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ITI. — LA GEOMETRIE DES MASSES DU TETRARDRE
ORTHOCENTRIQUE.

15. — Pour un tétraédre quelconque, la formule & six termes

=r/2 -2
MM? = — Sa; Ax; Az,

donnant le carré de la distance de deux points ne peut pas étre
mise sous la forme
MM™? = 6. 23, - (Aw,)?

analogue & celle de la géométrie plane. Puisque ZAz; = 0
I’existence d’une telle formule entraine la relation

?

ce qul exige

u

et par suite:
=y + oag = (A + 2, + Xy 4+ 2y

les sommes des carrés d’arétes opposées sont égales et le tétraedre
est orthocentrique.

Le tétracdre orthocentrique est caractérisé par Pexistence de
quatre nombres A, A, 252, tels que

9

Il'en résulte que les aires des quatre faces sont données par les
formules:

SAL = 02 (00 F Aol + Wyny) ete.,

ce qui exige que les paramétres v;; alent les expressions suivantes :

bwy, = 6% X0, , ete. ..

I’Enseignement mathém., 33me année, 1934. 21
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On a enfin la condition

1
36V2 = 6%« Ay, A2 A — .
. o 123427\1_

La condition de rencontre des hauteurs d’un tétraédre quel-
conque

(A, H) o T3 _ T

est
Wyp+ W3y = Wy3 - Wy, = Wy Wyg

elle exige que @;; soit de la forme &;; = p. p;. p; avec quatre
parametres u;, ce qui revient a prendre, avce les notations

ci-dessus:
Ao, = 62h3h, -

Dans ces conditions, si les coordonnées barycentriques de
I'orthocentre H sont (H;) avec X H, = 1, on devra poser:

1
Hi=s
avec: ‘
. of — 36V?. H,H,H,H, .
36 V2 = &%« A A0, .
16. — Forme spéciale de Uéquation cubique pour les tétraédres
orthoceniriques. — Considérons le produit
| G my G \ Ma G ms
II = (o) — Mm151) : (co — ﬁmz()z) . (o) — M 63) :

my
. (co — —l%m4 64) ,

avec des parametres ¢ et 0, non précisés pour le moment. L’équa-
. a1l Lo |
tion —— = 0 s’écrit
do

n.

1

Mo —%Lo? + 20— R =0,
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avec
G
£
52
Q‘v e W ) 7721(77227723 62 63 =} mg ity 63 64 N Mmyniy 64 62) 3
63
R = A e s > 0,60,0, .

Elle est identique a celle donnant les moments d’inertie
centraux du quadruplet (m;) si les conditions suivantes sont
vérifiées simultanément:

> Zom; m; [G(ei 1 6].) — a?j] = 0,
( X mymym, {62(62 0, + 0,0, + 6,0,) — [if\i] =0,

o’ % 6,0,0, = 36V .

Ces conditions sont remplies quelles que soient les masses m;

s1 le tétraeédre est orthocentrique avec 6, = A,.

Ainsi done — et c’est encore une propriété caractéristique
ce : , : I
des tétraedres orthocentriques — I’éguation en w = 7 QuL mo-

ments centraux planaires d’inertie dans le cas d’un quadruplet
disposé aux sommets d'un tétraédre orthocentrique est identique

Uéquation donnant les mazimum et minimum de la fonction sui-
vante Il (w):

17. — Une propriété analogue est & signaler pour la géométrie
plane. Pour un triangle quelconque, on aura a considérer I’6qua-
tion aux maximum — minimum du produit:

' G * c S c \
= (o —grep) - (o =580 - (0 —gvr) |

/

%, 8, v sont les masses placées aux sommets du triangle ABC;
M = o+ 8+ v,lamasse totale; o = 2S; [ = Mw; p = cotg A,
g = cotg B,r = cotg C; a® = o (¢ + r), etc. Toutes ces formules
sont analogues a celles relatives au tétraédre orthocentrique.
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18. — Formules spéciales au tétraédre orthocentrigue. — Les
calculs de la Géométrie des masses, en coordonnées bary-
centrlques se présentent généralement sous une forme simplifiée
lorsque le tétraédre de référence est orthocentrique. Nous pose-
rons en introduisant quatre parametres «;

9 .
a'lj = az '+' aj ) 4&)’12 = Qlg0y , etC.

les coordonnées de l'orthocentre H seront H,H,HjH,:

“1H1:a2H2:a3H3:a4H44;h2
'H, + H,+ H, + H, =1

1
h = Z;; .
Pour le volume V du tétraédre fondamental:

R = 36V?-H;H,H,;H, ,
oy oy 0z, = 36 ViR ;
2 9V? T 9V?

A = 7 H, (1 —H), wm:”h—'H1H2-

Les hauteurs &, des tétraedres:

2 %5 h

La distance MM’ de deux points M(z;) et M'(z;) est générale-
ment dans le cas du tétraédre orthocentrique
MM? = T «;.(Az)?,
Az, = z; — xl )

i ] 1" ’

En particulier, la distance d’un point quelconque M(z;) de.
Pespace & 1'orthocentre H prend la forme

._I:I—l\_iz—‘—h—}-Zocx

. D
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I'équation de la sphere conjuguée est:

5
o, —
_JOC,LQ';,L 0 .

La formule donnant la distance r = HM d’un point quel-
conque M & Porthocentre est donc

rr—p? = Yoz

.o

Distances de 'orthocentre aux sommets A; du tétracdre :

HAZ;:ociMh.

Soit « le rayon de la premiére sphére des douze points, dont le
centre est le centre G de gravité du tétraedre homogeéne:
GH? = o2 + p*, GH = 0G .
o + oy + ooy F ooy = 1607,
Ta; =48 o .
Si R est le rayon de la sphére circonscrite au tétraedre de
centre O:
OH% = 4(a? 4+ p?) = R2 + 3p?, OG® = o2+ p? = R2— 3«2,
RQ — [1:062 + pa ,
THA, = 4R? .

Les coordonnées O; du centre de la sphére circonscrite O
sont définies par les équations

1
TO;=1, H+0;=5.
19. — Avec les notations précédentes, I’équation cubique aux

moments d’inertie centraux I pour un centre des masses I'; est
celle qui donne le maximum ou le minimum du produit:

)

IT (L — my o)™
¢’est-a-dire I’équation :
4 m
Al i — 0.

: 1 m; o
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Sous cette forme — spéciale aux tétraddres orthocentriques —
il est manifeste que les racines sont réelles; elles sont séparées par
les nombres m; «; '

Les moments principaux centraux étant I, Iz, I3, on a pour
le tétraedre orthocentrique :

ML + I + L) =M Zmya; — So,m; ;
M(LI, + LI + L) = 20_‘1“2 mymy (my + my) ;

MLLI, = 36Vimymymym, .

Pour que lellipsoide central d’inertie en I' soit une spheére,
il faut que la quadrique conjuguée au tétraédre, de centre I'
s0it une sphére: ce qui exige que le tétraédre soit orthocentrique
et que I' soit I'orthocentre H. Pour m; = H,, ’équation cubique
a bien une racine triple I = 4.

Dans un tétraédre orthocentrique, I’équation du cercle de
I'infini se simplifie:

9V2

O = Xw;;

”(u~ _—

i — W) =0 -1,
en posant:

([ 1%

Il = 0 est I’équation tangentielle de 'orthocentre; Q = 0 est
I'équation tangentielle de la sphére conjuguée. La condition
pour que les u; soient les distances aux sommets du plan (u,)

est donc: |
®=9V2, Q_—-T=4h.

La condition entre les cosinus directeurs 4;8; d’une direction
quelconque avec les hauteurs du tetraedre est dans le cas des
tétraedres orthocentriques

—A=Z8 =1.
La perpendiculaire au plan u; est définie par les relations

06287’ = ]._.['_—' ui 9
ou
BY; = H(I —u,) ,

1 1
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les u; satisfaisant & la condition ® = 9V2 et les 3§, a la condition
A=—1.
Le centre des masses I'(m;) associé & un plan donné u; est
défini par les relations:
m; = Hi(%‘_—l) .

1

Le moment d’inertie correspondant est, avec ces expressions
des masses,
I = Emiui = p? ,
égal au carré du rayon de la sphére conjuguée.
Inversement, si les masses m;, quelconques, sont données, le
plan principal et central d’inertie, correspondant & la racine I

de ’équation cubique a pour équation:

X.
2_"_:0_

I — m, o

20. — Cas particuliers. — I" est dans le plan A;AH.,

équation cubique admet alors la racine simple T = A. Le plan
central correspondant est le plan:

u1:O u2:O —'+*_:O,
A3 Oy
X, X,
H, H, "’

c¢’est-a-dire le plan A A, H.
' est sur la hauteur A;H. Prenons:

ms = H, , m; = H; , m, = H, ;

?

my oy

racine double I = £; racine simple: I = - Les plans cen-

traux sont les plans passant par la hauteur et le plan mené par
I" parallélement & la base correspondante. La quadrique d’inertie
est de révolution autour de la hauteur.
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21. — Propriétés des tétraédres orthocentrzques solides, homogénes,
avec deux arétes opposées egales — L’équation cubique en I, mise
sous la forme

Lim, + m,) — mymy (g + )
(I — m, o) (I — mya)

I(m, + m,) — mymg (o + o)
(I — my o) (I — My 0ty)

+ =0,

admet la racine simple

I ‘___ (o + ) mym,
m; + m,

’

dans le cas particulier ou le point I' est sur la surface cubique
d’équation

C’est une surface cubique, circonscrite au tétraédre, passant
par Porthocentre; elle est, dans la transformation X;X; = 1,
réciproque du plan d’equatlon

parallele aux arétes A A, et A sA4, mené par le point (a;) réci-
proque de l’orthocentre

Ainsi sont mises en évidence, trois surfaces cubiques circons-
crites au tétraédre orthoeentmque auxquelles correspondent des
cas de résolution de I'équation cubique.

En particulier, si le tétraédre orthocentrique a deux arétes
opposées égales

Gy = ay,
la surface correspondante
1 1 1 1
+— =

contient le centre de gravité G. D’ou le résultat suivant:
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Lorsque, dans un tétraédre orthocentrique, solide et homogéne,
deux arétes opposées sont égales, I'équation aux moments d’inertie
centraux de ce corps admet une racine rationnelle :

Ay = Qgy , M = masse du tétraedre .
M
I = Ealz .

(c’est la valeur du moment central du tétraeédre régulier
d’aréte ay,).

22. — Application aux téiraédres homogénes avec un triédre
irirectangle. — Dans le cas d’un tétraedre OABC, trirectangle
en O,

OA = a |, OB = b, OC = ¢,

’équation de I'ellipsoide central par rapport aux axes rectan-
gulaires paralleles & OA, OB et OC est:

3(0° + X2 3(c® + a’)Y? + 3(a® + 0% 7?2

L 26eY7 + 2caZX 4+ 2ab XY — i—?—

Prenons une densité telle que M = 80. L’6quation en S de
ellipsoide prend la forme:
4+ (2470 + 20%¢® + 2¢%a® — Sat — 3Bt — 3c!)
F 2007 4 —a?) (St a?— b (e B — ) = 0

en posant:

Sous cette forme, lorsque deux arétes opposées sont égales
(par exemple ¢ = a* -+ b2), I'équation a bien une racine ration-
nelle © = 0, S = 4¢% conformément au théoréme précédent.
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