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270 HENRI LEB

t —- 7) et t + 7) ne dépasse pas s. En faisant tendre tj vers zéro,

on obtient un ensemble mesurable formé par la réunion de ceux

qui correspondent aux valeurs positives de vj et à la même valeur
de s; c'est l'ensemble des points t, x pour lesquels les valeurs

limites de X (t')quandt' tend vers t différent au plus de s.

Faisant enfin tendre s vers zéro, et prenant la partie commune à

tous les ensembles précédents, on obtient l'ensemble des points

t, x pour lesquels la fonction X (<') est continue pour t' f;
il est mesurable, c.q.f.d.

Cette mesure est donc nulle, c'est-à-dire qu'il est presque sûr

que la fonction X t)estpresque partout continue. Il est même

presque sûr qu'elle n'admet pas d'autres discontinuités qu'une
infinité dénombrable de points de discontinuité de première

espèce; je ne puis que renvoyer pour ce point à mes mémoires

cités plus haut, sa démonstration, assez délicate, ne me semblant

pas pouvoir de la même manière être simplifiée par l'application
du théorème de Fubini.

SUR LA MESURE DES GRANDEURS 1

PAR

Henri Lebesgue, Membre de l'Institut (Paris).

VI. — Grandeurs mesurables.

84. — Le programme de la première classe de l'Enseignement

secondaire, la classe de Sixième, comporte un chapitre: Mesure

des grandeurs, notion de fraction. Le programme de la dernière

classe de l'Enseignement secondaire, celle de Mathématiques,

prévoit ce même chapitre: Mesure des grandeurs. D'une classe

à l'autre le point de vue devrait être très différent et à cause

de l'âge des élèves et parce qu'il devrait s'agir de notion pratique

en Sixième, de notion abstraite en Mathématiques.

1 Voir L'Enseignement mathématique, XXXIe année, p. 173-206. — XXXIIe année,

p. 23-51. — XXXIIIe année, p. 22-48; p. 177-213.
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Aucune difficulté pour ce qui est de la Sixième; on apprend

aux enfants ce que c'est qu'un tiers, un quart, trois cinquièmes

en découpant en parts des galettes, les enfants comprennent

parfaitement et s'intéressent en général beaucoup à cette partie
de l'enseignement. Au contraire, pour ce qui est de la classe de

Mathématiques, les difficultés sont considérables, si bien qu'il
arrive qu'on escamote purement et simplement le chapitre ou

qu'on se replace exactement au même point de vue prélogique

que dans la classe de Sixième.

Il est certain, au contraire, que le chapitre a été conçu comme

fort important; c'est à lui qu'on a l'habitude de renvoyer, par
exemple quand, de la comparaison des volumes de deux

parallélépipèdes rectangles ayant deux dimensions communes, on passe

à celle relative à deux parallélépipèdes rectangles quelconques.

Il devrait donc résoudre les difficultés logiques pour préparer
toutes les applications. Ce chapitre a été incorporé à l'Arithmétique

à cause des extensions de la notion de nombre qu'on y
rattachait, mais ce rattachement s'impose aussi, parce que

l'Arithmétique est la plus primitive et la plus purement logique
des parties des mathématiques, si l'on veut donner au chapitre

sur la mesure des grandeurs un aspect purement logique. Mais

alors se pose la question de la définition logique des grandeurs.
Dans la pratique, les professeurs ne donnent aucune définition;
ils indiquent des exemples de grandeurs: surfaces, volumes,

poids, quantités de chaleur et des exemples de notions qui ne

sont pas des grandeurs: vitesses, températures, potentiels, etc.

Il est clair que cette façon de faire, qui est celle connue sous

le nom de méthode directe dans l'enseignement des langues

vivantes, suppose la notion de grandeur antérieurement acquise

par la pratique journalière, par les connaissances physiques,

par le bon sens, et qu'elle ne peut prétendre qu'à en faire
connaître la dénomination. De sorte que, quand on renvoie du
chapitre sur les volumes, par exemple, au chapitre sur les grandeurs

pour y trouver les éclaircissements généraux, comme celui-ci ne
fait concevoir les grandeurs en général que par analogie avec les

volumes, on commet un cercle vicieux. Quelle est donc la
difficulté à vaincre pour préciser logiquement la notion de grandeur
Elle est toute métaphysique et de même nature que celle ren-
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contrée pour le nombre. De même qu'on recommandait de ne pas
confondre le nombre et le symbole qui le représente, on veut
distinguer entre grandeur et nombre mesurant la grandeur, on
veut même se servir de la grandeur pour élargir la notion de

nombre, arriver aux fractions et aux nombres plus généraux.
Il s'agit donc de définir la longueur, la surface, le volume, ou
plus exactement une notion comprenant longueur, surface,
volume, sans parler de nombre.

De là deux attitudes: ou bien on se réfugie dans la Métaphysique;

ou bien on recommence à définir à l'occasion des
grandeurs l'égalité, la somme, le produit, etc., bref^ on refait la théorie
du nombre sans oser prononcer ce mot. On connaît bien cette
seconde attitude, c'est celle à laquelle j'ai déjà fait plusieurs fois
allusion et qu'on utilise, par exemple, quand on parle du rapport
de deux segments considéré comme n'étant pas un nombre.

De la première, nous avons une manifestation bien curieuse dans
la recommandation faite par G. Darboux, ce géomètre éminent,
à J. Tannery, cet esprit critique si aiguisé: essayer «de tirer
tout ce que l'on pouvait de la vieille définition une grandeur
est tout ce qui est susceptible d'augmentation et de diminution ».

Ainsi, il faudrait créer une théorie qui s'appliquerait à la fois

aux volumes et à l'ambition, à la température et à l'appétit,
au budget de l'Etat, à la fertilité du sol, à l'intelligence, au
niveau de la Seine, à l'étonnement, etc., et en particulier à la
grandeur du nombre qui mesure une grandeur. Autant dire que
la vraie difficulté serait de trouver quelque chose qui n'appartienne

pas à la catégorie des grandeurs qui ne soit, à aucun égard,
susceptible ni d'augmentation, ni de diminution. Pour qu'une
étude soit possible, il faut se restreindre; certes, le mot grandeur
est couramment employé par les mathématiciens dans des sens

très généraux et très divers: il arrive que tout nombre soit
dénommé grandeur et, cela n'étant pas encore suffisant, à côté
de ces grandeurs scalaires on considère d'autres grandeurs dont
les grandeurs vectorielles sont les plus simples; mais, quand on

parle de théorie des grandeurs, le mot grandeur a un sens plus
restreint. Pour éviter les confusions, on a imaginé des dénominations

telles que: grandeur directement mesurable; seulement il
faudrait préciser à quoi s'applique de telles dénominations.
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85. — On déclare généralement que, pour qu'il y ait grandeur
directement mesurable, il faut qu'on puisse parler d'égalité et
de somme et l'on cite comme rentrant dans la catégorie de ces

grandeurs les masses, car on peut parler de masses égales, d'une
masse somme de deux autres, mais on écarte les températures
parce que, si on parle de températures égales, on ne parle pas
d'une température somme de deux autres. Remarquez que rien
n'empêcherait d'en parler, de dire que 30° et 40° font 70°, que
toutes les fois qu'il s'agit de nombres on peut parler d'égalité
et de somme, ce que l'on veut dire c'est que la somme de deux
températures est sans importance physique. Mais quelle importance

logique cette constatation peut-elle avoir Evidemment
aucune et on ne saurait baser la définition logique des grandeurs
sur l'intérêt physique que présentent les notions dans l'état
actuel de la science. Au reste, est-il vrai que les sommes de

températures sont sans importance physique; quand on parle
de 40° centigrades on note, on étalonne une différence de

températures entre un corps et la glace fondante; de même, on se

sert d'une différence de températures quand on calcule
l'allongement que subira un rail de l'hiver à l'été. Et qui se sert de

différences, se sert par cela même de sommes; en fait, quand on
dit que 40° centigrades font 313° de température absolue on a
effectué une addition de températures. De même, on additionne
des vitesses, dans la composition des mouvements, par exemple,
on soustrait des potentiels, car on n'utilise jamais que des
différences de potentiels, etc. Bref, le critère indiqué, qui ne pouvait
avoir aucune portée logique, est sans aucune signification. Nous
le retrouverons cependant tout à l'heure, mais sous une forme
précisée; l'examen que nous venons d'en faire ne prouve en
effet qu'une chose, c'est qu'il n'est ni clairement conçu, ni
nettement exprimé et non pas qu'il est sans base.

De toute cette critique, retenons surtout que la difficulté
étant causée par l'attitude trop métaphysique adoptée, nous
devons essayer de la méthode qui nous a réussi dans le cas des
nombres, des longueurs, des aires, des volumes; nous avons
renoncé à la distinction entre le nombre métaphysique attaché à
une collection et le symbole qui le représente, entre la longueur
métaphysique, le nombre métaphysique qui la mesure, le symbole
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qui représente ce nombre, et de même pour les aires et volumes;
nous avons cherché à définir directement les nombres symboles,
seuls importants en mathématiques, laissant a d'autres le soin
de s'occuper des problèmes métaphysiques qui ne sont pas de
notre compétence. Et, puisque tout le monde est d'accord pour
voir dans les longueurs, aires, volumes, des types parfaits de

grandeurs, nous aurons surtout à rechercher ce qui est commun
dans ce que nous avons dit sur chacune de ces notions. C'est ce

que nous allons faire, supposant donc que le chapitre sur les

grandeurs en général vient après ceux sur les longueurs de
segments, aires de polygones, volumes de polyèdres ou du moins
après certains de ceux-ci.

La notion que nous préciserons n'englobera pas toutes celles
auxquels s'appliquent les différents sens donnés au mot grandeur;
nous savons qu'il faut savoir se restreindre et nous ne nous
proposons nullement d'atteindre la plus grande généralité
possible, mais seulement une extension qui ne diminue pas la
portée qu'on entend actuellement donner au chapitre sur la
mesure des grandeurs.

86. — Examinons donc quelles sont les parties communes aux
diverses définitions des chapitres précédents et, puisque les

masses physiques sont aussi considérées comme des types
parfaits de grandeur, nous retiendrons celles de ces parties qui
peuvent être transposées au cas des masses. La longueur d'un
segment ou d'un arc de cercle, l'aire d'un polygone ou d'un
domaine découpé dans une surface, le volume d'un polyèdre ou
d'un corps ont été définis comme des nombres positifs attachés
à des êtres géométriques et parfaitement définis par ces êtres,
au choix de l'unité près; c'était la condition a. Le cas des masses
nous conduit à poser cette première partie de la définition, qui
sera composée de deux parties a) et b).

a) Une famille de corps étant donnée, on dit qu'on a défini pour
ces corps une grandeur G si, à chacun d'eux et à chaque partie de

chacun d'eux, on a attaché un nombre positif déterminé.

On rappellera le procédé qui a permis de déterminer le nombre
en donnant un nom à ce nombre, à cette grandeur: longueur,
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volume, masse, quantité de chaleur, etc. ; on dit aussi que l'on a

mesuré la longueur, le volume, etc. Le procédé physique de
détermination ne permet en réalité d'atteindre un nombre qu'à
une certaine erreur près; il ne permet jamais de discriminer un
nombre de tous ceux qui en sont extrêmement voisins. On imagine

donc, comme nous l'avons fait dans le cas du procédé de

mesure de la longueur d'un segment, que le procédé est
indéfiniment perfectible jusqu'à conduire à un seul nombre, entièrement

déterminé.
La famille des corps envisagée variera d'une grandeur à une

autre; tous ces corps pourront être assimilables à des segments
de droite dans certains cas, dans d'autres à des arcs de courbes,
dans d'autres encore à des domaines superficiels, dans d'autres à
des parties de l'espace; même, dans les enseignements moins
élémentaires, on pourra considérer des portions d'espaces à plus
de trois dimensions ou de variétés plongées dans de tels espaces.

87. — Le cas des masses montre que nous ne devons pas
songer à généraliser la condition y) des chapitres précédents; à
deux corps géométriquement égaux pourront correspondre
deux nombres différents comme mesure de la grandeur G pour
ces corps. Par contre, la condition ß) est généralisable et elle est
essentielle :

b) Si l'on divise un corps C en un certain nombre de corps
partiels Cx, C2, Cp, et si la grandeur G est, pour ces corps, g d'une
part, glr g2, gp d'autre part, on doit avoir:

g — gx -f g2 + ••• A gv •

Cette condition précise celle que nous avons critiquée plus
haut: on doit pouvoir parler de la somme de deux grandeurs.

Dans tout ce qui précède nous avons laissé au mot corps un
caractère imprécis analogue à celui donné auparavant au mot
domaine; il est clair que, en géométrie ou en physique théorique,
on pourrait préciser le sens logique donné à ce mot. En géométrie,
en particulier, on pourra donner au mot corps un sens plus ou
moins large, par exemple celui d'ensemble ou de figure; seulement

il faudra, dans chaque cas, avoir défini ce qu'on appellera
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un partage de la figure totale en parties. Même, la grandeur
pourrait ne pas être attachée à des données de nature géométrique

mais à des données de nature plus variée. Ici, l'examen
des corps assimilables géométriquement à des domaines découpés
dans l'espace, ou sur des surfaces, ou sur des courbes nous
suffira.

La famille des corps est d'ailleurs assujettie à une condition
qu'on peut laisser sous-entendue dans l'enseignement élémentaire,

mais dont la nécessité, au point de vue logique, va apparaître
à l'occasion de la démonstration de l'unique théorème qui, avec
la définition posée, constitue toute la théorie des grandeurs.

88. — Lorsque deux grandeurs G et Gx sont définies pour la même
famille de corps si, pour tous les corps pour lesquels G a unemême
valeur quelconque g, Gx a une même valeur gl7 entre g et gx existe
la relation

gi kg

k étant une constante.
Pour démontrer la propriété précédente, comparons les

nombres g et gy attachés à un corps G aux nombres y et yx
attachés à un corps T choisi comme repère, n étant un entier
quelconque, déterminons l'entier m tel que

m ^ g ^ m + 1

n ~
y n ' '

et partageons le corps G en m corps partiels pour lesquels G a
une même valeur g' et T en n corps partiels pour lesquels G a
une même valeur y'. On a

g mg y ny g' ^ y

le signe ne convenant que dans le cas où il convenait initialement.

Si l'on n'est pas dans ce cas, nous pouvons diminuer chacun
des m corps partiels constituant G de façon à obtenir un corps
pour lequel G a la valeur y' ; en d'autres termes, on peut remplacer
les m corps constituant G par 2m corps dont m donnent chacun
à G la valeur y'. Ces m derniers corps et les n qui constituent F
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donnant tous à G la même valeur y', donnent à Gx une même
valeur y^ et on a:

\ ' gt ^ m
gi ^ mTi r Y, — n^i ^ Si —

le signe ne convenant que dans les cas où il convenait initialement.

Appliquant ce résultat au rapport

1 < A
g m + 1

on trouve

fi ^ gi rn + 1

n yx n '

1 _ 8L
Y Yi

1
< —

n

Et, puisque n est un entier quelconque, on a:

11 11 k
§ Y

89. Le théorème est démontré; mais, au cours de la démonstration,

on a employé des décompositions des corps en corps
partiels dont la possibilité ne résulte pas des hypothèses a) et b).
Je ne crois pas qu'il y ait un inconvénient quelconque à faire,
dans 1 enseignement, cette hypothèse supplémentaire sans le dire
explicitement; mais les professeurs doivent savoir que a) et b)
sont logiquement insuffisantes.

L'hypothèse supplémentaire pourrait être formulée ainsi:

c) La famille des corps pour lesquels est définie une grandeur
doit être assez riche pour que tout corps de la famille puisse être
réduit à un point par diminutions successives, sans sortir de la
famille et de manière qu'au cours de ces diminutions la grandeur
décroisse continuement de sa valeur primitive à zéro.

On remarquera que, en ce qui concerne l'aire, les polygones
plans forment une telle famille de corps. Que la famille plus
vaste de domaines que nous avons appelés les domaines quar-rables satisfait aussi à la condition c) pour la grandeur aire. La
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nécessité d'une condition telle que c) apparaît ainsi en relation
avec les difficultés qui nous ont obligés à nous restreindre à

certains domaines pour l'étude de l'aire ou du volume.

90. — Une autre observation que les professeurs doivent
avoir faite, mais qu'il est inutile d'expliciter dans les classes,
c'est que la condition b) peut être en partie illusoire. Considérons
une famille de corps F constituée par la famille F± des arcs d'une
circonférence Cx et par la famille F2 des arcs d'une circonférence
C2, différente de Cx. Aux arcs de F1 attachons leur mesure prise
à la façon du deuxième livre de la Géométrie à l'aide d'un arc
unité Ux de Cx; aux arcs de F2 attachons leur mesure à l'aide
d'un arc unité U2 de C2. Il sera correct de dire que tous ces
nombres constituent une grandeur définie pour les corps de la
famille F ; mais, en réalité, on aura là deux grandeurs définies

respectivement pour les corps de F1 et pour les corps de F2.

Toutes les fois qu'une grandeur est définie pour tous les corps
d'une famille F et que cette famille F peut être divisée en deux
familles Fx, F2 sans corps commun et telles que chacune d'elles
contient aussi les parties des corps qui appartiennent à F qu'elle
contient, alors la condition b) est illusoire en ce sens qu'elle a
effet sur Fx et sur F2, mais n'a sur F d'autre effet que ceux sur
Fx et F2. S'il est correct de dire que, par exemple, les longueurs
des arcs de courbes à tangentes continues sont des grandeurs
attachées à ces courbes, on fixe mieux la portée de b) en disant

que les longueurs des divers arcs d'une courbe à tangentes
continues sont des grandeurs.

Remarquons que les choix arbitraires de Ux et U2 auraient pu
être faits dans l'exemple précédent même si les rayons de Cx

et de C2 avaient été égaux. Lorsqu'il s'agit de longueurs au sens

du chapitre V, et non plus de mesures au sens du deuxième livre
de la Géométrie, les arcs U1 et U2 de même longueur 1 sont

égaux; on s'est, en effet, imposé la condition y). En ce qui
concerne les grandeurs géométriques, c'est-à-dire satisfaisant à la
condition y), b) et y) peuvent être réunies en cet énoncé: Un

corps C qu'on peut diviser en corps égaux respectivement à des

corps Cl7 C2, Gv a comme valeur G de la grandeur la somme

gi + g2 + ••• + gp des valeurs de la grandeur pour Gx, C2, Cp.
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On peut aussi, si l'on veut, convenir de donner de nouveaux
sens aux mots « diviser un corps », convenir que C est divisé en
C1? C2, Cp ou encore que G est la somme de ces corps et conserver

l'énoncé b). Il y a là l'origine d'extensions de la notion de

grandeur, que je me borne à signaler, et qu'on obtiendrait en
donnant au mot « diviser » des sens divers. On pourrait aussi
convenir que la grandeur, au lieu d'être un nombre positif, est
tout autre être mathématique pour lequel l'addition aurait été
définie.

L'examen de ces généralisations sort de mon programme, mais
il était utile de les signaler pour bien marquer ce que la notion
envisagée seule ici a de volontairement étroit.

Voici maintenant des observations qu'il conviendrait de faire
noter aux élèves: la longueur de la hauteur de la pyramide n'est
pas une grandeur attachée à la pyramide, mais est une grandeur
attachée au segment hauteur; l'aire de la surface d'un polyèdre
n'est pas une grandeur définie pour la famille des polyèdres, mais
l'aire d'une partie de la surface d'un polyèdre est une grandeur
définie pour les parties de la surface considérées comme corps;
la hauteur suivant ox d'un parallélépipède rectangle dont une
arête est parallèle à ox n'est pas une grandeur attachée au
polyèdre, mais elle en serait une si tous les polyèdres étaient
découpés par des plans perpendiculaires à ox dans un même
prisme rectangle indéfini.

Ainsi, un nombre est ou non une grandeur suivant le corps
auquel on l'attache; il n'y a pas identité nécessaire entre la
famille des corps pour lesquels il est défini et la famille de ceux
pour qui il est une grandeur.

91. — Lorsque deux grandeurs satisfont aux conditions du
n° 88, c'est-à-dire quand elles sont définies pour la même famille de

corps et que la valeur de l'une g détermine l'autre gx, les deux
grandeurs sont dites proportionnelles.

Le théorème démontré prouve que du fait que g± est fonction
de g-> gi f (g), cette fonction a la forme g1 kg. Il n'existe
donc pas de grandeurs inversement proportionnelles avec le sens
précis que nous avons donné au mot grandeur, ni de grandeurs
dépendant 1 une de l'autre d'une autre façon que proportionnelle-
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ment. Bien entendu deux nombres peuvent être liés autrement

que proportionnellement, mais alors l'un au moins d'entre eux
n'est pas une grandeur; si tous deux, sont des grandeurs, la
relation se réduit à la proportionnalité. Or la famille des

grandeurs est vaste; elle comprend, nous l'avons vu, des nombres
intéressant la géométrie, la physique et aussi des nombres

relatifs à des questions économiques, comme le prix d'une
marchandise, le temps nécessaire à sa fabrication, etc. ; d'où le

grand nombre de proportionnalités qu'on rencontre.
On remplacera des raisonnements un peu douteux ou franchement

inadmissibles par des raisonnements corrects en démontrant

que l'on a affaire à des grandeurs. Pour nous borner à des notions

purement mathématiques, énumérons les grandeurs suivantes:

longueurs des segments d'une droite, longueurs des arcs d'une

courbe, aires des domaines d'un plan, aires des portions d'une

surface, volumes des parties de l'espace, mesures des angles,

mesures des arcs d'une circonférence, mesures des angles solides,

mesures des parties d'une sphère, temps pris par un mobile à

parcourir les segments de sa trajectoire, variations de la vitesse

d'une extrémité à l'autre d'un tel segment.
Que ces nombres soient des grandeurs, cela est évident pour

les deux derniers et nous l'avons démontré pour les premiers;
les seuls qui exigeraient des raisonnements, que j'omets, sont

les mesures, vérifiant les conditions: a), ß), y), d'angles solides

et de parties d'une sphère.
Les proportionnalités entre ces grandeurs, quand elles existent,

sont alors de preuve facile. D'abord il peut arriver qu'elles soient

affirmées par la question: mouvement dans lequel le mobile

parcourt des espaces égaux dans des temps égaux; alors la

longueur parcourue et le temps de parcours sont deux grandeurs

proportionnelles attachées aux arcs parcourus ; de même, dans le

mouvement pour lequel la vitesse croît de quantités égales dans

des temps égaux, l'accroissement de vitesse est proportionnel ù
l'accroissement du temps.

Dans d'autres cas, il arrive que les opérations de mesure d'une

grandeur conviennent, pas à pas, pour une autre grandeur, § 21,

proportionnalité des mesures d'arcs de circonférences aux angles

au centre. Ce serait aussi le cas pour les mesures des parties d'une
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sphère et celles des angles solides sous lesquels ces parties sont

vues du centre.

92. — Notons encore que, chaque fois qu'on a prouvé qu'une
grandeur est entièrement déterminée, au choix de l'unité près,

par des conditions a), ß), y) pour une certaine famille de corps,
on a démontré que deux grandeurs attachées à ces corps et
satisfaisant à a), ß), y) sont proportionnelles. Nous verrons dans

un moment qu'il y a intérêt à énoncer ce truisme mais, auparavant,

notons le cas où les corps ne dépendent que d'un
paramètre de grandeur; alors, dès qu'on se donne la valeur g d'une
grandeur G attachée à un corps, ce corps est déterminé en

grandeur; donc toute autre grandeur géométrique Gx attachée à

lui est déterminée. G et Gx sont proportionnelles ; ce cas est celui
des arcs de cercles et des angles au centre, par exemple.

Considérons une grandeur géométrique g attachée à un angle
polyèdre, la mesure de cet angle, par exemple; sa valeur ne
suffira pas pour déterminer l'angle en grandeur, à cette valeur
correspondront au contraire une infinité d'angles.

A ce même angle, attachons le nombre:

/\ /\ /\h A + B -f C 4 — (n — 2) tu

/\ /\ /\
n étant le nombre de ses angles dièdres et A, B, C, leurs
mesures en radians; chaque angle dièdre étant compté vers
l'intérieur de l'angle polyèdre.

Si l'on décompose un angle polyèdre C en deux autres Cx et C2,

on voit de suite que l'on a h h1 + h2 entre les valeurs de h pour
ces trois corps. De là résulte que si l'on décompose C en trièdres,
h est la somme des nombres attachés à ces trièdres. Pour le cas
d'un trièdre, h est positif, donc il est toujours positif. C'est donc
une grandeur; de plus c'est une grandeur géométrique.

Or, les raisonnements que j'ai omis,, et qui sont analogues à
certains de ceux qui nous ont conduits à la notion d'aire plane,
montrent qu'une grandeur géométrique attachée à un angle

L'Enseignement mathéni., 33me année, 1934. 19
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polyèdre est entièrement déterminée, au choix de l'unité près;
donc g kh. Avec une unité convenable,

/\ /\ /\
g A + B + C + ;— (n — 2) tu ;

c'est le théorème d'Albert Girard, § 74.

Legendre a démontré, sans utiliser l'axiome d'Éuclide, qu'entre
les angles d'un triangle plan on a l'inégalité

/\ /\ /\7r — (A -f B "f C) — 0

d'où, pour tout polygone plan à sommets

/\ /\ /\K (n — 2) 7T — A — B — G ^ 0

Il est évident que hx est une grandeur géométrique attachée
aux polygones plans ou est nulle. Si, raisonnant autrement que
nous l'avons fait, nous avions, comme il est possible, établi
l'existence de l'aire des polygones sans utiliser l'axiome d'Euclide
et montré qu'elle était entièrement déterminée à l'unité près,
on devrait encore conclure : ou la proportionnalité de hx et de l'aire
quand lfix est non nulle, c'est le cas de la géométrie lobatchwes-
kienne; ou que lfix est nulle, c'est le cas de la géométrie
euclidienne.

93. — L'intérêt théorique, tout aussi bien que pratique, de la
notion de grandeurs proportionnelles étant ainsi mis en évidence,
je remplacerais ce qu'on dit ordinairement sur les grandeurs
prétendues proportionnelles à plusieurs autres par ceci:

Soit un nombre g déterminé par plusieurs autres x, y, z, t et

supposons que, lorsqu'un seul de ces derniers nombres varie,
g varie proportionnellement à lui, alors on a:

g G xyzt
C étant une constante.

-En effet, soient g0, x0, y0, z0, t0 un autre système de nombres
associés; introduisons les systèmes associés

§i 5 % i Vo j ». g% % i y > > gs j > y » z} •
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On a:

d'où

ir — _L <3 2 - Ï_ Kx — A g_

go h g1 Vo <3 2 Z0 <33

g ^ xyzt X
g0

•u> yoh h

La démonstration suppose toutefois que les systèmes auxiliaires
de valeurs données à l'ensemble des variables ne sortent pas de
la famille F de ceux pour lesquels g est définie; cette condition
n'est pas indispensable, mais il est indispensable que l'on puisse,
sans sortir de F, passer de xQl yQf % t0 à chaque x, y, z, t de F en
ne faisant jamais varier qu'une variable et qu'il y ait des

systèmes x, y, z, t pour lesquels les variables soient toutes
différentes de leurs valeurs initiales xm y0, z0, t0. Il est donc
nécessaire que chaque variable puisse varier seule, ce qui exclut,
par exemple, le cas où x serait constamment égal à y et le cas
où x et y seraient deux grandeurs proportionnelles.

Le théorème précédent est un théorème élémentaire d'algèbre;
il n'y s'agit pas de grandeurs. Rendons-nous en compte d'abord
sur l'exemple classique des parallélépipèdes rectangles. Pour la
famille partielle formée de ceux de ces corps qui ont deux arêtes
de longueurs données, la longueur de la troisième est une grandeur

proportionnelle au volume et nous pouvons donc appliquer
le théorème d'algèbre à la famille totale des parallélépipèdes
rectangles avec, pour g, le volume, pour x, y, z, les longueurs
des arêtes. Mais .x, y, z ne sont pas des grandeurs pour cette
famille totale (conf. § 90).

Plus généralement, quand on peut appliquer le théorème
précédent à des nombres x, y, z, £, g l'un au moins d'entre eux
n'est pas une grandeur pour la famille des corps sur laquelle on
raisonne, car: les seules grandeurs g définies pour une famille de

corps F qui soient déterminées par des grandeurs x, y, z, t relatives
à F, sont celles qui sont proportionnelles à l'une des grandeurs x
ou y, ou z, ou t. Démontrons cela en supposant, comme plus haut,
que 1 on peut passer d un corps de F à un autre par une suite
de modifications ne faisant varier chacune qu'une des grandeurs
M y, t et telles que, pour les familles partielles de corps ainsi
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obtenues, la condition c) soit bien vérifiée. Alors, dans une telle
modification, ne faisant varier que £, par exemple, ou g est constant,

c'est-à-dire ne dépend pas de £, ou g est proportionnel à t.
Si g dépendait effectivement de x, y, z, t il serait donc de la
forme Cxyzt d'après le théorème précédent; or ceci est impossible

puisqu'on n'a

G (£ + x) (t) + y) (Ç + z) (t + t) G Ç tj Ç t + G xy z t

pour aucun système de nombres positifs, g ne dépend donc pas
effectivement des quatre variables x, y, z,t; ni, de même, de trois
ou de deux d'entre elles; ce qui démontre la proposition.

Dans les applications de ces théorèmes on ne saurait être trop
prudent; il convient en particulier de s' assurer que la famille F
est assez vaste pour que la.condition relative au passage d'un corps
à Vautre soit bien vérifiée. Contrairement à ce qu'on est tenté
d'admettre, il arrive fréquemment qu'elle ne l'est pas, notamment

quand les corps constituant F ne dépendent que d'un
nombre fini de paramètres. C'est pourquoi l'énoncé et la démonstration

classiques du prétendu théorème sur les grandeurs
proportionnelles à plusieurs autres sont inadmissibles; en effet,
si, dans de tels cas, on appliquait les théorèmes ci-dessus on
pourrait arriver à des conclusions bien paradoxales.

Par exemple, considérons une courbe matérielle dont la
densité linéaire croisse constamment quand on se déplace dans un
certain sens. La longueur l d'un arc et sa masse m suffisent à le

déterminer; donc toute autre grandeur g attachée à cet arc est
déterminée par l et par m et, d'après ce qui précède, serait
proportionnelle à l ou à m. Ainsi, la longueur de la projection de

l'arc sur un plan donné, la quantité de chaleur nécessaire pour
élever cet arc de 1° seraient déclarées être proportionnelles à la
longueur ou à la masse de l'arc

(A suivre.)
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