
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 33 (1934)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: TÉTRAÈDRE ET GÉOMÉTRIE DES MASSES

Autor: Turrière, Emile

DOI: https://doi.org/10.5169/seals-25999

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-25999
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


1

TÉTRAÈDRE ET GÉOMÉTRIE DES MASSES

PAR

Emile Turrière (Montpellier).

Dans un précédent article, Sur Véquivalence en Géométrie des

masses1, j'ai traité principalement de la géométrie des masses
dans ses rapports avec la Géométrie du triangle. J'ai rapidement
énoncé quelques résultats concernant la géométrie tétraédrique
des masses. Les considérations qui suivent sont relatives à cette
dernière question.

I. — Le système des tétraèdres équivalents.

I- — Reprenons l'étude des tétraèdres T : tout système de masses
est équivalent à une infinité de systèmes de quatre masses
ponctuelles égales. Les quatre points dé application de ces masses sont
situés aux sommets de tétraèdres T, de même volume, inscrits à
un ellipsoïde E, circonscrits à un ellipsoïde E'; les arêtes des
tétraèdres T sont tangentes en leurs milieux à un ellipsoïde E";
les tétraèdres sont conjugués par rapport à un ellipsoïde E"'
(imaginaire). Ces divers ellipsoïdes sont concentriques, leur centre
commun est le centre de gravité G des tétraèdres. Ils sont homo-
thétiques.

Les plans tangents aux sommets des tétraèdres à l'ellipsoïde
circonscrit E sont respectivement parallèles aux faces opposées
des tétraèdres.

Il existe une infinité de tétraèdres T qui sont orthocentriques.
Les hauteurs des tétraèdres d'orthocentre H sont quatre des

t L'Enseignement mathématique, 1931, XXX, pp. 62-90.
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normales issues de H à l'ellipsoïde E. L'arête A1A2 coïncide avec
l'une des directions principales de l'ellipsoïde E" au milieu de
A1A2. L'arête A3A4 est parallèle à l'autre direction principale.

Ces résultats rappelés, prenons les équations suivantes pour
représenter ces divers ellipsoïdes:

Y2 "y2 yzE circonscrit : — + -—u — — 3 •ABC 1

E' inscrit : _ JL

3 '

E" tangent aux arêtes : 1 ;

E'" autopolaire ; \

L'origine est le centre G de gravité ; les axes sont les axes
centraux d'inertie.

Tout d'abord nous allons établir quelques formules générales
relatives aux tétraèdres T en mettant en évidence les coordonnées

elliptiques du milieu de l'arête AXA2 sur l'ellipsoïde E"
tangent aux arêtes.

2. — Formules générales pour les tétraèdres T. — Soit une

quadrique (Q) d'équation -j- g- + 1 ; posons sur cette

quadrique :

y2 A (A -f X) (A HH fx)X =-(A-B)(A-C) • etC"

(X, (j.) étant les coordonnées elliptiques du point courant M.
Une tangente quelconque à cette quadrique au point M aura
des cosinus directeurs a, ß, y qui pourront être mis sous la
forme :

\A + X A ; + (J1/
etc.

U m étant deux paramètres. Il en résulte les relations:

2^ 0 EaX +

1 a2 + ß2 + y2 4 +

v a2 ,/E Gtw2\
Sr== - H. >.

+ —)>
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où:

E i \Çk — [L)
C ~ ^ ~~ X)

4 (A + X) (B + X) (C + X) 4 (A + (B + (x) (C + (x)

En posant
^

sin co cos co

2VE '
2VG '

on obtient:
sur co

X +
COÎ

La tangente ainsi définie au point M de la quadrique (Q)
rencontre la quadrique concentrique et homothétique (Q')
d'équation

aux points de coordonnées X + ap, Y + ßp, Z + yp, où le

paramètre p a la valeur définie par l'une ou l'autre des conditions

équivalentes:

Considérons d'autre part une autre tangente à la quadrique
(Q), au point M' symétrique de M par rapport au centre G de
(Q). Soient oc'ß'y' les cosinus directeurs de cette tangente; nous
poserons

etc.
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Entre les deux tangentes existent les relations:

Eococ' — cos (co — co')

COS co cosco'

Ces deux tangentes définissent par leurs intersections avec la
quadrique (Q') un tétraèdre dont les sommets ont pour
coordonnées respectives:

Les arêtes AXA2 et A3A4 sont par construction tangentes en
leurs milieux à la quadrique (Q). La condition de conjugaison
des arêtes A4A2 et A3A4 par rapport à la quadrique Q,

assure le contact des quatre autres arêtes, en leurs milieux
respectifs, avec la même quadrique. Cette condition est du
reste :

Les carrés des longueurs des arêtes du tétraèdre A1A2A3A4
sont :

3 =:4(X + (i.--f-A-f-]3-|-C) + p2-f- p'2 — 2 pp' cos (co — co')

A1 X + pa etc.,

A_
2 X p oc etc.,

A3 — X + p'oc' etc.,

A4 — X — p'a' etc.

tangco tangco' —
X

4 - 4p2

aL 4p'2

+ 4p(Z + m) — 4p,(Z/ + m') ; etc.
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elles donnent les relations suivantes :

«12 + «34 — MP2 + p/2)

«13 A «24 8(X + [i, + A + B + C)+2 j^p2 + p72 — 2 pp7 cos (cd — &>7)]

«14 + «23 8(X + p, + A + B + G) + 2 £p2 + p72 + 2 pp7 cos (cd — cd7)]

«12 «34 ^ ^ (P" P "f

«is — «24 8 [p (l + ~ ?' [V + ')] >

«14 «23 — $ [p (^ + 171) + P' É + m')~\ 5

et pour les six arêtes:

^ aij — 16 (X + [x + A + B + C) + 8 (p2 + p72)

Les lignes moyennes 2L, 2M, 2N de ce tétraèdre ont des expressions

définies par les relations

L2 X2 + Y2 + Z2

4 M2 p2 + p72 + 2 pp7 cos (cd — cd7)

4N2 p2 + p72 — 2 pp7 cos (cd — cd7)

avec
X2 + Y2 + Z2 X + p, + A + B + C X + fx + 3s

Mais la relation de conjugaison des arêtes opposées, mise sous
la forme

sin cd sin cd7
t cos cd cos cd7

-r + 0
A |j.

montre que l'introduction dans les calculs de l'angle co — w' <p

des arêtes opposées A4A2 et A3A4 simplifie notablement les
diverses expressions; posons

sin cd sin cd7 —-— cos cp
X — [x

T

d'où:

COS CD COS CD7 =a - cos Cp

[X X r

COS (cd + CD7) L ^ cos cp
[X — x r
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Nous prendrons:
pp' sin 9 2 •

p* + p'» -2(X + pL) ;

et par suite,
Sa^ 16 (A + B + G) 48s

L2 + M2 + N2 A + B + C — 3s

Pour les tétraèdres considérés inscrits dans la quadrique Q' et

dont les arêtes sont tangentes en leurs milieux à la quadrique (Q),
sont donc constantes la somme des carrés des six arêtes et celle des

carrés des trois lignes moyennes.
La plus courte distance S des arêtes opposées AXA2 et A3A4

est la distance des plans tangents à la quadrique Q au point
(X, Y, Z) et au point diamétralement opposé. On a donc:

V ^

et par suite le volume V a pour expression:

xr
8

A A A A

'

• 4 • /ABC 8 /T157TV - • AxA2 • A3A4 • sin 9 - pp' sm 9 • y - yABC

Les tétraèdres considérés ont même çolume Y. Si ABC sont
tous trois positifs:

volume ellipsoïde (Q) tz

volume tétraèdre — 2

3. — Tétraèdres équifaciaux du système. — L'égalité des arêtes

opposées donne les trois conditions suivantes:

p2 p'2 l -f m 0 V + m' 0

C'est aussi aux mêmes conditions que conduit l'orthogonalité
deux à deux des lignes moyennes.

Les milieux des arêtes sont les sommets de la quadrique Q

8

X2
+ Y' V

1ABC
/X» y, &

V A2 + B2 + C3
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si le tétraèdre est équifacial. On est ainsi conduit à prendre pour
milieu de l'arête AXA2 le sommet

X VA ' Y 0 Z 0

et à poser
a 0 ß — sin 0 y — cos 0

a' essi f) ß' — P Y y
avec

Si a, b, c désignent les demi-axes de l'ellipsoïde (Q), les
coordonnées des sommets d'un des tétraèdres équifaciaux appartenant
au système sont

A± abc
A 2 a — b — c

A3 —abc
A4 — a — b c

D où une construction immédiate de ce tétraèdre équifacial
et de ceux qui s'en déduisent par symétries.

Tout tétraèdre équifacial est représentable dans ce mode de
représentation analytique. D'une manière générale, le système
des trois lignes moyennes d'un tétraèdre quelconque est un système
de diamètres conjugués pour la quadrique tangente aux arêtes en leurs
milieux.

Le système des lignes moyennes constitue donc un système
d'axes obliques pouvant être utile dans certains cas. Mais
lorsque le tétraèdre est équifacial, ce système, devenant alors
celui des axes de symétrie de la quadrique considérée, et par
conséquent aussi de la quadrique autopolaire de centre G, de
la quadrique circonscrite de Steiner et de la quadrique inscrite
de Steiner, apparaît comme tout indiqué pour une étude précise
du tétraèdre équifacial.

Le plan A2A3A4 a pour équation
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l'équation générale de quadriques circonscrites au tétraèdre de

centre G prend la forme

Ax2 + AV + AV 1

avec Aa2 + Bb2 + Ce2 1. Le rayon r de la sphère inscrite

(de centre G) et le rayon R de la sphère circonscrite (de centre G)

sont donnés par les formules

R2 a2 + b2 + c2

I _ I 4- 1 4- I
r2 a2 b2 c2

Les quatre hauteurs et les perpendiculaires menées aux faces

en leurs orthocentres respectifs sont tangentes à une même sphère

de centre G et de rayon S:

8* R2 __ 9 r2

4. — Propriété caractéristique des tétraèdres équifaciaux. —
Déterminons le moment d'inertie d'un tétraèdre solide, homogène

par rapport à la droite AXG joignant un sommet au centre

de gravité G.

La distance A12 de A2 à Afi est:

A —Al2 - Ai G
'

S12 désignant l'aire du triangle ayant pour base A^ et pour
sommet le milieu de A3A4. D'où (notations du paragraphe 9):

4 • AJ2 • A1 G2 A3 + A4 + 2 w 34

A13 et A14 désignant la distance à cette même droite AXG des

sommets A3 et A4, nous avons:

4A1G2(Ai2 + AL + Al) 3 (A2 + A2 + A4) — Ai

Si M est la masse totale du tétraèdre, il suffit pour l'équivalence

de prendre quatre masses ^ placées aux sommets et une
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cinquième masse en G. Le moment d'inertie du corps relativement
à la droite Aft est donc

M 3 (A2 + A3 + A4) Âj
!l 80

' '

L'ellipsoïde central d'inertie de Cauchy du tétraèdre solide

ne saurait donc être en général homothétique à l'ellipsoïde de

Steiner. La condition pour que cette disposition soit réalisée est

l'égalité des quatre aires des faces.

La condition nécessaire et suffisante pour que Vellipsoïde central

d'inertie de Cauchy soit homothétique à des ellipsoïdes de Steiner

est que le tétraèdre soit équifacial.

5. — Tétraèdres orthoeentriques du système T. — La condition
d'égalité des trois sommes de carrés d'arêtes opposées se traduit
par les relations:

cos © 0,
3 (X + fx) A 2 (A -f B -f C) 0 :

il faut donc prendre

co' 0 (ù — p" — 2 X p'2 — 2 [x

X + [i — n (A + B + G) — 2s ;

la somme des carrés d'arêtes opposées est alors:

«ï. + 4 y (A + B + C)

Les arêtes AXA2 et A3A4 sont tangentes à des lignes de courbure
en M et M'. Ces points M et M' — ainsi que les autres milieux
d'arêtes — sont nécessairement situés sur une sphère de centre G:

X2 + Y2 + Z2
A +

J
+ c

s ; L2 M2 N2 s

On peut remarquer que l'existence de l'orthocentre H
implique que les normales aux sommets du tétraèdre (lorsqu'il est

orthocentrique) à la quadrique circonscrite (Q') soient concou-
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rantes. Si donc on considère les points d'intersection de la droite
AxA2 avec la quadrique (Q), avec les notations ci-dessus
introduites, la condition de concours des normales en ces deux points
à la quadrique Q' se met sous la forme

X
oc

Y
ß

Z_

T

A 1

B 1

G 1

c'est-à-dire

2- B
0

+ •A -j- X A -f- [l

qui, développée, s'écrit

(A — B) (B — G) (G — A) 0

D'où il résulte que Im 0: la droite considérée, tangente
en M à la quadrique (Q), doit être une tangente à l'une des deux

lignes de courbure de (Q).
Ce résultat peut être obtenu en observant que la condition

pour que les normales à une quadrique aux extrémités d'une
de ses cordes soient concourantes est que cette çorde soit portée

par une droite du complexe tétraédral attaché à cette quadrique,
ses homothétiques et leurs quadriques homofocales. La droite
actuellement considérée doit donc être l'une des deux génératrices

d'intersection du cône du complexe tétraédral par le plan

tangent en M à (Q): ce sont précisément les deux directions

principales en M de la quadrique (Q).
La conclusion est qu'il existe une oo' de tétraèdres orthocentriques

dans le système considéré.

Pour construire un tel tétraèdre orthocentrique, on prendra
arbitrairement un point M sur la biquadratique intersection de

la quadrique Q avec la sphère concentrique d'équation

X2 ,+ Y2 + Z2
A + B + G
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V arête A4A2, de milieu M, sera F une des deux directions principales
en M; Varête A3A4 sera la parallèle à Vautre direction principale
de M menée par le point diamétralement opposé M' au point M.

Le tétraèdre est ainsi complètement déterminé. Les arêtes
appartiennent à un même complexe tétraédral et sont des tangentes
à des lignes de courbure de la quadrique (Q), tangente aux arêtes
en leurs milieux.

La sphère considérée est la sphère orthoptique de la quadrique
inscrite, concentrique et homothétique à Q, et aussi la première
sphère de douze points du tétraèdre.

6- Le lieu de Vorthocentre des tétraèdres T orthocentriques. —-
La normale au sommet A4 du tétraèdre à la quadrique circonscrite

X2 Y2 Z-

x + B" + "c ~3 0

peut être représentée paramétriquement par des équations

s - x, (l + £)

tandis que la normale au sommet A2 est représentée par des
équations

X- X2(l + p
Mais les coordonnées des sommets étant

X, xfi 01

a +ii'etc-
p2 — 2ix

ces normales se rencontrent:

1 A — pl,Px+ p2;

les coordonnées (xQ, y0,z0)deleur point de concours, qui n'est
autre que l'ortliocentre H, sont alors:

a:0 etc.A + X ' C"
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on vérifie que les normales en A3 et A4 concourent au même

point H. Les coordonnées de H en fonction des coordonnées

X, Y, Z du milieu M de l'arête AXA2 sont en définitive fournies

par les relations

Q A r^p(X —(X) — A(A + B + G) + 3BC-6Xjx

avec la condition

X + (x — — (A + B + G)

exprimant que, sur l'ellipsoïde Q, le point M a pour lieu une

biquadratique sphérique :

X2 + Y2 + Z2
A +

g
+ c

•

Nous poserons:

A — B y B — C <x C — A ß ;

a + ß + y — 0 ;

A, B, C seront considérées comme racines d'une équation
cubique

A3 — 3 s A2 + 3#A— p 0

et nous prendrons un paramètre variable 0, défini par:

A^ 2 + -3
•

Soient encore :

K 3 (s2 — q)

3 K A2 + B2 + G2 — AB — BG — GA

aß + ßy + ya — 3 K a2 + ß2 + K2 6 K

a2ß2 + ß2y2 + y2 a2 9 K2

La biquadratique, lieu des milieux des arêtes, est alors
représentée par les formules:

^x2 ßr—e, etc.,
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ou encore
3 (A — B) (A - C)

_ x, pM _ £i ; etc _A

les constantes elliptiques étant

et e= ßy + IC e2 yoc + K e3 — cl ß A K >

e1 — e2 y (ß — a) (A — B) (2 G — A B) ;

g2 12 K2 ^3 4 (a2 ß2y2 - 2 K3) ;

6 Pu-Pr Pu- K

J)ç K p/2c — 4a2ß2y2 < 0 P"r 0

p2e — 2K

Pour l'orthocentre H:

- - juirhi; - |BC + A' -2>""' •

9Aßyy> - K! - + ßTy- (9 — ßy)

4 03 — 3 ß2y2e — ßY

»m-'V.T-W ;

introduisons un nouveau paramètre t, lié à 0 par la relation:

4 03 — a" ß2y2 0 0—= 3«ßY- ;

nous obtenons finalement les formules suivantes pour la
représentation paramétrique du lieu de l'orthocentre H :

3A^o =3 oc t — ßy ; etc.

ou encore (les fonctions elliptiques n'étant pas les mêmes que
celles utilisées pour la représentation ci-dessus donnée de la

L'Enseignement mathém., 33rae année, 1934. 20
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biquadratique lieu des milieux des arêtes) :

Aßy^o fu —

B ya yl fu — e2

G aß zl J>u — e3 ;

2 a ß y \/ABC x0y0z0 p'it

aßy t 3(fw + K2)

3(pa-}M ;

les constantes elliptiques sont:

3Ci ß2y2 — 3K2 Pp — jßV »

3e2 y2a2 — 3K2 fç — e2 — ^y2a2

3 e3 a2ß2 — 3 K2 J>v — ia2ß2

pP —k2, rc -^«4PY<o, P"p la'ß'r* •

(^)2 -!2, P2p 2K2 3

3 («i — e2) Y3 (a — ß) (A — B)3 (A + B — 2G) ; e3—e2 y(J — CK),

g2 |K(9K3-2a2ß2r2)
'

& 9 K3)2 27 K6]

Supposons A > B > C; les points réels de la biquadratique (H)
correspondent aux points de l'ovale de la cubique de Weierstrass.

Il y a dégénérescence lorsque A -f- G 2B. C'est en même

temps le cas de dégénérescence des fonctions elliptiques
représentatives du lieu des milieux des arêtes des tétraèdres ortho-

centriques T.
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Le lieu de Vorthocentre est ainsi une biquadratique gauche

définie par les quadriques:

A.t0 + B?y0 + Cz0 K

A2.t0 + B22/0 + C2s0 J

avec:
J 3 ABC + 9 s3 — 12 qs 3 (ABC + Ks — qs) ;

— 3J -es: Aßy + Bya + Gaß ;

à signaler aussi la quadrique

S A (B + C)xl 3 (sq — p)

ainsi que le cône de sommet G dirigé par la biquadratique:

S A (B — G)'' (B + G — 2 A) x0 «= 0

La courbe est à comparer à la polhodie de Poinsot, pour
l'analogie des équations. Le plan tangent à la quadratique

SAsJ K

le long de cette biquadratique reste tangent à une sphère de

centre G.

Il y a décomposition en deux coniques symétriques dans le cas

singulier de dégénérescence des fonctions elliptiques A + G 2B.
Les ellipsoïdes fondamentaux EE'E"E/W liés au système des

tétraèdres sont à hyperbole focale équilatère. L'ellipsoïde

S Aay K

polaire réciproque de E par rapport à une sphère concentrique,
a ses plans cycliques orthogonaux, sous cette condition

A + C 2B a y

Le cône se décompose alors en deux plans passant par l'axe
moyen :

\/A x0 i a/G^o •
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Le cône de sommet G et contenant la biquadratique lieu des

milieux des arêtes se décompose en même temps en les deux

7. — Les deux autres normales issues de Vorthocentre. — Lorsque
le tétraèdre T est orthocentrique, quatre des normales issues de

l'orthocentre H à l'ellipsoïde E circonscrit sont les hauteurs du
tétraèdre. Voici des propriétés des deux autres normales, qui
sont d'ailleurs réelles.

Si la cubique des normales relatives à l'ellipsoïde de Steiner E

(j'ai précédemment spécifié que parmi l'infinité d'ellipsoïdes
circonscrits de centre G, je donnais le nom d'ellipsoïde de Steiner
à celui dont les plans tangents sont parallèles aux faces du

tétraèdre, parce que cet ellipsoïde seul généralise l'ellipse
steinerienne circonscrite de la Géométrie du triangle) est
représentée par les équations

l'équation du problème des normales est l'équation du sixième

degré

Soient y2y4 les paramètres correspondant aux quatre
sommets A1A2A3A4 et tbtQ les deux autres solutions M5M6. Nous

avons les relations telles que

Aß2T24 — 3 (A + h) (A + t2) (A + h) (A + Q (A +J5) (A + t6) ;

d'autre part

plans :

Vc x ± \/a z

^ A^o __ 3^ (t + A)2

*1 - s, - (hh)(A + h) °A -+ g
Axp

(A + îj) (A + t2) '

2X - ^ - Aa:0(A + + A + J
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La condition d'orthogonalité d'un couple d'arêtes opposées

(à remarquer que cette condition est unique) du tétraèdre

prend la forme

A" x*
v, — .7 o
—1 (A A q) (A A q) (A A q) (A A til

et se met finalement sous la forme

S A oc (A A q) (A A q) 0

établissant une relation involutive entre t5 et tQ. De même en

écrivant que M, milieu de AXA2, est sur la quadrique E", nous

obtenons la relation

V _—J (A A q) (A A q)

qui, combinée avec la relation analogue entre t3 et 14, donne,

compte tenu de la relation d'orthogonalité,

V- v'"
o

— (A A q) (A A y (A A q) (A A q)

L'autopolarité du tétraèdre par rapport à E'" conduirait
d'ailleurs au même résultat. D'où une nouvelle relation involutive
entre t5 et t6:

S a" (A A q) (A A ^) 0

En résumé, les trois expressions a2(A + t5)(A + l6) sont
proportionnelles à B — C, G — A, A — B et par suite les trois
expressions

oc (A A q) (A A q)

sont égales entre elles. D'où:

q a q ~ ^s q q i \

t5 et t6 sont les racines de l'équation du second degré

l~ A 2 si A <y 0

— • (t,J A 3 st~ A 3 qt A p) 0



302 ÉMILE TURRIÈRE

dérivée de l'équation cubique ayant —A, —B, — G pour
racines 1,11+ 7~rvr + ir^-r 0 ;t + A £ + B £ + C

(£5 t6)~ — — K >• 0

(A + g(A + g _ Ç

Les points M5M6 sont toujours réels. Le milieu de la corde
M5M6 a pour coordonnées £,?),£:

AVï)g° 'etc-'

il décrit donc une biquadratique gauche affine au lieu de l'ortho-
centre H. Le faisceau des quadriques définissant cette nouvelle
biquadratique a pour équation:

2ï8T~T.(l + ?)<? - > +.K ;
(ß - y)2

le cône de sommet G:

y ^ 0
A(B + G —• 2 A)

8. — Lieu des sommets des tétraèdres orthocentriques. — Moins
simple est le lieu des sommets des tétraèdres orthocentriques.

Les plans des faces enveloppent une développable circonscrite

à E' et à la surface polaire réciproque de la surface normo-
polaire de la quadrique circonscrite. Les sommets A{ sont
situées sur la courbe d'intersection de E et d'une surface homo-

thétique à la surface normopolaire de E.
Les calculs relatifs à la surface normopolaire montrent que

l'on a tout d'abord les relations suivantes pour M5 et M6:

— + —"+—= 3
%o 2/o zo
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la droite M5M6 est donc l'intersection de ces deux plans: d'où

les expressions des coordonnées de cette droite. En outre, on

obtient pour les sommets le lieu

+ Z^](K0
G VA 3

(c'est la surface déduite de la surface normopolaire en écrivant

que le point de coordonnées — 3«, — 3 — 3z est sur la surface

normopolaire). Le lieu des sommets du tétraèdre est ainsi la

courbe d'intersection de la quadrique

St 3
A

et de la surface du quatrième degré :

1 (x2 /X1 14
oc Ä-3) V A 3/

II. — La géométrie des quadruplets.

9. — Généralités. — Soit un tétraèdre de référence AjArpV^A^.

Nous désignerons par Âtl'airede la face opposée au sommet A;

et par aij la longueur de l'arête joignant les sommets et A,.
V désignera le volume du tétraèdre.

L'équation d'un plan quelconque P en coordonnées bary-
centriques étant u1x1 + u2x2 + u3xs 4* — 0, les

coordonnées ut du plan seront les distances respectives de ce plan

aux sommets At du tétraèdre, sous l'unique condition que ces

coordonnées satisfassent à la relation fondamentale :

$ 9V2

dans laquelle ® représente la forme quadratique suivante à

6 termes
<D M (Ui Uj)2
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les rar» sont 6 coefficients, liés aux aires de faces par les quatre
relations :

A2 as+ eu+1 12 13
1

14

A2 uy + w + uy
2 21 23 24

A" uy + uy + uy
3 31 32 34 '

A2 =r W + W + W
4 41 42 43

Wjj

Les distances n'intervenant dans la relation fondamentale que
par leurs différences mutuelles (ce qui exprime que la relation
reste invariante lorsque le plan P se déplace parallèlement à

lui-même) il y a intérêt à introduire les 6 fonctions suivantes:

uîj ui — uj >

avec TJij — U^. Alors O prend la forme

o ^..u2..

Uéquation tangentielle du cercle à Vinfini est:

<£ 0

Les coordonnées barycentriques xi d'un point quelconque M
de l'espace et celles x\ d'un second point quelconque M' étant
supposées multipliées par deux facteurs non déterminés, nous
poserons:

Ax-
xi + x. + xi + xt

Dans le cas particulier de coordonnées barycentriques absolues,
Sa^ Sa;- Y, l'expression précédente se réduit à

OCj X-
\x. -J L •

•<*xiy
ou encore si les coordonnées absolues ont été réduites par division
par V, Sx, Sa:- 1, l'expression précédente est xi — x\.
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En prenant, en tout cas, l'expression générale de àxu la

distance de deux points quelconques MM' est donnée en

coordonnées barycentriques par la formule à six termes :

MM'*= — Sc4 As Aa;a

L'équation de la sphère circonscrite au tétraèdre en résulte

immédiatement :

yLai-Axi Axj 0 ;

les coefficients sont les carrés des longueurs des arêtes du

tétraèdre.
Si quatre masses (%, m2, m3: m4) sont respectivement placées

aux sommets du tétraèdre de référence, le centre des masses P

a des coordonnées barycentriques proportionnelles aux quatre
nombres 7nx. Inversement tout point de l'espace peut être

considéré comme étant centre de quatre masses placées aux
sommets A- et proportionnelles aux coordonnées barycentriques
du point.

Soit maintenant un plan quelconque P; ses coordonnées ui
sont supposées vérifier la relation fondamentale; elles représentent
dès lors les distances respectives du plan aux sommets du

tétraèdre. En outre, la distance d'un point quelconque de

l'espace de coordonnées barycentriques proportionnelles à des

nombres xt est

^ U1X1 + U.2X2 + U%X 3 + Uéx4

X1 + X2 + X3 + Xi

Le moment d'inertie I par rapport au plan P du système
matériel constitué par les quatre masses mi placées aux sommets

A; du tétraèdre est donc égal à

I S 772i u\ •

Si le plan P passe par le centre Y des masses,
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on peut écrire (avec la masse totale M)

MI (m1 + m2 + m3 + ra4) (mt u\ + m2u2 + m3u3 + méul)

— (mi ui + m2u2 + m3u3 + ra4u4)2

Zmimj (^—i*.)2.

Par suite, pour un plan quelconque passant par T, l'expression
du moment d'inertie planaire I prend la forme:

MI 2 mim- U^-

10« —Détermination des axes de Vellipsoïde central cT inertie du
quadruplet. — I est une fonction de deux variables quand le
plan P pivote autour du centre T. Posons

f{u1 u2 u3 w4) I + 2CT %miui — p 2 ;

et écrivons les quatre équations de maximum — minimum:

m1(u1 + a) + p(—A\u± + U512u2 -f w13u3 + ttléu^j — 0 etc.

En ajoutant membre à membre ces quatre équations linéaires,
il vient Ma 0; et, par suite, en général, le paramètre a doit
être pris égal à zéro. Le système des quatre équations linéaires
et homogènes, en u{

^ UX ~f" (77j2^2 ^13^3 H- ÜiJitUt 0
f

conduit à l'équation suivante du troisième degré en p:

—x —A2
P

1 Wi2 ^13 U514C

œ2i
m2 2

ay2t

w3l ay 22
a2

P
As w3t

Wti Cö42 Cö43
p
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A chaque racine de cette équation correspond un système de

coordonnées (a{) d'un plan principal d'inertie au centre T.
Comme les équations linéaires ne sont autres que les équations

i öl _ ö® _ o

P ùui ôui
'

en les ajoutant membre à membre, après multiplications
respectives par les %T il vient

— I — <6 0 ; <D 9Y2
P

et par suite
I

P ^ <,y* *

L'équation cubique en p n'est autre, à un facteur près affectant

l'inconnue, que l'équation aux moments d'inertie centraux
(moments planaires).

Le développement du déterminant du quatrième ordre donne:

Öv0 p3 — cfi1 p2 + Ûl2 p — ml 7722 m3 0

avec

dv0 =2 m1 (AÎ A3 AI — 2c023 ©24 ©34 — A^ ^34 ~ A* U5^ SJ32)

öii =2 mimj (Ai Aj — A
A2

dv2 7. A2 m mm m m m m ^ —* Z_J 1234 1234 Z_J

Mais les formules (avec les dièdres LA

3
ro12 Aj A2 cos Ç34 A4A2 sin Ç34 - Va34

transforment Ûl0et<3vx en les expressions suivantes:

=2 n\ KKAIt1 — cos2 ^ — cos2Zia — cos2 Ç14 —

2 cos Ç12 cos Ç13 cos Ç14)

1V2-S ;
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l'expression trigonométrique entre parenthèses dans l'expression
de (Rq n'est autre que le carré du sinus du trièdre supplémentaire
du trièdre Av L'expression de ce sinus est:

n' - i V2

i 2 ' A2A3A4

ce qui réduit Ûl0 à la valeur

Ûl0 ^ MV2

Finalement Véquation aux moments planaires centraux d'inertie
du quadruplet est:

I MCÛ

<o3 — co0 co2 + cox to — 3g nt1 m2 m3 ra4 0 ;

les coefficients <o0, de l'équation cubique en co ayant pour
expressions :

M2"o =2 aijmimj
.2

4 m1m2 m3 mi ^6)1 M3 '

La puissance du point T par rapport à la sphère circonscrite
au tétraèdre a pour expression

® 24raimi;

ainsi le moment d'inertie polaire en T, égal à Mco0, a pour expression

— M ét.

Le moment d'inertie polaire du quadruplet au centre des masses T
est égal au produit par la masse totale de la puissance, changée de

signer du centre V par rapport à la sphère circonscrite au tétraèdre.

Cette proposition se déduit du reste de la remarque que le

moment d'inertie polaire au centre 0 de la sphère circonscrite
(de rayon R) est MR2. Au centre de gravité F du système
matériel, le moment polaire prend donc la valeur M(R2 — ÖT2),

c'est-à-dire — M



TÉTRAÈDRE ET GÉOMÉTRIE DES MASSES 309

Si, d'autre part, I (coordonnées At) est le centre de la sphère
inscrite (rayon r) au tétraèdre et si Dr et Dr représentent
respectivement les distances du centre I et du centre des masses Y

au plan polaire du point I par rapport à la quadrique conjuguée

y/-È 0 de centre T, les relations

3 Y r • S At MDp S Ai

n 3V
,D'' T '

^ Ai
M • Dr • D, y —1 1 —J m-

conduisent à d'intéressantes interprétations géométriques du
coefficient cùv

Le coefficient co0 est nul, lorsque Y est sur la sphère circonscrite
et réciproquement.

Le coefficient co1 est nul lorsque F est sur la surface, du
troisième degré d'équation

et réciproquement. Cette surface généralise le cercle circonscrit
au triangle: dans la transformation inverse (généralisant la
transformation isogonale du plan) elle est la transformée du
plan de l'infini. Elle est aussi la généralisation du cercle circonscrit

au triangle, sous le point de vue du théorème des droites
de Simon-Wallace.

En résumé, les formules relatives aux trois moments centraux
d'inertie en Y sont:

; M(I + P + I") =3 y a2. .m- m-
' A2

\ M (IP + PF -f FX) 4m17?22/?Zg/?z4 "V —
I mi
\ M • I Y F 3 6 V2 ?n1 m2 m3 m4
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11. — Application au tétraèdre solide et homogène. — La masse

totale du tétraèdre étant M, nous prenons aux sommets quatre
masses égales:

la cinquième masse en G n'intervenant pas dans les calculs des
moments d'inertie centraux. Les formules relatives aux carrés
des rayons de gyration co, co' et co" sont:

I Mo

16 (co + co' + cd") 2 aij >

16 (cocor + Co'co" + Co"co) i=3 2i A^

co co' co" — ~ V2

12. — D'une manière générale, les cosinus directeurs (§J d'une
direction définie comme orthogonale à un plan donné {u{) sont
donnés par la formule :

s l 5$

c'est-à-dire:

9 Y2 • — Ai % + C012M2 + öt13M3 + ctï14M4

Dans le cas actuel, d'un axe de symétrie de la quadrique
d'inertie de centre (mf), l'équation trouvée précédemment

m1 2\
Ai I Mx + w12 m2 + mls M3 + CtTi4 M4 0

P /

conduit à la formule

la condition hSi 0 qui exprime que (S{) sont des coordonnées
du point à l'infini de l'axe est équivalente à celle, S ^ 0

qui exprime que le plan principal contient le centre de la
quadrique d'inertie.
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Tout plan donné peut être considéré comme plan central d'inertie

pour un choix convenable du centre F des quatre masses. A tout

plan donné, peut être associé un point de ce plan, qui est le centre F

et dont les coordonnées seront définies par les formules

d; ö<D

mi — ~~ ' x— '1
Ut du{

^ étant arbitraire.

Il en résulte :

S mi u- — 0 ;

et si les u{ sont les distances aux sommets, il vient pour le moment
d'inertie central correspondant, l'expression suivante:

I — ^ mi u\ — 2 ^ (D I 18 Y2 • ^

13. — Lieu du centre F des masses associé à un plan se déplaçant
parallèlement à une direction donnée. — Prenons un plan de

coordonnées ut + X, X étant un paramètre variable. La direction
de la perpendiculaire (S;) à ce plan est invariable. Le lieu de r,
associé à ce plan variable, est défini par les équations

Si

u- -j- x

qui représentent une cubique gauche, circonscrite au tétraèdre.
La cubique a pour points à l'infini le point de paramètre X infini,
de coordonnées et qui n'est autre que le point à l'infini dans
la direction perpendiculaire à ces plans. Les deux autres points
à l'infini de la cubique ont des paramètres définis par l'équation
du second degré:

o.
ui +x

De l'identité
8,
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il résulte que le plan X 0, rencontre la cubique au point
v(mi qui lui est associé et aux deux points à l'infini qui

viennent d'être mis en évidence.
Tout plan de la direction donnée rencontre la cubique en le

point T associé et en deux points à Vinfini.

14. — Questions relatives aux axes centraux. — Les coordonnées

pliickériennes de l'axe central d'inertie A, perpendiculaire
au plan (uf) au centre associé F sont, à un facteur près:

Pl2 ^3 ^4 L34 YYl3YYl^[u3 llfj

Dans un tétraèdre quelconque, un axe central A peut-il passer par
le sommet A4

Les conditions

P12 0 P13 0 Pu 0

exigent que u2 us u±. Le plan doit être parallèle à la face
opposée et A coïncide avec la hauteur A1H1.

Un axe central A peut-il rencontrer Varête A3A4

p12 0 u3 ué ;

le plan doit être parallèle à Varête A3A4 et réciproquement.
Cas d*un plan parallèle à deux arêtes opposées AXA2 et A3A4.

U\ u3 u4 p12 ==: 0 pQi 0

L'axe central d'inertie perpendiculaire à un tel plan, au
centre F associé, est la perpendiculaire commune aux deux arêtes
considérées. D'où la construction géométrique du centre F.

La cubique gauche lieu des centres F associés aux plans ayant
cette direction commune dégénère en une droite A.
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III. — La géométrie des masses du tétraèdre
ORTHOCENTRIQUE.

15. — Pour un tétraèdre quelconque, la formule à six termes

MM 2
— E a-- Ex- Ex-o I j

donnant le carré de la distance de deux points ne peut pas être
mise sous la forme

MM'2 be er • E X- • (Ex.j)-

analogue à celle de la géométrie plane. Puisque 0,
l'existence d'une telle formule entraîne la relation

0 gEX^A^)2 + E a- Axi Ax* g E • E(Aa^)

ce qui exige

aij aiÈi + Ij)
et par suite:

a12 + a3i se aï3 + a24e a14 + a23 g(Xx + X2 + X3 -f X4) ;

les sommes des carrés d'arêtes opposées sont égales et le tétraèdre
est orthocentrique.

Le tétraèdre orthocentrique est caractérisé par l'existence de
quatre nombres X2 X3 X4 tels que

aij — a(% + X.)

Il en résulte que les aires des quatre faces sont données par les
formules :

a (X2X3 + X3 X4 + X4X2) etc.,

ce qui exige que les paramètres ü.. aient les expressions suivantes :

4cüi2 G~ ' X3X4 etc.

L'Enseignement mathém., 33me année, 1934. 91
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On a enfin la condition

36V2= o«-X1XtXIXI2r '
H

La condition de rencontre des hauteurs d'un tétraèdre
quelconque

(Ax H) iL
0^12 0*13 0*14

est
£012 • £034 0*13 ' 0*24 £014 * £023 î

elle exige que soit de la forme p ^ (xi avec quatre
paramètres ce qui revient à prendre, avce les notations
ci-dessus:

4 £012 C ^-3^4 •

Dans ces conditions, si les coordonnées barycentriques de
l'orthocentre H sont (H^) avec SHi 1, on devra poser:

avec:
a3 36V2 HIH2H3H4

36 V2 a3 • XiX2X3X4

16. — Forme spéciale de Véquation cubique pour les tétraèdres

orthocentriques. — Considérons le produit

/ G \mi / a \2 / 0 \m3
Il (^co — mx 0ij • (œ — ra2 02j • — m3 03j

avec des paramètres g et 6^ non précisés pour le moment. L'équation

0 s'écrit
a a

v m{
—^ MCD Gmi®i

^ '

Mco3 — £co2 + âco — <31 0
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avec

-T • S 0x7(1! (m, + m3 + m4)

S jJj- • Sm.1((?l37?l3 e2 03 + 777-3 '% 03 04 + "'4'»2 6462)

(7^
dv — j?i1m2jn3 7?z4 S 02 03 04

Elle est identique à celle donnant les moments d'inertie
centraux du quadruplet (/?q) si les conditions suivantes sont
vérifiées simultanément :

z»hmi [°(ei + 0j) — 41 0 '

\ S m2m3?7îi [c>2 (02 03 -f 03 04 -f 04 02) — 4A4] 0

4S 02 03 04 • • 36 Y2

Ces conditions sont remplies quelles que soient les masses mi
si le tétraèdre est orthocentrique avec 0^ —

Ainsi donc — et c'est encore une propriété caractéristique
des tétraèdres orthocentriques — Véquation en oo ^ aux
moments centraux planaires d'inertie dans le cas d'un quadruplet
disposé aux sommets d'un tétraèdre orthocentrique est identique ci

Véquation donnant les maximum et minimum de la jonction
suivante II (co) :

17. — Une propriété analogue est à signaler pour la géométrie
plane. Pour un triangle quelconque, on aura à considérer l'équation

aux maximum — minimum du produit:

n 1:0
M ~/:''' • (w_"¥ß?) • '

a, ß, y sont les masses placées aux sommets du triangle ABC;
M a + ß A y, la masse totale; 2S; I M«;p cotgA.
q cotgB, r cotg C; a2 a (q+ r), etc. Toutes ces formules
sont analogues à celles relatives au tétraèdre orthocentrique.
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18. — Formules spéciales au tétraèdre orthocentrique. — Les

calculs de la Géométrie des masses, en coordonnées bary-
centriques, se présentent généralement sous une forme simplifiée
lorsque le tétraèdre de référence est orthocentrique. Nous poserons

en introduisant quatre paramètres oq

oq -j- 0Cj 4 0^12 ==:: OC3OC4 etc.

les coordonnées de l'orthocentre H seront B.1R2R3H.4::

oc4 :=: oc2 H2 := 0C3 H3 oc4 H4 - h

Hx + H2 + H3 + H4 1

^ai
Pour le volume V du tétraèdre fondamental:

a1a2a8-oc4 36Y2h ;

Q V3 9 V2
Ai Hx (1 — HJ aj„

Les hauteurs htdestétraèdres:

i h
K

«i Hjl'l - H4)

La distance MM' de deux points M(a:i) et M'(x-) est généralement

dans le cas du tétraèdre orthocentrique

MM'2 Soq.fA^)2

2^=1, 2^ 1, A xi*ixi-~xi.

En particulier, la distance d'un point quelconque M de

l'espace à l'orthocentre H prend la forme :

HM2 — h +2 oqaij 2^ 1;.
le rayon p de la sphère conjuguée est défini par la relation

p2 - -h;
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l'équation de la sphère conjuguée est:

S oc^l 0

La formule donnant la distance r — HM d'un point
quelconque M à l'orthocentre est donc

r2 — p2 Socix\

Distances de l'orthocentre aux sommets Ai du tétraèdre :

HA2, a. - Ä

Soit a le rayon de la première sphère des douze points, dont le

centre est le centre G de gravité du tétraèdre homogène:

GH2 a2 + P2 GH =i OG

ocx + oc2 à as A* a4 — 16 a2

S a{- 48a2

Si R est le rayon de la sphère circonscrite au tétraèdre de

centre 0:

ÖH2 4 (oc2 + p2) R2 + 3p2 ÖG2 oc2 + p2 R2 — 3 a2

R2 r-- 4 oc2 + p2

S HÄ- 4 R2

Les coordonnées Oi du centre de la sphère circonscrite 0
sont définies par les équations

S 04 1 H{ + ÖJ y
19. — Avec les notations précédentes, l'équation cubique aux

moments d'inertie centraux I pour un centre des masses Ti est
celle qui donne le maximum ou le minimum du produit:

H (I - m^i
c'est-à-dire l'équation :
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Sous cette forme —; spéciale aux tétraèdres orthocentriques —

il est manifeste que les racines sont réelles; elles sont séparées par
les nombres mi oq.

Les moments principaux centraux étant I1? I2, I3, on a pour
le tétraèdre orthocentrique :

M (Ii + Ia + I8) M • 2 tfqoq — 2 oqm* ;

M(IiI2 + Ms -f I3I1) + m4) ;

M^Iglg 36Y2m1m2m3mi

Pour que l'ellipsoïde central d'inertie en T soit une sphère,
il faut que la quadrique conjuguée au tétraèdre, de centre T
soit une sphère: ce qui exige que le tétraèdre soit orthocentrique
et que T soit l'orthocentre H. Pour mi Hf, l'équation cubique
a bien une racine triple I h.

Dans un tétraèdre orthocentrique, l'équation du cercle de
l'infini se simplifie:

© SOTyfiq — Uj)* ^-[fl — n2]

en posant:
n sHiî(; n SHjBj

II 0 est l'équation tangentielle de l'orthocentre; D 0 est
l'équation tangentielle de la sphère conjuguée. La condition
pour que les uisoient les distances aux sommets du plan (w;)
est donc:

© 9V2 .0 — n2

La condition entre les cosinus directeurs hi^i d'une direction
quelconque avec les hauteurs du tétraèdre, est dans le cas des
tétraèdres orthocentriques

-A SoqS* 1

La perpendiculaire au plan ut est définie par les relations

ai sin — «j

ou
Ä8, H4(n — mj)
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les u{ satisfaisant à la condition ® 9V2 et les à la condition
A — 1.

Le centre des masses r(mi) associé à un plan donné uL est
défini par les relations:

Le moment d'inertie correspondant est, avec ces expressions
des masses,

1 ^miul P2

égal au carré du rayon de la sphère conjuguée.
Inversement, si les masses mi: quelconques, sont données, le

plan principal et central d'inertie, correspondant à la racine I
de l'équation cubique a pour équation:

20. — Cas particuliers. — F est dans le plan A1A2R.

m3 mt
ÏL ;

l'équation cubique admet alors la racine simple I h. Le plan
central correspondant est le plan:

ux 0 u0 0 — -j- —- 0
a3 oc4

X, X 4

IL H4 '

c'est-à-dire le plan A^H.
T est sur la hauteur A^H. Prenons:

m2 H2 m3 H3 mi H4 ;

racine double I h\ racine simple: I Les plans
centraux sont les plans passant par la hauteur et le plan mené par
T parallèlement à la base correspondante. La quadrique d'inertie
est de révolution autour de la hauteur.
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21- Propriétés des tétraèdres orthocentriques solides, homogènes,

açec deux arêtes opposées égales. — L'équation cubique en I, mise
sous la forme

l(m1 H- m2) m1m2(cc± + oc2) I (m3 + m4) — m3m4(oc3 + a4)
(I — 7WiOCi)(I — m2oc2) ^ (I — w3a3) (l-m4a4) ~ ~ ° '

admet la racine simple

I — ("I "f" CC2)mim2

m1 + m2
'

dans le cas particulier où le point T est sur la'surface cubique
d'équation

— + — — + ~m1 m2 _ m3 m4
2 2 *

12 #34

C'est une surface cubique, circonscrite au tétraèdre, passant
par l'orthocentre ; elle est, dans la transformation X4X- 1,
réciproque du plan d'équation

Xi + xa X3 + x4
2 2

ai2 ^34

parallèle aux arêtes et A3A4, mené par le point (a,) réci-
proque de l'orthocentre.

Ainsi sont mises en évidence, trois surfaces cubiques circonscrites

au tétraèdre orthocentrique auxquelles correspondent des
cas de résolution de l'équation cubique.

En particulier, si le tétraèdre orthocentrique a deux arêtes
opposées égales

a12 a34

la surface correspondante

J_ J_ _ _l_ 1

m1 m2 m3 mt

contient le centre de gravité G. D'où le résultat suivant:



Pi
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Lorsque, clans un tétraèdre orthocentrique, solide et homogène,
deux arêtes opposées sont égales, Véquation aux moments d'inertie
centraux de ce corps admet une racine rationnelle :

ai2 a34 M masse du tétraèdre

(c'est la valeur du moment central du tétraèdre régulier
d'arête a12).

22. — Application aux tétraèdres homogènes avec un trièdre
trirectangle. — Dans le cas d'un tétraèdre OABC, trirectangle
en 0,

OA a OB b OC c

l'équation de l'ellipsoïde central par rapport aux axes
rectangulaires parallèles à OA, OB et OC est:

3 [b2 + c2) X2 '+ 3 (c2 + a2) Y2 + 3 (a2 + b2) Z2

+ 2bcYZ + 2c«ZX + 2 ab XY —

Prenons une densité telle que M 80. L'équation en S de
l'ellipsoïde prend la forme:

T3 A (2 a2 b2 + 2 b-c2 + 2c2a2 — 3 a4 —3 b4 ~ 3c4) t
+ 2 (b" -f- c a") (c2 + a~ — |2j (a2 -j- b2 — c2) 0

en posant:
S 2 (a2 + b2 + c2) — t.

Sous cette forme, lorsque deux arêtes opposées sont égales
(par exemple c2 a2 -f ô2), l'équation a bien une racine rationnelle

t 0, S 4c2, conformément au théorème précédent.
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