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la droite M5M6 est donc l'intersection de ces deux plans: d'où

les expressions des coordonnées de cette droite. En outre, on

obtient pour les sommets le lieu

+ Z^](K0
G VA 3

(c'est la surface déduite de la surface normopolaire en écrivant

que le point de coordonnées — 3«, — 3 — 3z est sur la surface

normopolaire). Le lieu des sommets du tétraèdre est ainsi la

courbe d'intersection de la quadrique

St 3
A

et de la surface du quatrième degré :

1 (x2 /X1 14
oc Ä-3) V A 3/

II. — La géométrie des quadruplets.

9. — Généralités. — Soit un tétraèdre de référence AjArpV^A^.

Nous désignerons par Âtl'airede la face opposée au sommet A;

et par aij la longueur de l'arête joignant les sommets et A,.
V désignera le volume du tétraèdre.

L'équation d'un plan quelconque P en coordonnées bary-
centriques étant u1x1 + u2x2 + u3xs 4* — 0, les

coordonnées ut du plan seront les distances respectives de ce plan

aux sommets At du tétraèdre, sous l'unique condition que ces

coordonnées satisfassent à la relation fondamentale :

$ 9V2

dans laquelle ® représente la forme quadratique suivante à

6 termes
<D M (Ui Uj)2
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les rar» sont 6 coefficients, liés aux aires de faces par les quatre
relations :

A2 as+ eu+1 12 13
1

14

A2 uy + w + uy
2 21 23 24

A" uy + uy + uy
3 31 32 34 '

A2 =r W + W + W
4 41 42 43

Wjj

Les distances n'intervenant dans la relation fondamentale que
par leurs différences mutuelles (ce qui exprime que la relation
reste invariante lorsque le plan P se déplace parallèlement à

lui-même) il y a intérêt à introduire les 6 fonctions suivantes:

uîj ui — uj >

avec TJij — U^. Alors O prend la forme

o ^..u2..

Uéquation tangentielle du cercle à Vinfini est:

<£ 0

Les coordonnées barycentriques xi d'un point quelconque M
de l'espace et celles x\ d'un second point quelconque M' étant
supposées multipliées par deux facteurs non déterminés, nous
poserons:

Ax-
xi + x. + xi + xt

Dans le cas particulier de coordonnées barycentriques absolues,
Sa^ Sa;- Y, l'expression précédente se réduit à

OCj X-
\x. -J L •

•<*xiy
ou encore si les coordonnées absolues ont été réduites par division
par V, Sx, Sa:- 1, l'expression précédente est xi — x\.
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En prenant, en tout cas, l'expression générale de àxu la

distance de deux points quelconques MM' est donnée en

coordonnées barycentriques par la formule à six termes :

MM'*= — Sc4 As Aa;a

L'équation de la sphère circonscrite au tétraèdre en résulte

immédiatement :

yLai-Axi Axj 0 ;

les coefficients sont les carrés des longueurs des arêtes du

tétraèdre.
Si quatre masses (%, m2, m3: m4) sont respectivement placées

aux sommets du tétraèdre de référence, le centre des masses P

a des coordonnées barycentriques proportionnelles aux quatre
nombres 7nx. Inversement tout point de l'espace peut être

considéré comme étant centre de quatre masses placées aux
sommets A- et proportionnelles aux coordonnées barycentriques
du point.

Soit maintenant un plan quelconque P; ses coordonnées ui
sont supposées vérifier la relation fondamentale; elles représentent
dès lors les distances respectives du plan aux sommets du

tétraèdre. En outre, la distance d'un point quelconque de

l'espace de coordonnées barycentriques proportionnelles à des

nombres xt est

^ U1X1 + U.2X2 + U%X 3 + Uéx4

X1 + X2 + X3 + Xi

Le moment d'inertie I par rapport au plan P du système
matériel constitué par les quatre masses mi placées aux sommets

A; du tétraèdre est donc égal à

I S 772i u\ •

Si le plan P passe par le centre Y des masses,
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on peut écrire (avec la masse totale M)

MI (m1 + m2 + m3 + ra4) (mt u\ + m2u2 + m3u3 + méul)

— (mi ui + m2u2 + m3u3 + ra4u4)2

Zmimj (^—i*.)2.

Par suite, pour un plan quelconque passant par T, l'expression
du moment d'inertie planaire I prend la forme:

MI 2 mim- U^-

10« —Détermination des axes de Vellipsoïde central cT inertie du
quadruplet. — I est une fonction de deux variables quand le
plan P pivote autour du centre T. Posons

f{u1 u2 u3 w4) I + 2CT %miui — p 2 ;

et écrivons les quatre équations de maximum — minimum:

m1(u1 + a) + p(—A\u± + U512u2 -f w13u3 + ttléu^j — 0 etc.

En ajoutant membre à membre ces quatre équations linéaires,
il vient Ma 0; et, par suite, en général, le paramètre a doit
être pris égal à zéro. Le système des quatre équations linéaires
et homogènes, en u{

^ UX ~f" (77j2^2 ^13^3 H- ÜiJitUt 0
f

conduit à l'équation suivante du troisième degré en p:

—x —A2
P

1 Wi2 ^13 U514C

œ2i
m2 2

ay2t

w3l ay 22
a2

P
As w3t

Wti Cö42 Cö43
p
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A chaque racine de cette équation correspond un système de

coordonnées (a{) d'un plan principal d'inertie au centre T.
Comme les équations linéaires ne sont autres que les équations

i öl _ ö® _ o

P ùui ôui
'

en les ajoutant membre à membre, après multiplications
respectives par les %T il vient

— I — <6 0 ; <D 9Y2
P

et par suite
I

P ^ <,y* *

L'équation cubique en p n'est autre, à un facteur près affectant

l'inconnue, que l'équation aux moments d'inertie centraux
(moments planaires).

Le développement du déterminant du quatrième ordre donne:

Öv0 p3 — cfi1 p2 + Ûl2 p — ml 7722 m3 0

avec

dv0 =2 m1 (AÎ A3 AI — 2c023 ©24 ©34 — A^ ^34 ~ A* U5^ SJ32)

öii =2 mimj (Ai Aj — A
A2

dv2 7. A2 m mm m m m m ^ —* Z_J 1234 1234 Z_J

Mais les formules (avec les dièdres LA

3
ro12 Aj A2 cos Ç34 A4A2 sin Ç34 - Va34

transforment Ûl0et<3vx en les expressions suivantes:

=2 n\ KKAIt1 — cos2 ^ — cos2Zia — cos2 Ç14 —

2 cos Ç12 cos Ç13 cos Ç14)

1V2-S ;
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l'expression trigonométrique entre parenthèses dans l'expression
de (Rq n'est autre que le carré du sinus du trièdre supplémentaire
du trièdre Av L'expression de ce sinus est:

n' - i V2

i 2 ' A2A3A4

ce qui réduit Ûl0 à la valeur

Ûl0 ^ MV2

Finalement Véquation aux moments planaires centraux d'inertie
du quadruplet est:

I MCÛ

<o3 — co0 co2 + cox to — 3g nt1 m2 m3 ra4 0 ;

les coefficients <o0, de l'équation cubique en co ayant pour
expressions :

M2"o =2 aijmimj
.2

4 m1m2 m3 mi ^6)1 M3 '

La puissance du point T par rapport à la sphère circonscrite
au tétraèdre a pour expression

® 24raimi;

ainsi le moment d'inertie polaire en T, égal à Mco0, a pour expression

— M ét.

Le moment d'inertie polaire du quadruplet au centre des masses T
est égal au produit par la masse totale de la puissance, changée de

signer du centre V par rapport à la sphère circonscrite au tétraèdre.

Cette proposition se déduit du reste de la remarque que le

moment d'inertie polaire au centre 0 de la sphère circonscrite
(de rayon R) est MR2. Au centre de gravité F du système
matériel, le moment polaire prend donc la valeur M(R2 — ÖT2),

c'est-à-dire — M
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Si, d'autre part, I (coordonnées At) est le centre de la sphère
inscrite (rayon r) au tétraèdre et si Dr et Dr représentent
respectivement les distances du centre I et du centre des masses Y

au plan polaire du point I par rapport à la quadrique conjuguée

y/-È 0 de centre T, les relations

3 Y r • S At MDp S Ai

n 3V
,D'' T '

^ Ai
M • Dr • D, y —1 1 —J m-

conduisent à d'intéressantes interprétations géométriques du
coefficient cùv

Le coefficient co0 est nul, lorsque Y est sur la sphère circonscrite
et réciproquement.

Le coefficient co1 est nul lorsque F est sur la surface, du
troisième degré d'équation

et réciproquement. Cette surface généralise le cercle circonscrit
au triangle: dans la transformation inverse (généralisant la
transformation isogonale du plan) elle est la transformée du
plan de l'infini. Elle est aussi la généralisation du cercle circonscrit

au triangle, sous le point de vue du théorème des droites
de Simon-Wallace.

En résumé, les formules relatives aux trois moments centraux
d'inertie en Y sont:

; M(I + P + I") =3 y a2. .m- m-
' A2

\ M (IP + PF -f FX) 4m17?22/?Zg/?z4 "V —
I mi
\ M • I Y F 3 6 V2 ?n1 m2 m3 m4
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11. — Application au tétraèdre solide et homogène. — La masse

totale du tétraèdre étant M, nous prenons aux sommets quatre
masses égales:

la cinquième masse en G n'intervenant pas dans les calculs des
moments d'inertie centraux. Les formules relatives aux carrés
des rayons de gyration co, co' et co" sont:

I Mo

16 (co + co' + cd") 2 aij >

16 (cocor + Co'co" + Co"co) i=3 2i A^

co co' co" — ~ V2

12. — D'une manière générale, les cosinus directeurs (§J d'une
direction définie comme orthogonale à un plan donné {u{) sont
donnés par la formule :

s l 5$

c'est-à-dire:

9 Y2 • — Ai % + C012M2 + öt13M3 + ctï14M4

Dans le cas actuel, d'un axe de symétrie de la quadrique
d'inertie de centre (mf), l'équation trouvée précédemment

m1 2\
Ai I Mx + w12 m2 + mls M3 + CtTi4 M4 0

P /

conduit à la formule

la condition hSi 0 qui exprime que (S{) sont des coordonnées
du point à l'infini de l'axe est équivalente à celle, S ^ 0

qui exprime que le plan principal contient le centre de la
quadrique d'inertie.
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Tout plan donné peut être considéré comme plan central d'inertie

pour un choix convenable du centre F des quatre masses. A tout

plan donné, peut être associé un point de ce plan, qui est le centre F

et dont les coordonnées seront définies par les formules

d; ö<D

mi — ~~ ' x— '1
Ut du{

^ étant arbitraire.

Il en résulte :

S mi u- — 0 ;

et si les u{ sont les distances aux sommets, il vient pour le moment
d'inertie central correspondant, l'expression suivante:

I — ^ mi u\ — 2 ^ (D I 18 Y2 • ^

13. — Lieu du centre F des masses associé à un plan se déplaçant
parallèlement à une direction donnée. — Prenons un plan de

coordonnées ut + X, X étant un paramètre variable. La direction
de la perpendiculaire (S;) à ce plan est invariable. Le lieu de r,
associé à ce plan variable, est défini par les équations

Si

u- -j- x

qui représentent une cubique gauche, circonscrite au tétraèdre.
La cubique a pour points à l'infini le point de paramètre X infini,
de coordonnées et qui n'est autre que le point à l'infini dans
la direction perpendiculaire à ces plans. Les deux autres points
à l'infini de la cubique ont des paramètres définis par l'équation
du second degré:

o.
ui +x

De l'identité
8,
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il résulte que le plan X 0, rencontre la cubique au point
v(mi qui lui est associé et aux deux points à l'infini qui

viennent d'être mis en évidence.
Tout plan de la direction donnée rencontre la cubique en le

point T associé et en deux points à Vinfini.

14. — Questions relatives aux axes centraux. — Les coordonnées

pliickériennes de l'axe central d'inertie A, perpendiculaire
au plan (uf) au centre associé F sont, à un facteur près:

Pl2 ^3 ^4 L34 YYl3YYl^[u3 llfj

Dans un tétraèdre quelconque, un axe central A peut-il passer par
le sommet A4

Les conditions

P12 0 P13 0 Pu 0

exigent que u2 us u±. Le plan doit être parallèle à la face
opposée et A coïncide avec la hauteur A1H1.

Un axe central A peut-il rencontrer Varête A3A4

p12 0 u3 ué ;

le plan doit être parallèle à Varête A3A4 et réciproquement.
Cas d*un plan parallèle à deux arêtes opposées AXA2 et A3A4.

U\ u3 u4 p12 ==: 0 pQi 0

L'axe central d'inertie perpendiculaire à un tel plan, au
centre F associé, est la perpendiculaire commune aux deux arêtes
considérées. D'où la construction géométrique du centre F.

La cubique gauche lieu des centres F associés aux plans ayant
cette direction commune dégénère en une droite A.


	II. — La géométrie des quadruplets.

