduire une conséquence intéressante. La seconde
donne

L’autre conduit a
3
)

by = — X

—~

—n
<
N

On obtiendra donc la fonction p par I’équation aux différen-
tielles totales

| =

dp. = (— X

o) W

(8%}

f,) de + @XP)dy .

—
~J
—

Ecrivons que la condition d’intégrabilité est vérifiée, soit
3 ) 1
r 9 ¢ 7 ? .
X = f) + 25 (Xf2) =0, (8)
ou encore:

2ffyy + 2P f — 3f;  ox
~2 . f;;‘*\w - = \ = fonct. de z seul . (8")
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En résumé pour que I'égquation (3) puisse éire ramende d équa-
tion de la chaleur, il faut que la fonction f (x,y) soit telle que
Pexpression
| 2ff,, + 2721, — 8f,
}CB

ne dépende que de la seule variable x.

La condition précédente peut étre mise sous une forme plus
remarquable si I’on observe, comme le montre un calcul facile,
que la condition d’intégrabilité (8) peut étre mise sous la forme

2 1 1

e (XF D) + 1 (XF) = 0. )

D’ou I’énoncé suivant:
On . saura ramener Véquation (3) & Uéquation de la chaleur

1
chaque fois qu’on connaiira une fonction X de x telle que Xf

soit Solutwn de Déquation (3).

II. — APPLICATIONS.

5. — Premiére application. — Comment fait-il choisir les
fonctions X et X, de x pour que I’'équation

t + (10)

X —U
Xy + X,)2P

soit réductible a I'équation t == p par un changement de vartables.?
L’équation (6 8’écrit ici:

p— (Xy + X)g=0.

Pour obtenir lintégrale de cette équation on est amené a
considérer ’équation différentielle linéaire

dy -
@+X9+X1—‘0
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dont I'intégrale générale résolue par rapport a la constante u
s’écrit, comme on le sait:

u = leefde dz + yed X
Nous prendrons donc 3’ sous la forme
¥ = plu) = {JV(/.Xlefdedx + yefde) )

Ecrivons que cette fonction y’ vérifie ’6quation donnée (10).
On devra avoir:

Pour qu’on ait affaire & une équation différentielle entre W
et u, il faut que le coefficient de ' soit fonction de u, ce que I’on
peut aussi bien écrire

a 4 Xdx
yefde + leefdedx _ F( (Xy + 1}1)ef x\

< I (11)

Constatons tout de suite que ceci a lieu quand X, est iden-
tiquement nul. Nous pouvons donc affirmer que les équations

1 : : )

de la forme t - ;P = 0, ou ce qui revient au méme, de la
Xo2

forme

X
t+"; = O 5 12
7P (12)

ou X désigne une fonction quelconque de x, peuvent se ramener q
Uéquation de la chaleur.

Supposons maintenant que Xy ne soit pas identiquement nul.
St on dérive (11) par rapport a y on a

ed Xdx _ ,fXdxF’ d’ou F' =1

et (11) s’éerit done

. e X X)) Xdx
yed Xdx leeJ Xdx gy — Xy :%1)L~ + a ,
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a désignant une constante arbitraire, ou encore

X /‘.Xiefdedx‘ = X,e/ X 4 54X .

En dérivant par rapport & z on obtient
X’leefdedx = Xl Xdx o g%

i

Si 'on divise membre & membre ces deux derniéres relations
on a

d’ou I'on tire
X, = kX,

k étant une constante. L’équation (10) a alors la forme

e p = 0
+rrt T
qui n’est pas au fond essentiellement différente de celle que nous
“avait donnée le cas ou X, était identiquement nul.

Effectuons maintenant la réduction de ’équation

, x ;
L+ gL = 0 (12)
a celle de la chaleur.
On a successivement :
dx i !
u = ye X :
: / d
y’:loguzlogy-i-f—%x; z = — 3(26

Parmi les équations (12) il en est une qui présente un certain |
intérét historique 1. C’est I’équation

2x .
i — o = 0 . s (12,)
Y P

1 Ed. GOURSAT, Second ordre, t. I, p. 80.
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Cette équation a été étudiée par Ampere qui la déduisait de
I’équation

(@ +qr+2(+qu+ps+y+pPt+2+4qgly+p =0

par l'application d’une transformation de contact. Ampere
la simplifiait ensuite en posant y* = xe’ et obtenait

0%z d 3 5 s .
— — 22— = 0. Or c'est précisément & ce changement de
Oy - QX

la variable y que nous conduit 'application de la formule
dx
y' = logy + f % -

Les équations (12) possedent quelques propriétés intéressantes
que nous allons indiquer maintenant.

D’abord un changement de variable portant sur z seul permet,
d’écrire (12) sous la forme considérée par Ampere (12).

On peut faire entre (12') et 'équation de la chaleur (1), t = p,
un rapprochement du meéme genre que celui qu’on fait, quand
on étudie les équations différentielles linéaires, entre les équations
a coeflicients constants et les équations d’Euler. Le changement
de variables qui permet de passer de (12’) & (1) rappelle celui
qui rameéne une équation d’Euler & une équation a coefficients
constants. On peut faire une remarque analogue en ce qui
concerne les intégrales. L’équation de la chaleur admet une
solution de forme exponentielle (comme les équations a coefli-
cients constants) tandis que I’équation (12') admet une solution
de la forme x*yP qui rappelle celle des intégrales des equations
d’FEuler et a partir de laquelle on pourrait évidemment déduire
d’autres solutions.

Au point de vue de la généralisation d’une solution parti-
culiere de (12') il est encore important d’observer que cette
équation admet la transformation 2’ = ax, ¥y’ = «2y d’ou il
résulte que si u (z, y) est une solution, il en est de méme de
u (ax, @?y).

6. — Seconde application. — Soit I'équation

o
L

L+ vP = 0 (13)

L’Enscignement mathém., 33me année, 1934.

&)
Y
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ou X et Y sont respectivement fonctions de x et y. Déterminer toutes
les formes de ces fonctions pour que cette équation soit réductible
a celle de la chaleur.

On a ici

X
]c(x7y)=?’ fy: Y2
| L’équétion (6) s’écrit
2Xp—Y'qg=0.

C’est une équation a variables séparées. La fonction p (2, y)
est fonction de z et y par I'intermédiaire de la variable u définie

par
o [ |

2 X Y’ |

On a alors - ~
1 1 1, Y |

La fonction p doit satisfaire a I’équation (13), ce qui donne

" Y2 | n\ . r i

Pour que cette égalité soit une équation différentielle entre p.
et u il faut que le coefficient de p’, qui ne dépend que de y, se
réduise & une constante k&, puisque u dépend de x

2YY” — Y’ + 2kY =0 . (14)

Donc léguation (13) est réductible a Déquation de la chaleur
lorsque Y est une fonction de y vérifiant Iéquation différentielle
(14). La fonction X de x pourra étre prise arbitrairement.

Examinons en particulier le cas ou k& est nul. |

Alors (14) devient

®haq?’

Yooy
¥y —v — 0
d’out | :
logY —log Y — cte — log —,, Y = 2a+4/Y .
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On tire de la:
Y = (ay + b)? ,

a et b désignant des constantes 1. On retrouve les résultats obte-
nus dans I’exercice précédent.

Etudions maintenant le cas général ot £ n’est pas nul dans
Iéquation (14).

Pour intégrer cette équation nous prendrons Y comme variable

et ¥y comme inconnue. Posons Y’ = o =P

wo__dp __ _dp
AlOI'S Y == d—y == pﬁ'
L’équation (14) devient

2Yp— = p>*— 2kY .

S1 on pose provisoirement p? = ¢, elle s’écrit

On a une équation linéaire pour déterminer ¢. Son intégrale
générale est
0 =Y (ka®— 2k logY) .

On a ensuite pour déterminer Y intégrale

ay
VY (ha® — 2k log Y)

7. — Troisieme application. — Trouver la forme la plus
genérale de la fonction X de x pour que équation
X

Fr E P =0 (16)

sout réductible a Uéquation de la chaleur par un changement de
variables.

1 On peut aussi intégrer I'équation Y2 — 9VY"” — 0 en dérivant par rapport a Y.
On trouve Y = 0, d’ol1 Y = ey? 4 ¢y + 4. Mais Y ne doit dépendre que de deux
constantes arbitraires. En écrivant que «y? + gy + v vérifie Y2 — QYY" — 0 on
obtient: g2 boy = 0.
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On a ici:
X _—2Xy
z? + y*’ fy _(x2+y2)2‘

[z, y) =

L’équation (6) s’écrit:

pX —qy = 0.
On prendra pour y' = wu(x, ¥) une fonction de
dx ’
B == f—X— + logy .

Il faut que la fonction p soit solution de (16)

1, 1 1, 1,

/

Ve = xx 8 uy=§u, By = 2 — 5 -

On doit avoir, par conséquent,

W _xz_}_yzfl':()a
ou
n” 1 ’
o yzu_o
(%)
X

Il faut donc que la variable u dont dépend la fonction w soit
fonction de }% Ainsi

dx . Ji
S X +logy = ‘P(;>'

On tire de 13, en dérivant successivement par rapport azetay:

En divisant ces deux relations membre a4 membre on est

finalement conduit 4 X = — z.
"Il en résulte que la seule équation de la forme (16) réduciible a

I'équation de la chaleur est

f— 2 p =0, | (17)
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Effectuons la réduction :

(6) s’écrit maintenant px -+ qy = 0, Aot y' = p(z, y) = 5,,(%) ,

A

14 1 4 o
Il faut que " + T = 0, en posant ¥y = uz. On prendra
donc
- 2 + x.? + 2
y = u = log (u + V1 + w2) = log ¥ \/x Ty
L’équation (17) devient alors:
Ya % g
oy ox
On fait ensuite
' = logx
pour obtenir:
0’z 0z
oyt oo
8. — Quatriéme application. — Déterminer la relation qui doit
unir les constantes o et B dans 'équation
02 prd
2z L e (18)

Dyz_{—ocx—{ﬁy@

pour qu’on puisse ramener cette équation a celle de la chaleur.
Cette relation est 2a = B2.

Exemples:
2 1
t —— zy 2t + — =0
+xi2yp 0; +xiyp
III. — SurR UN PROBLEME D’ASYMPTOTIQUES.
9. — Lorsqu’on cherche les surfaces dont les lignes asympto-

tiques de I'un des systémes se projettent sur le plan des zy
sutvant les courbes (I') d’équation

¢z, y) = cte, (19)
on est conduit & ’équation

X(z) = g,r — 20,0,5 + oLt = 0 . (20)
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Les caractéristiques de cette équation du second ordre sont
précisément les courbes (I'). |

On peut se demander quelle est la forme la plus générale a
adopter pour la fonction ¢ (z, y) pour que I'équation (20) soit
réductible & I’équation de la chaleur par un changement de
variables.

Effectuons le changement de variables:
u:q)(x:y)7 V"_‘“‘p(x’-y)al (21)

¢ désignant pour le moment une fonction quelconque de z et y.
L’équation (20) est remplacée par 1’équation
2%z

(2 dy — @y )% + X (9= + X ()

2z
dyp T

0,
o9
X () désignant un symbole opératoire dont le sens est explicité
en (20).
En particulier si I'on prend pour ¢ une solution de I’équation
(20) cette équation s’écrit
%z 0z
5‘;}‘2 + ngL =0 ) (22)

avec:
§ = X (¢) _
(cpx "'I)y - ch ¢x)2

Nous exprimerons f en fonction de u et ¢ et nous écrirons que f
ne dépend pas de la variable ¢. Done

of

. of dx | df dy
g 0 ou dx f)+

L.
0 VEY
Or un calcul facile montre que:
Ty VI P

La condition précédente s’écrit donc

of o of
Pysg T Pady = 0, (23)
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Posons provisoirement

G(rc, y) = (quJy"—‘ CPy("Vx ’
et dérivons f successivement par rapport & x et & y. On a par

exemple

of _ 162y
ﬁ_ﬂJ%gmw 2%Xw]

L’équation (23) devient donc

D ra )) 'l 7
20, X(g) 0, — 20, X(g)0, = |0,~X(g) — ¢, —X(0)| 8. (23
y y B oY

La fonction 0 étant ainsi déterminée par I’équation du premier
ordre (23’) on devra ensuite choisir pour ¢ une solution commune
aux deux équations

\ \ (24)
8 Py P 290 Py by T Py = 0 '
10. — Un cas particulier important sera celut ou le coefficient
de O est nul dans le second membre de I'équation (23).
° X { ° X (o) = 0 25
Pygg @) T Ppg Xle) =0 (25)

Si I'on observe que

0

522 (e) = X{o) + 20, Y (o)

en posant, pour abréger, Y (z) = rt — s, on peut écrire (25)
sous la forme
oy X (o) — 9, X(g,) = 0. (25)

Léquation (25') est en particulier satisfaite si o, et ¢, sont des
solutions de ’'équation (20).

S’1l en est ainsi (23') se réduit a

cpyﬁx — cpxey = 0,
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- 0 est fonction de <p,’6 = — F (¢p) et le systéme (24) est maintenant

eyl — ¢q = Flo) , :
\ | \ (24")
cpy'r——2cplxcpys+<px = 0 . ,

La fonction ¢ qui doit vérifier les deux équations (24') doit
aussi vérifier celles qui se déduisent de la premiére par dérivation
successive par rapport & z et y;

Pyl — (P;cs + Py P — Puxq = Fo,,

Pys — Pt + PP — @q = Fo, ,

et la suivante qu’on déduit des précédentes par soustraction |
apres les avoir multipliées respectivement par o, et ¢, et, en |
tenant compte de la seconde équation (24'), o

(@ Puy — Py Pyy) P+ (0 @y — Py Py ¢ = 0 (26)

La premiére équation (24’) et 1’équation (26) nous donnent,
pour p et ¢, les valeurs suivantes:

F
p= X((CP)) (Py Pax — P Pay)
_Flo) (27) |
¢ ' i

Fmalement { pourra étre déterminée par I’équation aux
dlﬁerentlelles totales:"

— X (9 [(‘Py Poxac — % Py) A2 + (Py Puy — P Pyy) dy]

calcul facile montre qu’il en est effectivement ainsi si I’on prend |
pour F (¢) une constante (par exemple: 1). On retrouve ainsi '
Pimportant théoréme suivant dit & M. A. Buhl. i

On pourra toujours ramener U'équation (20) a Iéquation de la ;
chaleur par un changement de variables dans le cas ou Py €F @y ;
sont des solutions de cette équation. ;

La condition précédente parait assez restrlctlve mais il est | |
aisé de lui donner une plus grande généralité de la fagon suivante: %
¥

i
pourvu que la condition d’intégrabilité soit satisfaite. Or un !
!
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Supposons qu’il existe une fonction A(x, y) telle que

¢, = 2B, cpy:~—7\A,

A et B désignant des fonctions de x et y.
Alors I'équation (20) peut étre écrite

A?r + 2ABs + B2 = 0 (207)

et il résulte du raisonnement précédent que (20°) est réductible a
I’équation de la chaleur.

11. — Le cas ou ¢, et ¢, sont solutions de (20) n’est pas le cas
le plus général ou le coefficient de 0 est nul dans I’équation (23").
Pour cela 1l suffit que X (v), considéré comme fonction de
x et y, vérifie I'équation
d d o
donc X (¢) doit étre une fonction de o.
L’équation (23") se réduit encore a

Py Gx — @y Gy — M
d’ou 6(x, y) = — I (9). Le calcul se poursuit comme au para-
graphe précédent. En posant %{% = G (¢), on a

Pour que la détermination de la fonction { soit possible, il
faudra que la condition d’intégrabilité soit satisfaite, ce qui
nous conduit a

dG
dG
ou:
ac -
T (?) + 2GY (@) = 0 . (29)
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Pour que (29) soit une équation différentielle entre G et o,
il faudra donc que Y (9) soit une fonction de ¢. En résumé,
on pourra aussi ramener I'équation (20) d I'équation de la chaleur
st la fonction ¢ veérifie les deux conditions: X (o) = fonction de o,
Y (9) = fonction de ¢. Le changement de variables d effectuer sera

u= g,y , ¢=1d(,y
Y étant donnée par I'équation auzx différentielles totales
Ay = G () [(2y Pux — Py Py) 4% + (9, Py — 0y @) ]
G () étant une fonction de @ vérifiant I'équation différentielle (29).
Remarque. — Constatons que dans ce cas, comme dans celul
du paragraphe précédent la fonction ¢ (2, y) qu’il faut adopter
est une fonction de %.
Yy

En effet la fonction ¢ doit vérifier I’équation (26) que I’on
peut écrire sous la forme

0 [Px P
_<_i°> . p— ﬁ(ﬁ) g =10. (26")
oy Py ox Py

Ce qui justifie la propriété énoncée.

12. — Le cas ot le coefficient de 6 est nul dans 1’équation (23")
peut étre traité de la fagon suivante.

L’équation  (25), ou l’équation équivalente (25'), est alors
vérifiée par la fonction ¢, et la fonction ¢ doit étre une solution
commune aux deux équations

¢oyP — 0,9 = F(o) ; (24)
(Py Pay — PPy P+ (04 Ppyy — Py Ppi)g = 0 . (26)

On sait que pour que le systeme de deux équations du premier

ordre .
Hz,y,z,p,9 =0, K,y,2,p,9 =0

soit compatible il faut que [H, K] = 0, ou, si les équations ne
contiennent pas z que (H, K) = 0, soit identiquement, soit en
tenant compte des équations elles-mémes.
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Si on applique cette régle au systéme formé par les deux
équations (24') et (26) on est conduit & la condition

X (o) p — X(og = X(o) F" . (30)

1o 1’6quation (30) sera vérifiée identiquement si les trois
conditions suivantes sont satisfaites (théoréme de M. Buhl):

X(g) =0, X(g) =0, Flg)=cte.

20 I’équation (30) sera une combinaison linéaire de (24') et
(26) si

¢y Py F (o)

Py Pxy ™ Px Pyy Py Pxx — Px Pxy 0 — 0 .
X (9y) X (9,) F'X(g) |

Si ’'on développe le déterminant du premier membre par
rapport aux éléments de la troisieme colonne, on trouve

ce que l'on peut écrire

o X (@)

ox

2 X (o)

— (P Py — P Py YT + QX(CP)Y(@)}F + X2(0) F' (o) =0 .

(Py chy — Py cpyy)

Silon suppose que X (¢) est une fonction de ¢: @ (o) et s1 I'on

pose giz)) = G () la condition précédente devient:
G 2Y(e) _
G = X(g

On retrouve le cas du paragraphe (11) ot Y (¢) et X (o) sont
Pun et autre des fonctions de . L’équation ci-dessus n’est autre
que 'équation (29) de (11).

13. — Les considérations précédentes conduisent & un grand
nombre d’applications intéressantes. On en trouvera quelques-
unes trés remarquables dans le mémoire de M. A. Buhl qui
contient le théoréme cité plus haut (« Sur les surfaces dont un
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systéme de lignes asymptotiqﬁes se projette suivant une famille

de courbes données, Bulletin de la Société Mathématique de

France, t. XXXI, 1903. Voir, dans le méme volume, d’intéres-

sants rapprochements dus & M. L. LEcornv.). Je ne donnerai ici
qu’un seul exemple. |

Cherchons comment il faudrait prendre la fonction X de z -

pour que la détermination des surfaces admettant pour asympto-

tiques les courbes: ¢(z, y) = u = a2y + X se raméne & l'inté-
gration de I’équation de la chaleur. On a:

o =Yy + X', Py = = X", =1, =0

Pyy
X(¢) = 2*X" — 2z(y + X') = 22X’ — 22X’ — 20y , Y(o) =1 .

CPxx <ny

Nous serons donc dans le cas du paragraphe (11) si X (¢) est
fonction de ¢, ce qui ne peut avoir lieu que si X (¢) = — 2o.
I1 faudra alors que |

v

22 X" — 22X’ —2X = 0 ,

equation d’Euler dont I'intégrale générale est

X = Gz + Cya? .

En définitive les courbes considérées sont les hyperboles:

Coz? + Gy + 2y = u . o

La fonction G () est alors donnée par I’équation

glvqﬂ{_c_lip:‘o ou G :i.
-G ¢ | ¢
On a ensuite

— y + C))dz + zdy

dy = Coz? 4+ Ciz + 2y

Le changement de variables & effectuer ici est donc

u = Cyz* 4 Gz + 2y , o:logczx +xC1+y.

On peut constater que la remarque du paragraphe (11)
" s’applique.
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14. — Envisageons maintenant le cas général ot dans (23')
le coefficient de 0 n’est pas nul. Nous devons pouvoir déterminer
une fonction ¢ (z, y) qui soit une solution commune de (23') et
de I'équation X (¢) = 0, 0 désignant dans (23") ¢, ¢, — @, 4y -

Si 'on remplace 0 par cette valeur, cette équation devient

o o 0 o, ]
23X (8] (20 — 2 2 + 9y |2y X(0) — ezt X1a)] | 4

- - 5,
+ [ 2X (o) (cnoy Pxx @x@xy) T P [(Pyick((‘j) o gox@_?/}\“p)J Hby =0

Nous écrirons cette équation
xy, + B, =0,

o et [ désignant les coefficients de ¢, et ¢, dans (31). Donc
b est une solution commune des deux équations

(obe By =0,

-

: 2 (32]
( Py Yax ™ 2P Py Yy + @by =0

Dérivons successivement la premiere équation (32) par rapport
azetay.Ona

O(q)ch -+ Bq)xy - —ch(px_- gx q)y ’

(33)
Uy + By = — o, by — By by -

Si lon tire ¢, et 4, de ces deux équations et si on les rem-
place par ces valeurs dans la seconde équation (32) on obtient,

apres quelques calculs, une nouvelle équation que doit vérifier UN
soit

(“‘Px + B‘Py)L Yy + <B°‘x Py + xoy ‘P%> by + (Bﬁx ch TPy, <P2x> by =0 .
(34)
On constatera facilement que

.+ Po, = 2X(g) .

Le coefficient de {,, dans (34) n’est donc pas nul en général
et cette relation ne peut étre identiquement satisfaite. I.’ensemble
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des équations (33) et (34) permet d’exprimer ¢, ¢, ¢, en
fonction linéaire de z, y, ¢, ¢, et comme la premiére relation (32)
permet d’exprimer ¢, en fonction de ¢, toutes les dérivées d’ordre
égal ou supérieur au second de la fonction ¢ s’expriment au
moyen de z, y, ¢,. La solution la plus générale du systéme (32).
dépend donc au plus de deux constantes arbitraires si toutes les
conditions d’intégrabilité sont vérifiées. Le calcul des deux condi-
tions d’intégrabilité (que l'on obtiendra en calculant ¢, et
$y,, de deux facons différentes) parait malaisé étant donnée la
complication des fonctions «, 3. Nous sommes donc dans I'impos-
sibilité de donner les conditions les plus générales que doit
remplir la fonction ¢ (z, y) pour que ’équation (20) puisse étre
ramenée 4 I’équation de la chaleur.

15. — Dans bien des cas I'application des résultats des para-
graphes (10) et (11) nous permettra de nous prononcer sur la
possibilité du probléme et d’effectuer la réduction. Sinon il nous
parait commode de procéder de la facon suivante.

On rameénera d’abord I’équation (20) a la forme (22) par le
changement de variables (21) ot ¢ n’est assujettie qu’a la seule
condition d’étre solution de (20). Or ceeci est toujours possible
car x et y sont des solutions de cette équation et il suffit de
conserver pour ¢ I'une de ces variables, par exemple z.

Dans ces conditions la valeur de f donnée par la formule

i Xl
(CPx q)y - pr q)x)z
s’écrit
f= X_(;P_) )
Py

de telle sorte que I’équation (22) aura la forme:

2%z 02 ,

st flz, u)5 =0 (22')
I1 est intéressant de constater qUe la fonction y définie impli-
citement en fonction de x et de u par la relation ¢(z,y) = u
est une solution de (22’). On peut le vérifier directement, mais

il est plus simple de constater que y est solution de (20).
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Nous avons vu au paragraphe (4) la condition que doit vérifier
la fonetion f(z, u) pour que I’équation (22') puisse étre ramenée
a celle de la chaleur.

(On se rendra un compte exact de la difficulté du probléme en
se placant dans le cas le plus simple, celui ou la fonction f(x, u)
se réduirait & une constante a. Il faudrait alors que la fonction
o (z, y) vérifie I’équation

¢'r — 2pgs + p*t—ag’ = 0

qul n’est pas intégrable par la méthode de Monge-Ampere.)
Ayant exprimé f en fonction de z et w nous calculerons ’expres-
sion
2

2f - fax + 20, — 31
N |

Selon qu’elle dépendra de u seul, ou bien a la fois de z et de u
la réduction a I’équation de la chaleur sera possible ou impossible.
Signalons en particulier les cas suivants ot la réduction est
possible. La fonction f(z, u) est: 1° une constante, ou 2° une

i U
fonction U de u seul, ou encore 3° de la forme =

16. — Application. — Considérons la famille de courbes (T
d’équation
y == ul(z)

ou u désigne un parametre variable. Posons

et cherchons ce que devient la fonction f(z, u) = X (o) du

(Py
paragraphe précédent. On peut écrire
B F’ 1 F’
@xm_yﬁz7 ch“F’ (Pyy:O7 Cny:_“ﬁa
2F/2 . F:FI/
P = Y — - F3 T
Done
X (CP) , l: 1 Y (2 F/i! . FF//) F/Q' 7 F”
:F“*,l—ﬁﬁ—ﬁ_— :_l_._
F* I 2y F} F F -
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D?O.l‘l i )

. ) ‘F//
f(x,u)z——u?—. : (35;

11 résulte de ce qﬁi pr'écéde que la condition nécessaire et
suffisante pour que les courbes # = cte soient des asymptothues
de la surface

& = §, y = uF (o) , z = z(u, 9

est que z soit une intégrale de 1’équation

9_2—% . ':E\I/ ?5_ . O
00t “F ou EE
I1 est intéressant de constater que x et y sont aussi des solutions
de cette équation.
- On montrera aisément que le second systéme d’asymptotiques

est donné par I’équation -

2 2
FE—Z—Zdu = 2<F’% == I DZ )‘d() :
ou ou ouoy

Revenons a (35) et po‘sons

o
F w2’
de telle sorte que
f(x , U) = . :
(z)
Pour que I’équation

222 @(x) du

puisse étre ramenée a celle de la chaleur il faut, d’aprés (6), que:
200" — w2 + 2kw = 0 .

L’intégrale générale de cette equatlon dlfferentlelle est donnée
par la quadrature.

dw
x = : .
V' w (ka? — 2k log ®)
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En particulier si k£ est nul on trouve

o (z) = (az + b)* .

On peut donc adopter pour I—;— I'une des deux formes simples

FII F// Cte
T — cte e B
F " F x*
B’ .
Premier cas. — — se réduit & une constante et alors [(z, u)

F
est une fonction de z seul. On peut sans diminuer la généralié

du probléme supposer cette constante égale a + 1. Donc
F" +F = 0 ;

T a 'une des deux formes suivantes

{ F = osina + B cosx
’ ‘ (37)
? F:cxex%-ﬁe_‘x-
- F” / h
Deuzxiéme cas. — T = li Alors: f(z, u) = ——Z— Il est
commode d’écrire la constante & sous la forme o (o -+ 1).
F est ainsi une solution de I’équation linéaire d’Euler
2F" — ala + 1)F = 0.
L’intégrale générale de cette équation est
Flz) = Az*t! + Ba™ . (38)

Done si 'on cherche les surfaces admettant pour I'un de leurs
systémes d’asymptotiques la famille de courbes:

Y = u (A:c"'+1 + Bz ™) ,

ou u désigne un parametre variable et A, B, « des constantes,

on est conduit & intégrer ’équation aux dérivées partielles du
second ordre

%% u 0z

s— ol + 1) 5= =0 (39)

0 z°0u

IL’Enseignement mathém., 33me année, 1934. 23
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que l'on sait ramener & 1’équation de la chaleur. On pourra
prendre pour équations paramétriques de 1'une de ces surfaces:

@ =g, y:u(Av“+1+Bof“); z2=12z(u, v,

z désignant une intégrale quelconque de 1’équation

2%z u 0z

On sait que toute solution de ‘l’éqﬁation de la chaleur est

¢ . d D .
remplacée par une autre par les opérateurs ba’ by Partant de 13
on pourra établir que toute solution de 1’équation (39') est

. ~ . d d
changée en une autre par les opérateurs u 520 V5o

Il importe de noter cependant que ce procédé ne fournit pas

nécessairement des solutions nouvelles. C’est ce qui arrive quand

on applique aux solutions particuliéres

zZ = uyp ,‘ z = up*tl |

11 serait possible de développer de nombreux exemples:

Signalons seulement les deux suivants

o La surface =9, y = uo**! z = wo—* admet pour
asymptotiques les courbes u = cte. Cette surface est une surface
réglée & plan directeur zoy et a directrice rectiligne. Le second
systéeme d’asymptotiques est donc constitué par les génératrices
rectilignes. « | |

En éliminant ¢ entre les trois équations de la surface on mon-
trera que les asymptotiques autres que les génératrices rectilignes
sont les intersections de cette surface par les paraboloides
équilateres

20 La surface

T =g, y = up”"", z = log

admet pour asymptotiques les courbes

u = cte , gyt — cte

|
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17. — Le probléme qui consiste a déterminer les surfaces
admettant pour P'un de leurs systémes d’asymptotiques une
famille de courbes données (par exemple par leurs projections
sur le plan zoy) se révele comme incontestablement difficile
puisqu’il conduit & intégrer des équations du second ordre du
type parabolique en général peu accessibles aux méthodes
classiques d’intégration.

D’abord envisagé par Biancur dans un cas particulier (celui
ou les courbes se projettent suivant des cercles concentriques)
ce probléme a été surtout approfondi par M. A. BuurL dans le
meémoire déja cité et dans les travaux suivants:

a) « Sur les équations linéaires aux dérivées partielles et la
théorie des groupes continus » (Journal de Math., 5™e série, t. 10,
1904, p. 85);

b) «Lignes asymptotiques et lignes de courbure » (Journal de
Math., 1929, p. 45);

¢) «Sur les surfaces dont les lignes asymptotiques se déter-
minent par quadratures » (Nouvelles Annales de Math., 4me série,
t. VIIIL, 1908; t. IX, 1909; t. X, 1910).

M. A. Buhl a étudié la question en se placant en général au
point de vue de la Théorie des Groupes. Mais il m’a semblé qu’en
s'en tenant & des méthodes plus élémentaires on pouvait déja
obtenir des résultats indéniablement intéressants chaque fois que
Uon saurait ramener I'équation du probléme a celle de la chaleur.

En effet, si 'on tient compte de la remarquable transformation
due & P. Appell ! qui change 1’équation de la chaleur en elle-
meéme et qui par conséquent remplace une solution de cette
équation par une autre solution de forme parfois trés différente,
si 'on se rappelle aussi que d’une intégrale de cette équation
dépendant de paramétres variables on peut en déduire de
nouvelles par des dérivations ou par des quadratures par rapport
a ces parametres, on verra qu’en ce qui concerne notre probléme
d’asymptotiques il est permis d’envisager un nombre trés étendu
de transformations susceptibles de remplacer une surface

1 P. AppELL, Sur I’équation » = ¢ et la théorie de la chaleur (Journal de Mathéma-
liques, 4™¢ série, t. 8, 1892, p. 187).
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admettant une famille d’asymptotiques dont on connait les
projections orthogonales sur un plan donné et par suite situées
sur certains cylindres droits donnés, par d’autres surfaces
admettant elles aussi une famille d’asymptothues situées sur
les mémes cylindres. .

Mais pour cela il faut pouvoir donner une réponse aux deux
questions essentielles qui suivent:

1o Dans quels cas peut-on ramener une équation parabolique
a celle de la chaleur par un changement de variables, et

20 Quel est, dans chaque cas, le changement de variables
convenable ? C’est ce que je me suis efforcé de faire ici.

Signalons encore qu’au point de vue de la formation de solu-
tions particuliéres de I’équation de la chaleur

o’z 0z
oy? oz’

il peut étre commode d’utiliser les développements en série
suivants, qui sont des solutions de cette équation:

’ y2 y4
Fla) + 5F (@) + 55 F" (@) + ... ,

y y® Yoo |

bly) + 1,¢"< ) + ;‘:m T

ou F, ®, ¢ sont des fonctlons arbitraires.

- Les séries ci-dessus peuvent ne pas étre convergentes, mais si
Pon prend pour les fonctions arbitraires des polyndmes, ces séries
se réduisent elles-mémes a4 des polynOmes. D’ou résulte la
possibilité d’obtenir une infinité de surfaces possédant un
- systéme d’asymptotiques connu (voir le mémoire de M. A. Buhl
cité en a) au paragraphe 17).
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