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ÉTUDE RATIONNELLE

DU PROBLÈME DE LA TRISECTION DE L'ANGLE

PAR

M. d'Ocagne, Membre de l'Institut (Paris).

Généralités.

t. — Une construction géométrique n'est dite rigoureuse que

si elle peut s'effectuer en toute rigueur au moyen d'un nombre

fini de droites et de cercles tracés sans tâtonnement, ce qui n a

lieu, comme on sait, que si le problème traité ne dépend que

d'équations linéaires ou résolubles par radicaux carrés.

Si cette condition n'est pas remplie, on ne peut avoir recours

qu'à une construction approchée avec laquelle l'erreur commise

soit négligeable, construction qui peut alors être considérée

comme pratiquement exacte.

En fait, même, vu les petites erreurs accidentelles inséparables
de tout tracé de figure géométrique, de telles constructions ne

sont guère moins satisfaisantes que des constructions
rigoureuses.

Mais, parmi ces constructions approchées, j'ai eu l'occasion
de faire remarquer1 qu'il y avait lieu d'établir une distinction
essentielle.

Les unes, exemptes de tout tâtonnement, permettent d'obtenir,
à défaut du résultat théoriquement exact, un résultat approché
n'en différant que d'une quantité, de grandeur déterminée,

pouvant être tenue pour négligeable. Ce sont ces constructions

que j'ai proposé d'appeler normales.

1 Revue générale des sciences, t. XLIV, p. 7; 1933.
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50 M. D'OCAGNE

Les autres, au contraire, comportant un certain tâtonnement
dans la mise en place d'une des lignes qui y interviennent
(tâtonnement, d'ailleurs, d'une réalisation toujours rapide et

que peut faciliter l'emploi d'une courbe d'erreur), aboutiraient,
si leur exécution était affranchie de toute erreur, au résultat
théoriquement exact. Je dis de celles-ci qu'elles sont anormales.

2.— Il va sans dire que s'il s'agit d'un problème d'ordre
transcendant, il ne peut être question que de constructions normales.
C'est le cas, par exemple, pour la quadrature du cercle, ou, plus
généralement, pour la rectification d'un arc de cercle quelconque.
On voudra bien, à cette occasion, me permettre de rappeler que

j'ai fait connaître1 de ce dernier problème une solution normale,
d'une extrême simplicité, fournissant en pratique toute la
précision que l'on peut désirer.

Pour les problèmes d'ordré algébrique, on a le choix entre des

solutions normales et des solutions anormales; c'est notamment
le cas du problème de la trisection de l'angle, auquel va être
consacrée cette étude.

La trisection de l'angle.

3. — Il convient de remarquer tout d'abord que l'on peut
se borner au seul cas des angles aigus, attendu que, s'il s'agit
d'un angle obtus, il suffit, pour en avoir le tiers, de retrancher
le tiers de l'angle aigu supplémentaire de l'angle de 60° dont
la construction est rigoureuse.

La plupart des solutions proposées pour le problème de la
trisection sont du type anormal, à commencer par celle, dite de

Nicomède, la plus classique, qui peut s'énoncer ainsi: si un
cercle, de rayon r quelconque, ayant pour centre le sommet 0 de

Vangle AOB à trisecter, coupe les côtés de cet angle en A et B 2, la

droite issue de B qui coupe le cercle en G et la droite OA en D, de

1 Nouvelles Annales de Mathématiques, 4me série, t. VII, p. 1; 1907. Voici cette cons-

truction: si le point C de la corde AB est tel que AC AB et que le rayon OC coupe

2
l'arc AB en D, on a très sensiblement corde AD - arc AB.

2 Le lecteur est prié de faire la figure.
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telle sorte que CD r, est parallèle à la trisectrice cherchée. En

effet, les triangles OBC et COD étant isocèles, on a les égalités

d'angles AOB OBD + ODB, et OBD OCB 20DB, d'où

AOB 30DB.
J'ai, pour ma part, fait connaître1 une propriété fort simple

se traduisant par une autre construction anormale: si la trisectrice

issue de 0 coupe en E la corde AB du cercle et en F le cercle de

centre A et de rayon AO, on a EF — OA. En effet, si l'on pose

AOB 03, les angles AOF et AFO sont égaux à|-, OAB et

OBA à-~"—y, on en déduit que OAF n — puis que

EAF « OAF — OAB ~ ~ et que AEF tt

— EOB — OBA y + y — 2y ; donc EAF AEF ; par suite,

le triangle FAE est isocèle et EF AF ~ r.
Mais les solutions les plus intéressantes, au point de vue du

tracé, sont les solutions normales; nous allons en examiner ici
quelques-unes particulièrement dignes de remarque.

4. — Rappelons tout d'abord qu'il n'est ici question que
d'angles où compris entre 0 et 90°. Toute construction normale

appliquée à un tel angle fournit un angle 0 présentant par

rapport à ^ un certain écart s, d'ailleurs supposé négligeable,

mais qui peut se déterminer mathématiquement et dont la
considération conduit à une nouvelle distinction à observer

parmi ces solutions normales: suivant que, pour co variant de

0 à 90°, e croît constamment à partir de 0 jusqu'à une certaine
valeur S, ou s'annule pour où 0 et où 90°, en présentant un
maximum dans l'intervalle, la solution est dite à écart ouvert
jusqu'à <S,: ou à écart fermé. Notre attention va d'abord se porter sur-

deux solutions à écart fermé, puis sur une troisième à écart ouvert.

Première solution normale (a écart fermé).

5. — Marquons sur l'axe Ox les points 0", 0' et A tels qu'en
suivant le sens positif on ait 0"0' O'O OA 1, les

1 Revue générale cles sciences, t. XLIV, p. 625; 1933.
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perpendiculaires à Oxmenées par ces points étant dénotées
®"y, O 'y,Oy, Ay(comme si y désignait ,1e point à 1' oo dans la
direction perpendiculaire à Ox), et menons par les points O, O'
O les droites OB, O'B, 0"BX B2 (qui coupe OB en Bx et O'B
en B2) i faisant respectivement avec 0« les angles w,

Le lieu du point B est, bien entendu, le cercle T de centre 0,de diamètre O'A. Cherchons le lieu du point Bx.
Si nous plaçons l'origine en 0", les droites 0BX et 0"BX ont

respectivement pour équations

y [x— 2) tg (o et a; tg

Comme on sait que

tg« Lt
1~3ts2ï

il en résulte, par élimination de co, pour le lieu cherché, l'équation

x{x2 + y2) — 3*2 + y2.= 0 (1)

1 Les points Bi et Ba dont il est ici question se confondent, à un écart tout à faitinsensible près, avec les points désignés sur la figure par B' et B", qui seront définis
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cubique circulaire rx bien connue, dite trisectrice de Maclaurin.
Symétrique par rapport à 0#, elle se compose d'une boucle
tangente en A à Ay, ayant en 0" un point double où les tangentes
sont inclinées à 60° sur Ox, et se prolongeant au-delà par deux
branches infinies ayant pour asymptote commune la droite
symétrique de 0'y par rapport à 0".

6. — Avant d'aller plus loin faisons voir très simplement que
cette cubique est une cissoïdale, ce terme désignant une courbe
dont, pour un certain pôle, le vecteur est la somme algébrique
des vecteurs d'une droite et d'un cercle, ou la différence
algébrique de ces vecteurs (ce cas se ramenant immédiatement au
précédent si l'on prend la symétrique par rapport au pôle, soit
de la droite, soit du cercle intervenant dans la définition).

Pour démontrer la propriété en question, il suffit de remarquer

que, puisque par définition BxOA 31^0 "A, on a
CPI^O 2B10//A. Mais si CPBj coupe O'î/ en P, le triangle
POO" étant isocèle, on a aussi OPBx 2B10,/A, d'où résulte
que le triangle OPB1 est isocèle comme ayant ses angles à la base
égaux. Si maintenant 0'^ coupe en Q le cercle de centre 0 et
de rayon 00", le triangle 00"Q est également isocèle; il s'ensuit
que 0"P BXQ et que 0"B1 — 0"Q — 0"P, ce qui montre
que la cubique rx est une cissoïdale pour la droite 0'y et le cercle
de centre 0 et de rayon 00".

7. — Mais, puisque nous nous bornons aux seuls angles
inférieurs à 90°, nous n'avons à considérer que l'arc de allant du
point A au point Lx où 0y est coupé par la droite issue de 0"
inclinée à 30° sur 0"#, qui n'est autre que la tangente 0"H
au cercle T.

Si on effectue (notamment par le procédé résultant de la
dernière propriété indiquée) le tracé de cet arc ALX, on ne peut
manquer d'être frappé de son analogie d'aspect avec un arc de
cercle, ce qui conduit à comparer cet arc de la cubique avec
l'arc de cercle V qui, partant du point A tangentiellement à Ayf
aboutit au point Lx.

Si l'on prend encore 0" comme origine des coordonnées, on a,

pour le point A, x 3, y 0, pour le point L1? x 2, y » JL,
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et, si on appelle a l'abscisse du centre G' de I", l'équation de
ce cercle s'écrit

*2 + 2/2 — 2 ax +6 a — 9 0 (2)

Il suffit d'exprimer que cette équation est satisfaite par les
coordonnées de L, pour en tirer a ce qui donne pour le
rayon du cercle

r 3 - « J > (3)

d'où résulte que

C'O — 1.
6

Finalement, le cercle I" a pour équation

3a;2 + 3 y1— lia: + 6 0. (4)

Si l'on représente par / le premier membre de cette équation,
la pente de la tangente en tout point de V est donnée par

% _ _ .ô/_ _ 6a; — 11
dx ö x ô y 6 y

Elle prend, au point Lx, la valeur

^y„_ V3"
'• dx 12

Comparons aux valeurs (4) et (5) de r et celles des mêmes
éléments (r désignant alors le rayon de courbure) pour la cubique
Tj aux mêmes points A et L^.

L équation (1) de cette cubique donne

3 3a;2 + f- 6a; g 2 + 1) g 2 + 1)

et comme, en A, x 3, y 0, ~ 0, il vient, pour la valeur

1 II est clair, puisque le segment 0 'O pris comme unité de longueur est arbitraireque l on pourra prendre pour sa mesure un nombre de millimètres multiple de 6 parexemple 30 mm., ce qui donnera C'O 5 mm. '
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absolue de r en ce point,

*
Ö 2/2

»/ ^2/ _
9

_ (6)

Quant à la pente en L1? elle est donnée par

dy Sx2 + y2-— 6x 3

dx 2y(x + 1) 9

La différence des r, évalués en (3) et (6), est donc égale à
7 9 2

- — —, ou 77; — 0,041; celle des pentes, évaluées en (5) et (7),
D O 4:0

à — ou 0,048. Si petites sont ces différences

que l'on peut en conclure que, de A en Lx, l'arc du cercle F 7, partout
extérieur à l'arc de la cubique rx, est tout près de se confondre

avec lui. On pourra donc, sans grande erreur, substituer le

premier au second, et, au lieu de prendre le point de rencontre Bx
de OB et de rx, prendre celui B7 de OB et de T', pour le joindre à

O" en vue de déterminer la direction de la trisectrice cherchée.

8. — Pour mieux se rendre compte du degré de précision
ainsi obtenu, on peut calculer la valeur exacte de l'angle

B'0"A f= 0, ainsi construit, et la comparer à celle de^-. Si

l'on pose tg oo £, l'équation de OB, toujours avec l'origine en
O", est

y t(x — 2) (8)

Remplaçant y par cette valeur dans l'équation (4) de T', on a

3 (1 + C) x2 — (\2t2 + 11) a; + 12 £2 + 6 0

Le point B7 étant celui des points de rencontre de OB et de T7

qui a la plus grande abscisse, il faut, dans l'expression tirée de là
pour x, prendre le radical avec le signe +, ce qui donne

1212 + il + a/48 t2 + 49
X ~ 6 (1 NC)

* (9'
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Remarquons en passant que, si l'on pose 6 (1 + t2)
peut mettre cette formule sous la forme plus simple

x
2u~~ 1 + V^ + l

u

Ayant calculé x et y par (9) et (8), on en tire

tg0 f '

et, par suite, 0.

Faisons ce calcul pour co 45°, valeur moyenne entre les
limites 0 et 90°. Ici, t 1, et l'on trouve

x 2,737 y 0,737
d'où

0 737
tgö=T737 et 0 15° 4'15".

Par suite,
to

•6 0 — j 4'15"

Cet écart est inférieur à 6', le dixième de degré, que l'on peut
regarder comme l'extrême limite de la précision qui puisse être
atteinte dans le dessin, qui même, sans doute, ne l'est effectivement

jamais; on est donc en droit de le tenir pour strictement
négligeable. Ainsi se trouve justifiée la construction normale,
non encore proposée, semble-t-il, qui peut s'énoncer ainsi:

AOSi OC' — et 00" 2A0, et que Von trace le cercle F' de

centre C et de rayon C'A, la droite joignant 0" au point de rencontre
B' de OB et de V est parallèle à la trisectrice de Vangle AOB.

DEUXIEME SOLUTION NORMALE (Â ÉCART FERMÉ).

9* ~ Cherchons maintenant le lieu du point B2 d'intersection
des droites O'B et 0" Bl7 respectivement inclinées à ^ et ~ sur
r\ ' 2 3
Ox, dont les équations sont

», on

(9 bis)

y (x— l)tg^ et tgj
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En égalant deux expressions de tg o>, on a, d'autre part,

r<) n m M
2 tg 2 3tg3 ~tg 3

1-tg2^ l-3tg2|
L'élimination de co entre ces trois équations donne, pour le

lieu cherché, l'équation

(,x2 + y2 — 2 a;)2 — (x2 + y2) 0 (10)

Elle définit un limaçon de Pascal1 T2, symétrique par
rapport à Ox qu'il coupe aux points 0"(x 0), 0' (x — 1) et

A(x 3). En 0' et A les tangentes sont 0 'y et Ay; en 0",
point double, les tangentes sont, comme pour la cubique V1 du

n° 5, inclinées à 60° sur 0"x. Ce limaçon coupe, en outre, 0 "y

aux points y — ± t. On sait d'ailleurs qu'il constitue la podaire
du cercle de diamètre 0"A pour le point 0".

10. — Mais, comme dans le cas de la cubique r\, nous n'avons
à nous occuper que de l'arc de cette quartique T2 allant du point A
au point L2 correspondant à où — 90°, donné par l'intersection
de la droite 0' L, à 45° sur 0;r, et de la droite 0" H, à 30° sur
0#, qui n'est autre que la tangente menée de 0" au cercle T.

Ces deux droites ont respectivement pour équations

y x i et y ——:
V3

d'où l'on tire, pour les coordonnées de L2, les valeurs

7 /.) 7 7 t"}- \///3
x ky 3 y k avec k — ^ — •

Remarquons en passant qu'il résulte de là que

x2 + y2 4 k2 (l + V3")2 1

1 Du nom de son premier inventeur, non pas Biaise Pascal mais son père Etienne
qui a fondé lui-même sur l'emploi de cette courbe un procédé de trisection de l'angle,

2 yO ' Battendu que, l'angle [xO"Bi étant égal aux ~ de xO'Bx, on a O'BiO" ——-
o 3
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c'est-à-dire que 0"L2 1 + ^3, et, puisque 0" H ^3,

HL2 1

Ici encore, on est conduit à comparer à l'arc de quartique T2
allant de A en L2, l'arc du cercle tangent en A à et aboutissant

en L2.

L'équation de ce cercle étant encore de la forme (2) du n° 7,il suffit d'écrire qu'elle est satisfaite par les coordonnées ci-dessus
du point La pour en tirer

_ 3 -y/3"
K

2 6 *

3
Or, — est l'abscisse du milieu I de 00', projection de H sur

cette droite, et la longueur de On voit donc que le
centre C" de ce cercle Y" est tel que

C", T *

Quant à son rayon C"A, ou r, il est donné par

CI + IA | (11)

L'équation du cercle T"peutdès lors s'écrire

3 (x2+ y2)— (9 .— s/z)x — 3 -\/3 0 (12)

La pente de la tangente en chacun de ses points est donnée par

dy __6a— (9 — \/3~)
dx 6 y

Elle prend au point L2 la valeur

ä ~ f(3-V3). (13)
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Cherchons maintenant les mêmes éléments (r en A, ~ en L2)

pour la quartique T2. De l'équation (10) on déduit

—î — 4 a;3 + 4 xy2 —• 12 a;2 •— 4 y2 + 6 a;

~ — ky2 + 4a9y — 8xy — 2y

Ö2/
-—g 12 y* 4* 4r — 8 a; — 2
by2

If
ö

de courbure r est donnée par

En A, où x 3, y 0, ~ 0, la valeur absolue du rayon

ö/ ö2/ 9
r ^ : F7 5

• <14>

Quant à la pente en L2, elle résulte de

dy 8y/% k2—• 20 A + 3 -\/3
dx 8 k2— 4k — 1

avec k —donc k?
2

^ette substitution

donne

dy2 + V3 4 -|- 3

dx ~
1 + 2y/% ~ îï ' J

La différence des rayons r de T" et T2 en A, donnés par (11)
et (14), a pour valeur

9 9 + y/%
5 (S

°'°14

celle des pentes, données par (13) et (15),

4 + 3 y/%6— 2 ViT 54 — 31 y/%
O +

3 ^ > —= 0,0093

Ces différences étant sensiblement moindres que celles obtenues
dans le cas de la cubique font immédiatement apparaître
que la substitution du cercle T" à la cubique T2, de A à L2,
comportera une plus grande approximation que celle du cercle T'
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à la cubique rr. En réalité même, cette approximation est
surprenante, comme on va voir.

11. C est sur cet emploi du cercle T ", au lieu de la quartique
r2, que repose la très remarquable solution du problème de la
trisection due à M. Kopf et à laquelle M. Oscar Perron a consacré
récemment une étude approfondie1, dérivant, au reste, d'une
tout autre méthode que celle qui est ici suivie.

Pour évaluer le degré de précision donné par cette solution,,
on peut procéder comme dans le cas du cercle V (n° 8), c'est-à-
dire, en prenant le point de rencontre B" de O'B avec'le cercle
T calculer l'angle B"0"A, désigné par 0, pour voir de combien,
il diffère de ^.

Si 1 on pose ici tg — t, on a pour l'équation de la droite-
O'B

y t(x 1) (16)

^Remplaçant y par cette valeur dans l'équation (12) du cercle-
T", on obtient l'équation

3(1+ t2) x2 — (612 + 9 — yT) x + 3 {t2 — <y/W) 0

dont la plus grande racine est l'abscisse du point B". Elle a pourvaleur

*
6'2 + 9 — -y/B" + 1/24(3 + -y/iV + 6(14 + 3a/¥)

6(1 + J)<17)

qui, si 1 on pose, comme au n° 8, 6 (1 -f- u, prend la forme

X
M + 3 — V3 +1/4 (3+ vD + 6 (2 — vD

U
1 : • (17

x et y étant calculés au moyen de (16) et (17), on a 0 par
tg 0 .puis s 0 —. Mais, par de laborieux calculs»
autrement et d'ailleurs habilement conduits, M. Perron a dressé

1 Sitzungsberichte der Bayerischen Akademie der Wissenschaften (1933, p. 439) Cettenote renvoie à celle de M. Kopf (Ibid., 1919, p. 341).
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le tableau des valeurs de s pour co variant de 12 en 12°, de 0 à 90°.

Yoici ce tableau:

0° 0 36° 4",23 72° 14",76
12° 0",18 48° 8",58 84° 8",47

24° l",38 60° 13",08 90° 0

Au surplus le maximum de s, qui a lieu pour co — 69° 57' 40",
a pour valeur 14",912.

Cette étonnante précision montre que la solution de M. Kopf
est incontestablement celle qui serre de plus près la solution
rigoureuse non réalisable, au point même que, non en théorie
sans doute, mais en fait, elle peut en être prise pour l'équivalent.

Redisons en quoi elle consiste: I étant le milieu de OO' et
IHIC" égal à — si la droite O' B coupe en B" le cercle de centre G"

et de rayon C"A, la droite 0"B" est, sans aucune erreur appréciable,

parallèle à la trisectrice de Vangle AOB.
Mais, quel que soit le très grand intérêt théorique de cette

curieuse solution normale, on peut en imaginer d'autres plus
simples qui, sans aboutir à d'aussi minimes écarts, n'en
comportent pourtant que de pratiquement négligeables. A ce point
de vue, la solution suivante semble mériter une mention spéciale.

Troisième solution normale (a écart ouvert).

12. — Rappelons tout d'abord qu'une solution normale est
à écart ouvert si l'écart s entre l'angle 0 construit et ^ croît
constamment avec co variant de 0 à 90°. Si la valeur atteinte par
s pour co as 90° est acceptable, la solution est entièrement
valable. Sans qu'il en soit ainsi, s peut atteindre une limite
acceptable pour une valeur X de co comprise entre 45 et 90°;
si d'ailleurs il n'en était pas ainsi, la solution serait à rejeter.
Supposons donc que X satisfasse à la condition requise; alors,
lorsque co est supérieur à X, il suffit de trisecter le complément
de co, qui est, lui, inférieur à X, et de retrancher le tiers obtenu
de l'angle de 30°, construit rigoureusement.
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13. — Tirons maintenant par le milieu M de l'arc AB (donné

par la parallèle OM à 0' B) la parallèle à la trisectrice de l'angle
AOB. Elle a pour équation, si l'origine est, cette fois, prise en 0,

(y sin —^ cos -- (x — cos sin ~

L abscisse de son point de rencontre avec 0#, pour y Or
est donnée par

/<o CO \ w

a -!ülizâ)_ sin6.
_

1

sin| 2sin^ cos^ 2cos^ô 6 6 6

L angle — étant au plus égal à 15°, son cosinus diffère peu de
1 unite et cette abscisse n'est que de peu supérieure en valeur
absolue à j.Defaçon plus précise, le point obtenu sur Ox n'est,
au-delà du milieu I de 00' (dans le sens de 0 vers 0'), qu'à une
distance S de ce milieu I donnée par

CO

1 — COS —
8 1

Le plus grande valeur, pour ^ =15°, est

8 0,01765

grandeur pratiquement négligeable. Si l'on prend, dès lors, pour
direction de la trisectrice celle de la droite IM, le tiers d'angle
approché 0 ainsi construit sera donné par

• to CO

Sjn x sin -
tg 6 i

2" + cos J2cos (30° + cos (30° — ^
Pour co 90°, cette formule donne 0 30° 21'41", donc un

écart de 21 ' 41 " qui ne dépasse le tiers de degré, c'est-à-dire les
20', que de l'41", quantité négligeable. Or, le tiers de degré
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constitue, pour la pratique ordinaire du dessin, un écart parfaitement

admissible. En tout cas, pour co 60°, l'écart n'est plus

que de 6' 14", environ le dixième de degré, grandeur absolument

négligeable; on est donc assuré d'avoir par ce moyen toute la

précision désirable en prenant pour la limite X définie au n° 12

la valeur 60°. Si même on admet pour X la valeur 45°, l'écart

correspondant tombe à 10", ce qui équivaut à une précision

de même ordre que celle donnée par le procédé Kopf.
Finalement, on peut dire qu'avec une précision suffisante

jusqu'à 90° et pleinement satisfaisante jusqu'à 60°, la droite

joignant le milieu I du rayon OO' au milieu M de l'arc AB

parallèle à la trisectrice de l'angle AOB.

Il ne semble pas possible de pousser plus loin la simplicité
de la constrution.

LES FAISCEAUX HOMOPONCTUELS DE COURBES

PLANES

PAR

M. d'Ocagne, Membre de l'Institut (Paris).

1. — Cette note a pour but d'attirer l'attention sur une notion
qui ne semble pas avoir encore été envisagée et qui peut donner
lieu à des exercices non dénués d'intérêt.

Si les courbes d'un certain faisceau (système simplement
infini) découpent sur toutes les tangentes d'une courbe (M) des

ponctuelles semblables entre elles, nous dirons que ce faisceau
est homoponctuel pour la courbe (M) appelée sa base. Si ce
faisceau est homoponctuel pour chacune des courbes qui le

composent, prise pour base, nous le qualifierons, par raison de

simplicité, d: autoponctuel, alors que le terme d'autohomoponctuel
eût sans doute été plus rationnel.
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