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SUR UN THÉORÈME DE COURNOT 153

/ Comme, d'autre part, le nombre des intervalles définis par (3)

est égal au nombre des fractions de (4), chacun de ces intervalles
contient une fraction de (4) et une seule. C. Q. F. D.

2. Démonstration de la première partie du théorème II de Cournot.

Soient 5 le nombre des épreuves, p la probabilité de l'événement

A, q 1 —p celle de l'événement contraire B. On sait

que la probabilité P (m, s) pour que l'événement A se réalise
m fois au cours de «9 épreuves est donnée par la formule

P (m, s) — pmqs-m >

ml (s — m)

Supposons, avec Cournot, que le rapport du nombre des événements

A à celui des événements B ou bien, ce qui revient au
' même, que le rapport / fréquence relative de A, demeure

constant, lorsqu'on multiplie les épreuves. Si ~ est la fraction

irréductible égale à ~, le nombre m parcourt la suite croissante

des multiples an de a et le nombre s la suite croissante des

multiples en de c (n 1, 2, 3, Posons 1 —/ — *=
c ~ a. Il

suffit de montrer que

P (a(n + 1) c(n + 1))
P (an en) '

-quel que soit n.
Or, le premier membre de cette inégalité s'écrit

(en + 1) (en + 2) (en + c) paqh
(an + 1) (an + 2) (an + a) x (bn + 1) (bn + 2) (bn + b)

et comme 1

Palb - It) \~j
il suffit de montrer que le rapport

(n+ !)(„ + I) (B + j)

(,» + i )(n+ (n +1)x(n + + |) (n + 1)

1 R. de Montessus, loc. cit., p. 53.

L'Enseignement malhém., 32e année; 1933.
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est inférieur à 1 ou à fortiori que le produit

» + lj(»+ ;) - (" +(S)est inférieur à

w + i)(n +1) -(n + a-^r)x (n + + î) - (* b-bA

(6)

Or le théorème d'arithmétique s'applique non seulement aux
suites (1), (2), (3), mais encore aux suites

(13

(23

(33

puisque c a + b et que a et b sont premiers entre eux.

A chaque nombre n + de (3'), sauf le dernier n +
C

- 1,

faisons correspondre le nombre de (1') ou de (2') qui est situé dans

l'intervalle (n + n + • A- chaque fraction de (5)

correspond alors un facteur plus grand de (6).
Donc (5) < (6) et la première partie du théorème II de Cournot

est établie.

+
1 2 a — 1

n n + — % » n +
a ' a a

+
1 2 b — 1

n 1 ' n + b ' ' n + b

+
1 2 c — 1

n n + — n +
c c c

Quant à la deuxième partie du théorème II de Cournot, je
n'ai pu la démontrer qu'en m'appuyant sur la formule somma-
toire d'Euler. Je ne sais s'il en existe une démonstration plus
simple et je me demande s'il serait possible de l'établir en partant
de considérations arithmétiques analogues à celles qui m'ont
permis de démontrer la première partie de ce théorème.

Octobre 1933.
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