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TETRAEDRE ET GEOMETRIE DES MASSES

PAR

Emile Turritre (Montpellier).

Dans un précédent article, Sur I'équivalence en Géoméirie des
masses 1, J’al traité principalement de la géométrie des masses
dans ses rapports avec la Géométrie du triangle. J’ai rapidement
enoncé quelques résultats concernant la géométrie tétraédrique
des masses. Les considérations qui suivent sont relatives a cette
derniére question.

[. — LE SYSTEME DES TETRAEDRES EQUIVALENTS.

1. — Reprenons I'étude des tétracdres T: tout systéme de masses
est équivalent d une infinité de systémes de quatre masses ponc-
tuelles égales. Les quatre poinis d’application de ces masses sont
situés aux sommels de tétraédres T, de méme vcolume, inscrits d
un ellipsoide E, circonscrits a un ellipsoide E'; les arétes des
tétraédres T sont tangentes en leurs milieux & un ellipsoide E";
les tétraédres sont conjugués par rapport & un ellipsoide B’’’ (ima-
ginaire). Ces divers ellipsoides sont concentriques, leur centre
commun est le cenire de gravité G des tétraédres. Ils sont homo-
thétiques.

Les plans tangents aux sommets des tétraédres a Iellipsoide
circonserit i sont respectivement paralléles aux faces epposées
des tétraedres.

Il existe une infinité de tétraédres T qui sont orthocentriques.
Les hauteurs des tétraédres d’orthocentre H sont quatre des

L L’Enseignement mathématique, 1931, XXX, pp. 62-90.
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normales issues de H & P’ellipsoide E. L’aréte A, A, coincide avee
Pune des direetions principales de I’ellipsoide E” au milieu de
A;A,. L’aréte AzA, est parallele a I’autre direction principale.
| Ces résultats rappelés, prenons les equatlons suivantes pour
représenter ces divers ellipsoides: |
Xz | Y, ¥

ATy tEeT 35

E circonscrit :

E’ inscrit :

I

E” tangent aux arétes :

- p-aoo]»-a

E” autopolaire ; = —

L’origine est le centre G de gravité; les axes sont les axes
centraux d’inertie. g :

Tout d’abord nous allons établir quelques formules générales
relatives aux tétraédres T en mettant en évidence les coordon-
nées elliptiques  du milieu de laréte A;A, sur Dellipsoide E”
tangent aux arétes. :

2. — Formules genemles pour les tétraédres T. — Soit une

quadrique (Q) d’equatlon — —}— 5 %— = 1; posons sur cette

quadrique :

2 A (A 7\(A+H)
X =R —ma—q

etc.,

(A, ) étant les coordonnées elliptiques du point courant M.
Une tangente quelconque & cette quadrique au point M aura
des cosinus directeurs o, B, y qui pourront &tre mis sous la

forme :

, ] . -
,a—X(A+7\+A.+pu , eftc.

I, m étant deux paramétres. Il en résulte les relations:

52X _ o SaX =14+ m,
A
1 = o + P2+ v2 = 4(E? + Gm?) ,
El? Gm?
ZK‘—-—-—-'Z.I:< 'i' (1- ‘7
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ou:
1. A — g o1 i —2) |
ok A+ ABHACHA) b (A4 up) B+ (C+u
En posant
sin w COS
{ = = . m =
24/E 24/G
on obtient:
o sin® coS> w
A ::_*< " >'

La tangente ainsi définie au point M de la quadrique (Q)
rencontre la quadrique concentrique et homothétique (Q’)
d’équation

(8]

K

Y?
B

+

7z _
A + o= 3,
aux points de coordonnées X + ap, Y - Bp, Z - vp, ou le
parametre p a la valeur définie par 'une ou Pautre des condi-
tions équivalentes:

(1 1> cos 2 <1 =+ 1)
s — N W — |- - .
P° A W A Y
Considérons d’autre part une autre tangente a la quadrique

(Q), au point M’ symétrique de M par rapport au centre G de

(Q). Soient «’B’y” les cosinus directeurs de cette tangente; nous
poserons

4 m’
r— . X _ G
x <A+7\+B+H),etc.
, _ sin o’ . oS
24/E 24/G
o’? sin? o’ cos? o’
DI )
A ( A + (L ’
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Entre les deux tangentes existent les relations:

oo’ = €os (0 — '),

s oo’ sin  sinw’ = cOSw COS '

T = — |2 + 22 :
A A ®

Ces deux tangentes définissent par leurs intersections avec la
quadrique (Q’) un tétraédre dont les sommets ont pour coor-
données respectives:

1 X + pa, etc,

A

A, X —pa, etc,
A, — X + p'a, etec,
A

. —X—oa, efe

Les arétes A;A, et A;A, sont par construction tangentes en
leurs milieux & la quadrique (Q). La condition de conjugaison
des arétes A;A, et AzA, par rapport & la quadrique Q,

assure le contact des quatre autres arétes, en leurs milieux
respectifs, avec la méme quadrique. Cette condition est du
reste:

tang » . tang o’ = -

Les carrés des longueurs des arétes a;; du tétraedre A;A,AzA,
sont:
an : 492 ®
a§4 = &p"?,
ay = 4(A + w4+ A+ B+ C)+ p* + p?— 2pp €08 (0 — &)
+ ho(l4+ m) — &' (I' + m') ; ete.




TETRAEDRE ET GEOMETRIE DES MASSES 289

elles donnent les relations suivantes:

afg + a§4 = 4 (p® + %),
Qg + a3 =8+ + A+ B+ C) +2[p? + o —20p" cos (0 — )] ,
Gis Gy =8+ p+ A+ B+ Q)+ 2[p2+ o™ + 200" cos (0 — )]

2 2 12
Ay — Qg = &(p> — o7 ,

9

1

Qg — Aoy = S[p(l + m) — ' (I' + m’)] ,
g — age = 8[p(l+ m) + o' (I + m')] ;

et pour les six arétes:

2

Eaij :16()\—}—M+A-{_—B+C)+8(p2—}—p”) .
Les lignes moyennes 2L, 2M, 2N de ce tétraédre ont des expres-
sions définies par les relations

L2 = X2 4 Y2+ 72,
4 M?*

|

e + p’? 4+ 2pp’ €08 (0 — ©)
AN? = p% 4 o' — 2pp’ €08 (0 — ©')
avec
X!+ Y24 22 = A+ p+A+B+C=2+u+3s.

Mais la relation de conjugaison des arétes opposées, mise sous
la forme
sin o sin o’ n COS & COS o’

A L =0

montre que I'introduction dans les calculs de I’angle & — «’ = ®
des arétes opposées A;A, et A;A, simplifie notablement les
diverses expressions; posons

Sin @ sin ' = cos ¢ ,

COS®w COS ' = ——— cos ¢ ,

d’ou:
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Nous prendrons: : .
" pp'Siﬂcp:Q’\/S\_y,.

¥ + o = —2(0 +y) ;

et par suite, |

Saj; = 16(A + B + Q) = 48s ,

L2 4+ M>*+ N*=A + B+ C = 3s .

Pour les téiraédres considérés inscrits dans la quadrique Q' et
dont les arétes sont tangentes en leurs milieux o la quadrigue (Q),
sont donc constantes la somme des carrés des six arétes et celle des
carrés des trois lignes moyennes.

La plus courte distance § des arétes opposées A;A, et AzA,
est la distance des plans tangents & la quadrique Q au point
(X, Y, Z) et au point diamétralement opposé. On a done:

X2 Y2 Z2
A = N
s_ A BT /ABC
X* Y 72 A
Vp+ﬁ+@
et par suite le volume V a pour expression:
, . —— -
V:%-AlAz-A3A4-Sincp :é—pp’sinq)- %:%\/ABC.

Les tétraédres considérés ont méme volume V. Si ABGC sont
tous trois positifs:

volume ellipsoide (Q) ~ =
volume tétraédre-- =~ 2
3. — Tétraédres équifaciaux du systéme. — 1.’égalité des arétes

opposées donne les trois conditions suivantes:

p?=p", l+m=0, UV4+m=0.
C’est aussi aux mémes conditions que conduit ’orthogonalité
deux & deux des lignes moyennes. “' o
Les milieux des arétes sont les sommets de la quadrique Q
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s1 le tétraedre est équifacial. On est ainsi conduit & prendre pour
milieu de 'aréte A A, le sommet

X=+4A, Y=0, Z=0,

et & poser
o« = 0, B = sin0 , v = cos 0 ,

C(/:O, B,:——B, Y’:Y'

B

St a, b, ¢ désignent les demi-axes de Dellipsoide (Q), les coor-
données des sommets d’un des tétraédres équifaciaux appartenant
au systéme sont

avec

A, a b ¢
A, a —b —c¢
Ay, —a b c
A, —a —b c .

D’ot une construction immédiate de ce tétraédre équifacial
et de ceux qui s’en déduisent par symétries.

Tout tétraédre équifacial est représentable dans ce mode de
représentation analytique. D’une maniére générale, le systéme
des trois lignes moyennes d’un téiraédre quelconque est un systéme
de diamétres conjugués pour la quadrique tangente aux arétes en leurs
milieuz.

Le systéme des lignes moyennes constitue donc un systéeme
d’axes obliques pouvant é&tre utile dans certains cas. Mais
lorsque le tétraedre est équifacial, ce systéme, devenant alors
celui des axes de symétrie de la quadrique considérée, et par
conséquent aussi de la quadrique autopolaire de centre .G, de
la quadrique circonscrite de Steiner et de la quadrique inscrite
de Steiner, apparait comme tout indiqué pour une étude précise
du tétraedre équifacial.

Le plan A,A A, a pour équation

Sedririso,

?
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Péquation ‘générale de quadriques circonscrites au tétraedre de

centre G prend la forme
Az? + Ay + A" =1,
avec Aa? + Bb2 + Cc®2 = 1. Le rayon r de la sphére inscrite

(de centre G) et le rayon R de la sphere circonscrite (de centre G)

sont donnés par les formules
R?.___azv_{_ bz_}_.cz,
1 1 1

St et

1
o2 b2

r

Les quatre hauteurs et les perpendiculaires menées aux faces
en leurs orthocentres reSpect1fs sont tangentes & une méme sphére

de centre G et de rayon J:
32 = R? — 9r?

4. — DPropriété caractéristique des tétraédres équifaciaux. —
Déterminons le moment d’inertie d’un tétraédre solide, homo-
géne par rapport & la droite A;G joignant un sommet au centre

de gravité G.
La distance A, de A, & A;G est:

pH
Au = X6

¥, désignant Paire du triangle ayant pour base A;A, et pour
sommet le milieu de AzA,. D’ou (notatlons du paragraphe 9):

[1'Ai22 -,H}z = A§ + AZ+ 23y .

A, et A,, désignant la distance & cette méme droite A,G des

sommets Az et A;, nous avons:
AR, G0 (AL + Al + AL) = 3(A) + Ag + A — A

Si M est la masse totale du tétraédre, il suffit pour I'équiva-
M placées aux sommets et une

lence de prendre quatre masses g5
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cinquiéme masse en G. Le moment d’inertie du corps relativement
a la droite A;G est donc

2

O oM 3(AL AT AD) — A

"t foes

L’ellipsoide central d’inertie de Cauchy du tétraédre solide
ne saurait donc &tre en général homothétique a Dellipsoide de
Steiner. La condition pour que cette disposition soit réalisée est
I’égalité des quatre aires des faces.

La condition nécessaire et suffisante pour que Uellipsoide central
d’inertie de Cauchy soit homothélique a des ellipsoides de Steiner
est que le tétraédre soit équifacial.

5. — Tétraédres orthocentriques du systéme T. — La condition
d’égalité des trois sommes de carrés d’arétes opposées se traduit
par les relations:

cose = 0,

SO+ ) +2(A+B+C) =0 ;
il faut donec prendre

4

o =0, ‘02%, o = —2%, o7 =—2u,
2
P o {L:~§(A+B+C):—2s;
la somme des carrés d’arétes opposées est alors:
2 16
a;—%—a%:?(A—{—B—i—C).

Les arétes A;A, et AjA, sont tangentes & des lignes de courbure
en M et M'". Ces points M et M" — ainsi que les autres milieux
d’arétes — sont nécessairement situés sur une sphere de centre G:

A+ B+ G

X2+ Y 4 22 = 5 =5 ;

L = M! = N! = 5 .

On peut remarquer que l'existence de l'orthocentre H im-
plique que les normales aux sommets du tétraédre (lorsqu’il est
orthocentrique) a la quadrique circonscrite (Q’) soient concou-
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rantes. Si donc on considére les points d’intersection de la droite
A,A, avec la quadrique (Q), avec les notations ci-dessus intro-
duites, la condition de concours des normales en ces deux points
a la quadrique Q' se met sous la forme

SN
% B 4|=0,
Z ¢
¢’est-a-dire
B —C
Z l m =0,

A+r AT w
qui, développée. s’écrit
(A—B)(B—C)(C— A)lmrg = 0 .

D’ou il résulte que Im = 0: la droite considérée, tangente
en M & la quadrique (Q), doit étre une tangente a I'une des deux
lignes de courbure de (Q).. -

Ce résultat peut étre obtenu en observant que la condition
pour que les normales & une quadrique aux extrémités d’une
de ses cordes soient concourantes est que cette corde soit portée
par une droite du complexe tétraédral attaché & cette quadrique,
ses homothétiques et leurs quadriques homofocales. La droite
actuellement considérée doit donc étre 'une des deux généra-
trices d’intersection du cone du complexe tétraédral par le plan
tangent en M & (Q): ce sont précisément les deux directions
principales en M de la quadrique (Q)

La conclusion est qu’il exwte une o’ de tétraédres orthocentrzques
dans le systéme considéré.

Pour construire un tel tétraédre orthocentrique, on. prendra
arbitrairement un point M sur la biquadratiqué intersection de
la quadrique Q avec la sphére concentrique d’équation

A+B+C

X“’ + Y24+ 2= = 3 -
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Varéte AjAy, de miliew M, sera U'une des deuz directions principales
en M; Daréte AA, sera la paralléle a Uautre direction principale
de M menée par le point diamétralement opposé M’ au point M.

Le tétraédre est ainsi complétement déterminé. Les arétes
appartiennent & un méme complexe téiraédral et sont des tangentes
@ des lignes de courbure de la quadrigue (Q), tangente aux arétes
en leurs milieuz.

La sphére considérée est la sphére orthoptique de la quadrique
inscrite, concentrique et homothétique a Q, et aussi la premiére
sphére de douze points du tétraédre.

6. — Le lieu de U'orthocentre des téiraédres T orthocentriques. —
La normale au sommet A; du tétraédre a la quadrique circons-
crite |

X2 Y2 7.2
’A*+§+E—3:O

peut étre représentée paramétriquement par des equations
. t
z = )\1 <1 + /—) 5

tandis que la normale au sommet A, est représentée par des
équations

, t
= X, (1 — .
% d< —}—A)

Mais les coordonnées des sommets étant

, [ ol
xzx(1+ \‘l—rg), X:X(i- : )
1 \ f\'{" / 2 A+ )\ ) etC
PP = —2u,
ces normales se rencontrent:
t = A—opl, U = X+ ol ;

les coordonnées (z,, y,, z,) de leur point de concours, qui n’est
autre que Porthocentre H, sont alors :

(A + A)?— 20

‘,'LO AA—I—)\ ]

etc.
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on vérifie que les normales en A; et A, concourent au méme
point H. Les coordonnées de H en fonction des coordonnées

X, Y, Z du milieu M de I'aréte AlAé sont en définitive fournies
par les relations

; | |
| ;*;0(1—“) — A(A + B+ C) + 3BC— 62y,

avec la condition

' 2
At p=—3(A+B+0,

exprimant que, sur l'ellipsoide Q, le point M a pour lieu une
biquadratique sphérique :

A+B+C

X2+ Y2+ 72 = =

Nous poserons:

A—B:'Y’ B——C:OC, C—A:B,
«+pf+y=0;
A, B, C seront considérées comme racines d’une équation
cubique
A2 —3sA? 4+ 3gA—p =0

et nous prendrons un parameétre variable 6, défini par:

Ap = gq +%-(
Soient encore:
K=3("—4q,
3K = A? + B® 4+ G2 — AB—BC —CA
B+ By +ye=—3K, o+0+ K =6K,

OC2B2 N B2Y2 53 Y2_OC2 — 9 K2 .

La biquadratique, lieu des milieux des arétes, est alors repré-
sentée par les formules: |

3By

FilX?2 = Y — .
A X By — 6, etc,
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ou encore
3(A — B) (A — Q)

3 - X? = Pu—c¢e, etc ..

les constantes elliptiques étant
eg = By + K, g, = g% + K , e, = afl + K,
e,—ey = v(p—o) = (A—B)2C—A—B);

g = 12K, g = L’y — 2K ;

po = K, g — Lopiyi< 0, Plo=0,

Pour 'orthocentre H:

sT— A

——‘A”BY‘/’EO = ‘AZ___QAS + )\{J;

= (BC + As — 22p)*

9ABval (0 — K) = (20 + By)?- (6 — By) ,
— 463 . 38""\{26—— E‘BYg ,

L0 — o2 B2Y2

IAByz, = —(5—¢— — 3B ;

introduisons un nouveau parameétre T, lié & 0 par la relation:

4 837——— o2 BEY‘“)

= 3ofy T ;

nous obtenons finalement les formules suivantes pour la repré-
sentation paramétrique du lieu de I'orthocentre H:

3Ax; = at— By ; etc.

ou encore (les fonctions elliptiques n’étant pas les mémes que
celles utilisées pour la représentation ci-dessus donnée de la

E I’ Enseignement mathém., 33me annce, 1934. 20
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biquadratique lieu des milieux des afétes):

AByaz, = Pu—e, ,
Byay, = Pu—e, ,

Cop z = Pu—e; ;

2By AV/ABC 2,402, = P'u .-
afyr = 3(Pu + K?) ,

= 3(Pu—Po) ;
les constantes elliptiques sont:
o 9 9 ‘ /1 2.9
3e;, = B°y*— 3K? , Pv-—el——-—-gﬁ*y“ :
9 2 2 1. 9
3e, = Ya® —3K*, Po—e = —§y2oc“ ,
2 2 1,
e, = o’f?— 3K?, Pv—esz—gazﬁz,
J— 2 ’2 i 4 4n4.,4 ” — 4 20242
po = — K, P"—_2_7°°BY<O, Po—gaBY,-

P,,())Z__ . 2_
(P’v =12, P20 =2K>—3.

3(e—e,) =y (a—B) = (A—B)*A+B—2C) ; eg—e = v(J —CK),

Supposons A > B > C; les points réels de la biquadratique (H)
“correspondent aux points de’ovale de la cubique de Weierstrass.

Il vy a dégénérescence lorsque A 4 C = 2B. C’est en méme
temps le cas de dégénérescence des fonctions elliptiques repreé-
sentatives du lieu des milieux des arétes des tétraédres ortho-
centriques T. '
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Le liew de Uorthocentre est ainsi une biquadratique gauche
définie par les quadriques:

Azl + By + Czp = K,

A2zs + By + C2zy = J

avec:
J = 3ABC + 9s°* —12¢9s = 3(ABC + Ks — g¢s) ;

—3J = ABy + Bya + Caf ;
a signaler aussi la quadrique

SAB + Cay = 3(s¢q— p)

ainsi que le cone de sommet G dirigé par la biquadratique:

SAB—C?B +C—2A)z, = 0 .
La courbe est & comparer & la polhodie de Poinsot, pour
I’analogie des équations. Le plan tangent & la quadratique

le long de cette biquadratique reste tangent a une sphére de
centre G.

Il y a décomposition en deux coniques symétriques dans le cas
singulier de dégénérescence des fonctions elliptiques A 4 C = 2B.
Les ellipsoides fondamentaux EE'E”E"”’ liés au systeme des
tétraedres sont a hyperbole focale équilatere. L’ellipsoide

T Az, = K,
polaire réciproque de E par rapport a une sphére concentrique,
a ses plans cycliques orthogonaux, sous cette condition

A4+ C=2B, ® = v .

Le cone se décompose alors en deux plans passant par 'axe
moyen: |

\/Kxo = * \/E'zo :
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Le cone de sommet G et contenant la biquadratique lieu des

milieux des arétes se décompose en méme temps en les deux
plans:

AVCX = 4+ V\AZ .

7. — Les deux autres normales issues de I’orthocentre. — Lorsque
le tétraédre T est orthocentrique, quatre des normales issues de
Porthocentre H & Dellipsoide E circonscrit sont les hauteurs du
tétraédre. Voici des propriétés des deux autres normales, qui
sont d’ailleurs réelles. 4

Si la cubique des normales relatives & I’ellipsoide de Steiner E
(j’ai précédemment spécifié que parmi linfinité d’ellipsoides
circonscrits de centre G, je donnais le nom d’ellipsoide de Steiner
a celui dont les plans tangents sont paralléles aux faces du
tétraédre, parce que cet ellipsoide seul généralise Iellipse
steinerienne circonscrite de la Géométrie du triangle) est repré-
sentée par les équations

t

‘x(}:x(l—l—K) ou B =

Az,
t+ A’

I’équation du probléme des normales est 'équation du sixiéme
degré

2
N Azy _ g
- (t + A)?

Soient #,f,l5t, les parameétres correspondant aux quatre som-
mets A;A,A;A, et tit; les deux autres solutions M sM¢. Nous
avons les relations telles que

ABymy = — 3(A + 1) (A + 1) (A + 1) (A + 1) (A + 1) (A+ &) ;
d’autre part

Az,
A+ t)(A+t)

Ly — Ty = (tz_tl)’

‘ 1 1
. 2
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La condition d’orthogonalité d’un couple d’arétes opposées

(a remarquer que cette condition est unique) du tétraedre
prend la forme

2 2
A x,

A+ ) (A F ) (A ) A+ )

et se met finalement sous la forme
SAa?(A A+ 4) (A +1) =0
établissant une relation involutive entre t; et ;. De méme en

écrivant que M, milieu de A;A,, est sur la quadrique E”, nous
obtenons la relation

9
Ax,

"
= —1
2] (A + 1) (A -+ 1) ’
qui, combinée avec la relation analogue entre t; et 7,, donne,
compte tenu de la relation d’orthogonalité,

5
) Ax,
Q =0

N

(A ) (A ) (A ) (A 4 1)

L’autopolarité du tétracdre par rapport & E’” conduirait

d’ailleurs au méme résultat. D’ou une nouvelle relation involutive
entre t; et ¢,:

S al({A 4 6) (A +t) =0 .

En résumé, les trois expressions o*A -+ t;)(A 4 ¢;) sont
proportionnelles a B — C, C — A, A — B et par suite les trois
expressions

a (A + 1) (A + 1) ,

sont égales entre elles. D’ou:

ty + tg = — 25, ls - lg = q 3

t5 et tg sont les racines de I’équation du second degré
'+ 2st +qg =0,

d 3
d—t.(t3—l—3st~+3gt+p):0’
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dérivée de l'équation cubique ayant — A, —B, — G pour
racines |
1 1 1
TixB Tire T 0

i+ A

0 4
(ts——tﬁ)~=§—K>0.

(A + ) (A + 1) = —ET.

Les points M;M, sont toujours réels. Le milieu de la corde
M M; a pour coordonnées &, , {:

By xz, , ete.,

il décrit donc une biquadratique gauche affine au lieu de 1’ortho-
centre H. Le faisceau des quadriques définissant cette nouvelle
biquadratique a pour équation:

B?y? P\ gy ,
Nt R)E =T ek
le come de sommet G:

= 0.

EA +C~—‘)A)

8. — Lieu des sommets des tétraédres orthocentriques. — Moins
simple est le lieu des sommets des tétraédres orthocentriques.

Les plans des faces enveloppent une développable circons-
crite & E’ et a la surface polaire réciproque de la surface normo-
polaire de la quadrique circonscrite. Les sommets A; sont
situées sur la courbe d’intersection de E et d’une surface homo-
thétique da la surface normopolaire de E. | |

Les calculs relatifs a la surface normopolaire montrent que

I'on a tout d’abord les relations suivantes pour M, et M:

2 Y g
Lo

Yo 29

+ +'—— O)‘

Axo By0 Cz,
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la droite MM, est donc lintersection de ces deux plans: d’ou
les expressions des coordonnées de cette droite. En outre, on
obtient pour les sommets le lieu

1 (y*> | 37\ [x* 1
S e
_/-:oc<B+c A3 ’

(c’est la surface déduite de la surface normopolaire en écrivant
que le point de coordonnées — 3z, — 3y, — 3z est sur la surface
normopolaire). Le lieu des sommets du tétraedre est ainsi la
courbe d’intersection de la quadrique

NV
£

i>\ 4§

et de la surface du quatriéeme degré:

ﬂ’l xQ £l 1 o
Za<A 3)(1&"‘3{) =0

II. — LA GEOMETRIE DES QUADRUPLETS.

9. — Généralités. — Soit un tétraddre de référence AjA,AzA,.
Nous désignerons par A; I'aire de la face opposée au sommet A;
et par a;; la longueur de l'aréte joignant les sommets A; et A;.
V demgnera le volume du tétraedre.

L’équation d’un plan quelconque P en coordonnées bary-
centriques étant w,z; + usxy -+ Ugxy + ux, = 0, les coor-
données u; du plan seront les distances respectives de ce plan
aux sommets A, du tétraédre, sous 'unique condition que ces
coordonnées u; satisfassent & la relation fondamentale:

® = 9V? |

dans laquelle ® représente la forme quadratique suivante a

6 termes
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les @;; sont 6 coefficients, liés aux aires de faces par les quatre
relations: |

Aj - w12 + (751‘3 + wm ’
AZ - wzl + 0523 ,+ (7!524 ’
AZ:w31+w32+ws4’ |
Az = w41 + Gi42 + m4'3 ’

Wij = Djj .

Les distances n’intervenant dans la relation fondamentale que
par leurs différences mutuelles (ce qui exprime que la relation
reste invariante lorsque le plan P se déplace parallélement &
lui-méme) il y a intérét & introduire les 6 fonctions suivantes:

avec U, = — Uj;. Alors @ prend la forme
® = Zw,; US

ij “Fij
L’équation tangentielle du cercle & Uinfini est:
O =0 .

Les coordonnées barycentriques x; d’un point quelconque M
de I'espace et celles z; d’un second point quelconque M’ étant
‘supposées multlphees par deux facteurs non déterminés, nous
poserons:

’ ’
Z; .
1 d 1
Axi — ) - ’ ’ + ’ ,
1 + 2 + 3 + x4 xl + 2 3 + 4

Dans le cas particulier de coordonnées barycentriques absolues,
Zx; = Zx; = V, Pexpression précédente se réduit a

ou encore si les coordonnées absolues ont 6té réduites par division

par 'V, Zx = Xz; = 1, Pexpression précédente est Az, = z, — z;.




=
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En prenant, en tout cas, Pexpression générale de Az;, la
distance de deux points quelconques MM’ est donnée en coor-
données barycentriques par la formule & six termes:

2

MM = — Zaj,Ax . Az,

a

L’équation de la sphére circonscrite au tétraédre en résulte
immeédiatement:

2 .
Zaiiji . ij — 0 ;

les coefficients sont les carrés des longueurs des arétes du
tétraddre.

Si quatre masses (m,, my, ms, m,) sont respectivement placées
aux sommets du tétraedre de référence, le centre des masses I
a des coordonnées barycentriques proportionnelles aux quatre
nombres m,. Inversement tout point de l’espace peut étre
considéré comme étant centre de quatre masses placées aux
sommets A; et proportionnelles aux coordonnées barycentriques
du point.

Soit maintenant un plan quelconque P; ses coordonneées u;
sont supposées vérifier larelation fondamentale; elles représentent
dés lors les distances respectives du plan aux sommets du
tétraédre. En outre, la distance d’un point quelconque de
I’espace de coordonnées barycentriques proportionnelles & des
nombres x; est

Wy By & Uy T Uglly I Uy

Ty + 2y + X3 + 24

D =

Le moment d’inertie I par rapport au plan P du systeme
matériel constitué par les quatre masses m; placées aux sommets
A, du tétraédre est donc égal &

.
I = Emiui )

Si le plan P passe par le centre I' des masses,
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on peut écrire (avec la masse totale M)
MI = (m1 + my + my + m4) (mluf + mzu:.—{— m3u§ - m4ui)

— (myu; + Moy + mguy + m4u4)2

= X m;m; (u; — uj)2

Par Suite, pour un plan quelconque passant par I, I'expression
du moment d’inertie planaire I prend la forme:

2

10. — Détermination des axes de Uellipsoide central d’inertie du
quadruplet. — 1 est une fonction de deux variables quand le
plan P pivote autour du centre I'. Posons

f(u17 uza u’37 u4) = I + zc'zmlul—pzwaZ ;

et écrivons les quatre équations de maximum — minimum:

my(u, + o) + p(— Afu1 + @ Uy + Wu; + w14u4) = 0 . etc.

En ajoutant membre & membre ces quatre équations linéaires,
il vient Mo = 0; et, par suite, en général, le paramétre ¢ doit
étre pris égal & zéro. Le systéme des quatre équations linéaires
et homogénes, en u;

(% _ Af)bh T WyalUy + DUy + @WyeUy = 0,

conduit & I'équation suivante du troisiéme degré en p:

mq 2
— — Ly W1, @3 W4
P
m, 2
I 9y —= == Ky @ 53 (2PN
= 0 .
R mg 9
W3y W3y — — A W3,
%

V m, 2

W 41 @ g5 Wy F A,
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A chaque racine de cette équation correspond un systéme de
coordonnées (u;) d’un plan principal d’inertie au centre I'.
Comme les équations linéaires ne sont autres que les équations

1 o1 o
0 Oui ‘oui

b

en les ajoutant membre a membre, aprés multiplications res-
pectives par les u;, il vient

i o—0, o—o9v
P
et par suite

1
P =gy

L’équation cubique en p n’est autre, & un facteur prés affec-
tant 'inconnue, que I’équation aux moments d’inertie centraux
(moments planaires).

Le développement du déterminant du quatriéme ordre donne:

6.{0 e == 011 o% -+ 6{2 P — mymymymy = 0

) 2 .2 ,92 — 2 2
U\’O :2 I/nl (Az 4&3 AA4 — 2(7523 6624 (,')34 — A2 (7534 i A3 (’524

AZ Z)T532) )

o 2,2 2
2
Ry =D A"mm.m =m mi S‘Ai
LA T N R 1m2n3m4_1m_'
1

Mais les formules (avec les diédres ;)

Wi, = A1 Ay cos Gy, AjA,sin G = - Va,,

bo| W

transforment R et R, en les expressions suivantes:

\} 2 42 2 ’
R, :Z m oA AA (1 — cos?l;, — cos? 8y, — cos2 gy, —

2 cos Cy, €Os Ty, €OS §yy)

i
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I’expression trigonométrique entre parenthéses dans I’expression
de R n’est autre que le carré du sinus du triédre supplementa1re
du triedre A,. L’expressmn de ce sinus est:

ce qui réduit R, a la valeur

ﬂoz%M‘m.

Finalement l’équation aux moments planaires centraux d’inertie
du quadruplet est:
I = Mo

36V?2
M=

Y

w3 — w,0? + 0,0 — mymoamem, =0 ;
les coefficients «,, de I’équation cublque en o ayant pour
expressions:

2o, = > a2 M M
M2, = >, (5 M M

4m1m2m3m4
w, = 2 — .

La puissance du point I' par rapport & la spheére circonscrite
au tétraedre a pour expression

1 2
6‘) .
% = — E Qi MMy 5

ainsi le moment d’inertie polaire en I', égal & Mw,, a pour expres-
sion — M . .

Le moment d’inertie polaire du quadruplet au centre des masses T’
est égal au produit par la masse totale de la puissance, changée de
signe, du centre I' par rapport d la sphére circonscrite au tétraédre.

Cette proposition se déduit du reste de la remarque que le
moment d’inertie polaire au centre O de la sphére circonscrite
(de rayon R) est MR2. Au centre de gravité I' du systéme
matériel, le moment polaire prend donc la valeur M (R2 — OT'?).
eestadlre———M . * |
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Si, d’autre part, I (coordonnées A;) est le centre de la sphere
inscrite (rayon r) au tétraedre et si D, et Dy représentent res-
pectivement les distances du centre I et du centre des masses I'
au plan polaire du point I par rapport & la quadrique conjuguée

2

) E_ — 0 de centre I', les relations

3V = r.%A,, MD,=SA,,
V
rDl,—?M,
5V A
S b= 2
A

conduisent & d’intéressantes interprétations géométriques du
coefficient ;. }

Le coefficient w, est nul, lorsque I" est sur la sphére circonscrite
et réciproquement.

Le coeflicient w, est nul lorsque T" est sur la surface, du troi-
sieme degré d’équation

et réciproquement. Cette surface généralise le cercle circonscrit
au triangle: dans la transformation inverse (généralisant la
transformation isogonale du plan) elle est la transformée du
plan de I'infini. Elle est aussi la généralisation du cercle circons-
crit au triangle, sous le point de vue du théoréme des droites
de Simon-Wallace.

En résumé, les formules relatives aux trois moments centraux
d’inertie en I' sont:

I+ 1+ 19 ?a mym

=, DD

M(II" + TI'l" + 1"1) = 4dmymymym, >

m ?

T T —— N i

I T = 36 Vimymymgam, .
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11. — Application au tétraédre solide et homogéne. — La masse

totale du tétraedre étant M, nous prenons aux sommets quatre
masses égales:

la cinquiéme masse en G n’intervenant pas dans les calculs des
moments d’inertie centraux. Les formules relatives aux carrés
des rayons de gyration , o’ et o'’ sont: |

Il = Mo ,
’ 2
16 (0 + o' + ") = Z“ij ,
16 (oo’ + o'e0” + o"w) = ZA? ,
9
N/ AL V-]
oo o’ = 64\ .
12. — D’une maniére générale, les cosinus directeurs (3;) d’une

direction définie comme orthogonale & un plan donné (z;) sont
donnés par la formule:

s . 1 20
T RS
c¢’est-a-dire:
9V2 ® Si = ‘“‘A?ul + w12u2 + (7513u3 + (ﬁ14u4 .

Dans le cas actuel, d’un axe de symétrie de la quadrique
d’inertie de centre (m;), I’équation trouvée précédemment

ml 2 .
(?— 1) Uy + DUy + Wyiguy + @yuy = 0,

conduit a la formule

la condition X 3; = 0 qui exprime que (3;) sont des coordonnées
du point & linfini de 'axe est équivalente a celle, Emu; = 0
qui exprime que le plan pr1n01pal contient le centre de la qua-
drlque d’inertie.
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Tout plan donné peut étre considéré comme plan central d’inertie
pour un choix convenable du cenire I des quatre masses. A tout
plan donné, peut étre associé un point de ce plan, qui est le centre I
et dont les coordonnées seront défintes par les formules

0D
V étant arburaire.
Il en résulte:
Zmiu; = 0

et si les u; sont les distances aux sommets, il vient pour le moment
d’inertie central correspondant, I’expression suivante:

2

= >\mu; =240, 1=18V>.{

13. — Lieu du centre I' des masses associé a un plan se déplacant
parallélement a une direction donnée. — Prenons un plan de
coordonnées u; + A, A étant un parameétre variable. La direction
de la perpendiculaire (3;) a ce plan est invariable. Le lieu de T,
associé a ce plan variable, est défini par les équations

qui représentent une cubique gauche, circonscrite au tétraédre.
La cubique a pour points a I'infini le point de paramétre A infini,
de coordonnées o; et qui n’est autre que le point & I'infini dans
la direction perpendiculaire & ces plans. Les deux autres points
a I'infini de la cubique ont des paramétres définis par ’équation
du second degré:

4
s
Tt A '

1

De I'identité
81-_
w, + X\

Emiui = — 2
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il résulte que le plan A = 0, rencontre la cubique au point
8' . . S S . g Tee . .

I‘(miyz ui> qui lui est associé et aux deux points & I'infini qui
i | o

viennent d’étre mis en évidence.

Tout plan de la direction donnée renconire la cubique en le
point I' associé et en deux points & U'infini.

14. — Questions relatives aux axes centraux. — Les coordon-
nées pliickériennes de I’axe central d’inertie A, perpendiculaire
au plan (u;) au centre associé I' sont, & un facteur prés:

P12 = mgm, U, = m3m4(u3 - u4) .

Dans un téiraédre quelconque, un axe ceniral A peut-il passer par
le sommet A, ? | ’

Les conditions

Pz =0, Piz =0, P = 0
exigent que u, = uy; = u,. Le plan doit étre paralléle a la face
opposée et A coincide avec la hauteur A H,.

Un axe central A peut-il renconirer aréte A;A, ?

P12 = 0, U = Uy ,

le plan doit étre' paralléle a Uaréte A;A, et réciproquement.
Cas d’un plan paralléle a deux arétes opposées AA, et AA,.

Uy = Uy , U = Uy , P12 = 0, Pse = 0.

I’axe central d’inertie perpendiculaire & un tel plan, au
centre I' associé, est la perpendiculaire commune aux deux arétes
considérées. D’ou la construction géométrique du centre T,

La cubique gauche lieu des centres I' associés aux plans ayant
cette direction commune dégénére en une droite A.
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ITI. — LA GEOMETRIE DES MASSES DU TETRARDRE
ORTHOCENTRIQUE.

15. — Pour un tétraédre quelconque, la formule & six termes

=r/2 -2
MM? = — Sa; Ax; Az,

donnant le carré de la distance de deux points ne peut pas étre
mise sous la forme
MM™? = 6. 23, - (Aw,)?

analogue & celle de la géométrie plane. Puisque ZAz; = 0
I’existence d’une telle formule entraine la relation

?

ce qul exige

u

et par suite:
=y + oag = (A + 2, + Xy 4+ 2y

les sommes des carrés d’arétes opposées sont égales et le tétraedre
est orthocentrique.

Le tétracdre orthocentrique est caractérisé par Pexistence de
quatre nombres A, A, 252, tels que

9

Il'en résulte que les aires des quatre faces sont données par les
formules:

SAL = 02 (00 F Aol + Wyny) ete.,

ce qui exige que les paramétres v;; alent les expressions suivantes :

bwy, = 6% X0, , ete. ..

I’Enseignement mathém., 33me année, 1934. 21
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On a enfin la condition

1
36V2 = 6%« Ay, A2 A — .
. o 123427\1_

La condition de rencontre des hauteurs d’un tétraédre quel-
conque

(A, H) o T3 _ T

est
Wyp+ W3y = Wy3 - Wy, = Wy Wyg

elle exige que @;; soit de la forme &;; = p. p;. p; avec quatre
parametres u;, ce qui revient a prendre, avce les notations

ci-dessus:
Ao, = 62h3h, -

Dans ces conditions, si les coordonnées barycentriques de
I'orthocentre H sont (H;) avec X H, = 1, on devra poser:

1
Hi=s
avec: ‘
. of — 36V?. H,H,H,H, .
36 V2 = &%« A A0, .
16. — Forme spéciale de Uéquation cubique pour les tétraédres
orthoceniriques. — Considérons le produit
| G my G \ Ma G ms
II = (o) — Mm151) : (co — ﬁmz()z) . (o) — M 63) :

my
. (co — —l%m4 64) ,

avec des parametres ¢ et 0, non précisés pour le moment. L’équa-
. a1l Lo |
tion —— = 0 s’écrit
do

n.

1

Mo —%Lo? + 20— R =0,
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avec
G
£
52
Q‘v e W ) 7721(77227723 62 63 =} mg ity 63 64 N Mmyniy 64 62) 3
63
R = A e s > 0,60,0, .

Elle est identique a celle donnant les moments d’inertie
centraux du quadruplet (m;) si les conditions suivantes sont
vérifiées simultanément:

> Zom; m; [G(ei 1 6].) — a?j] = 0,
( X mymym, {62(62 0, + 0,0, + 6,0,) — [if\i] =0,

o’ % 6,0,0, = 36V .

Ces conditions sont remplies quelles que soient les masses m;

s1 le tétraeédre est orthocentrique avec 6, = A,.

Ainsi done — et c’est encore une propriété caractéristique
ce : , : I
des tétraedres orthocentriques — I’éguation en w = 7 QuL mo-

ments centraux planaires d’inertie dans le cas d’un quadruplet
disposé aux sommets d'un tétraédre orthocentrique est identique

Uéquation donnant les mazimum et minimum de la fonction sui-
vante Il (w):

17. — Une propriété analogue est & signaler pour la géométrie
plane. Pour un triangle quelconque, on aura a considérer I’6qua-
tion aux maximum — minimum du produit:

' G * c S c \
= (o —grep) - (o =580 - (0 —gvr) |

/

%, 8, v sont les masses placées aux sommets du triangle ABC;
M = o+ 8+ v,lamasse totale; o = 2S; [ = Mw; p = cotg A,
g = cotg B,r = cotg C; a® = o (¢ + r), etc. Toutes ces formules
sont analogues a celles relatives au tétraédre orthocentrique.
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18. — Formules spéciales au tétraédre orthocentrigue. — Les
calculs de la Géométrie des masses, en coordonnées bary-
centrlques se présentent généralement sous une forme simplifiée
lorsque le tétraédre de référence est orthocentrique. Nous pose-
rons en introduisant quatre parametres «;

9 .
a'lj = az '+' aj ) 4&)’12 = Qlg0y , etC.

les coordonnées de l'orthocentre H seront H,H,HjH,:

“1H1:a2H2:a3H3:a4H44;h2
'H, + H,+ H, + H, =1

1
h = Z;; .
Pour le volume V du tétraédre fondamental:

R = 36V?-H;H,H,;H, ,
oy oy 0z, = 36 ViR ;
2 9V? T 9V?

A = 7 H, (1 —H), wm:”h—'H1H2-

Les hauteurs &, des tétraedres:

2 %5 h

La distance MM’ de deux points M(z;) et M'(z;) est générale-
ment dans le cas du tétraédre orthocentrique
MM? = T «;.(Az)?,
Az, = z; — xl )

i ] 1" ’

En particulier, la distance d’un point quelconque M(z;) de.
Pespace & 1'orthocentre H prend la forme

._I:I—l\_iz—‘—h—}-Zocx

. D
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I'équation de la sphere conjuguée est:

5
o, —
_JOC,LQ';,L 0 .

La formule donnant la distance r = HM d’un point quel-
conque M & Porthocentre est donc

rr—p? = Yoz

.o

Distances de 'orthocentre aux sommets A; du tétracdre :

HAZ;:ociMh.

Soit « le rayon de la premiére sphére des douze points, dont le
centre est le centre G de gravité du tétraedre homogeéne:
GH? = o2 + p*, GH = 0G .
o + oy + ooy F ooy = 1607,
Ta; =48 o .
Si R est le rayon de la sphére circonscrite au tétraedre de
centre O:
OH% = 4(a? 4+ p?) = R2 + 3p?, OG® = o2+ p? = R2— 3«2,
RQ — [1:062 + pa ,
THA, = 4R? .

Les coordonnées O; du centre de la sphére circonscrite O
sont définies par les équations

1
TO;=1, H+0;=5.
19. — Avec les notations précédentes, I’équation cubique aux

moments d’inertie centraux I pour un centre des masses I'; est
celle qui donne le maximum ou le minimum du produit:

)

IT (L — my o)™
¢’est-a-dire I’équation :
4 m
Al i — 0.

: 1 m; o
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Sous cette forme — spéciale aux tétraddres orthocentriques —
il est manifeste que les racines sont réelles; elles sont séparées par
les nombres m; «; '

Les moments principaux centraux étant I, Iz, I3, on a pour
le tétraedre orthocentrique :

ML + I + L) =M Zmya; — So,m; ;
M(LI, + LI + L) = 20_‘1“2 mymy (my + my) ;

MLLI, = 36Vimymymym, .

Pour que lellipsoide central d’inertie en I' soit une spheére,
il faut que la quadrique conjuguée au tétraédre, de centre I'
s0it une sphére: ce qui exige que le tétraédre soit orthocentrique
et que I' soit I'orthocentre H. Pour m; = H,, ’équation cubique
a bien une racine triple I = 4.

Dans un tétraédre orthocentrique, I’équation du cercle de
I'infini se simplifie:

9V2

O = Xw;;

”(u~ _—

i — W) =0 -1,
en posant:

([ 1%

Il = 0 est I’équation tangentielle de 'orthocentre; Q = 0 est
I'équation tangentielle de la sphére conjuguée. La condition
pour que les u; soient les distances aux sommets du plan (u,)

est donc: |
®=9V2, Q_—-T=4h.

La condition entre les cosinus directeurs 4;8; d’une direction
quelconque avec les hauteurs du tetraedre est dans le cas des
tétraedres orthocentriques

—A=Z8 =1.
La perpendiculaire au plan u; est définie par les relations

06287’ = ]._.['_—' ui 9
ou
BY; = H(I —u,) ,

1 1
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les u; satisfaisant & la condition ® = 9V2 et les 3§, a la condition
A=—1.
Le centre des masses I'(m;) associé & un plan donné u; est
défini par les relations:
m; = Hi(%‘_—l) .

1

Le moment d’inertie correspondant est, avec ces expressions
des masses,
I = Emiui = p? ,
égal au carré du rayon de la sphére conjuguée.
Inversement, si les masses m;, quelconques, sont données, le
plan principal et central d’inertie, correspondant & la racine I

de ’équation cubique a pour équation:

X.
2_"_:0_

I — m, o

20. — Cas particuliers. — I" est dans le plan A;AH.,

équation cubique admet alors la racine simple T = A. Le plan
central correspondant est le plan:

u1:O u2:O —'+*_:O,
A3 Oy
X, X,
H, H, "’

c¢’est-a-dire le plan A A, H.
' est sur la hauteur A;H. Prenons:

ms = H, , m; = H; , m, = H, ;

?

my oy

racine double I = £; racine simple: I = - Les plans cen-

traux sont les plans passant par la hauteur et le plan mené par
I" parallélement & la base correspondante. La quadrique d’inertie
est de révolution autour de la hauteur.
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21. — Propriétés des tétraédres orthocentrzques solides, homogénes,
avec deux arétes opposées egales — L’équation cubique en I, mise
sous la forme

Lim, + m,) — mymy (g + )
(I — m, o) (I — mya)

I(m, + m,) — mymg (o + o)
(I — my o) (I — My 0ty)

+ =0,

admet la racine simple

I ‘___ (o + ) mym,
m; + m,

’

dans le cas particulier ou le point I' est sur la surface cubique
d’équation

C’est une surface cubique, circonscrite au tétraédre, passant
par Porthocentre; elle est, dans la transformation X;X; = 1,
réciproque du plan d’equatlon

parallele aux arétes A A, et A sA4, mené par le point (a;) réci-
proque de l’orthocentre

Ainsi sont mises en évidence, trois surfaces cubiques circons-
crites au tétraédre orthoeentmque auxquelles correspondent des
cas de résolution de I'équation cubique.

En particulier, si le tétraédre orthocentrique a deux arétes
opposées égales

Gy = ay,
la surface correspondante
1 1 1 1
+— =

contient le centre de gravité G. D’ou le résultat suivant:
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Lorsque, dans un tétraédre orthocentrique, solide et homogéne,
deux arétes opposées sont égales, I'équation aux moments d’inertie
centraux de ce corps admet une racine rationnelle :

Ay = Qgy , M = masse du tétraedre .
M
I = Ealz .

(c’est la valeur du moment central du tétraeédre régulier
d’aréte ay,).

22. — Application aux téiraédres homogénes avec un triédre
irirectangle. — Dans le cas d’un tétraedre OABC, trirectangle
en O,

OA = a |, OB = b, OC = ¢,

’équation de I'ellipsoide central par rapport aux axes rectan-
gulaires paralleles & OA, OB et OC est:

3(0° + X2 3(c® + a’)Y? + 3(a® + 0% 7?2

L 26eY7 + 2caZX 4+ 2ab XY — i—?—

Prenons une densité telle que M = 80. L’6quation en S de
ellipsoide prend la forme:
4+ (2470 + 20%¢® + 2¢%a® — Sat — 3Bt — 3c!)
F 2007 4 —a?) (St a?— b (e B — ) = 0

en posant:

Sous cette forme, lorsque deux arétes opposées sont égales
(par exemple ¢ = a* -+ b2), I'équation a bien une racine ration-
nelle © = 0, S = 4¢% conformément au théoréme précédent.
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