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exemples fort intéressants à ce sujet et des théorèmes très instructifs,
tandis que je me suis attaché à l'étude des prolongements analytiques
et des lignes de ramification.

Avant de terminer cet exposé, je voudrais vous citer un exemple
où le caractère multiforme d'un potentiel newtonien prolongé
apparaîtra avec toute la clarté et la précision nécessaires. Je laisse au
lecteur le soin de refaire le dessin.

Envisageons une couche homogène, comprise entre deux sphères
concentriques, puis une autre couche identique à la première, mais
occupant une position différente et telle que les deux cavités aient
une partie commune S. Les deux couches engendrent le même potentiel

constant dans la partie commune. Retranchons l'anneau commun
aux deux corps. Les potentiels des deux parties restantes sont encore
identiques entre eux dans S. Maintenant, sortons de S en évitant la
première couche et passant au travers de l'anneau retranché pour
aller jusqu'en un point M dans l'espace extérieur. Faisons de même
avec la seconde couche en traversant encore l'anneau mais dans l'autre
sens, pour aboutir au même point extérieur. Par ce procédé, l'on a
suivi la détermination physique du potentiel en évitant les masses
attirantes, mais, au point M les deux déterminations données doivent
différer, car en ce point, l'attraction de l'une des couches ne peut plus
coïncider avec l'attraction de l'autre. Voici donc un exemple où le
caractère multiforme du potentiel apparaît nettement. Les arêtes de
l'anneau sont quatre lignes de ramification de la fonction analytique
qui coïncide avec les deux potentiels newtoniens dans S. Et ces lignes
sont en même temps les arêtes des corps attirants.

Ce bref aperçu du problème inverse aura suffi, je l'espère, à vous
convaincre que la théorie des fonctions et la théorie du potentiel
newtonien ont encore de précieux services à se rendre.

Quoi qu'il en soit des interprétations que l'avenir réserve à la
gravitation, la loi de Newton sous sa forme si précise et si simple est
encore aujourd'hui pour les mathématiques une merveilleuse hypothèse

de travail et une source abondante de résultats nouveaux.

III. — Géométrie élémentaire et Topologie.

Résumé de la conférence de M. le prof. H. Hopf (Zurich).

Après un tracé approximatif des limites de la «géométrie élémentaire

» — figures accessibles à l'intuition, méthode indépendante des

procédés infinitésimaux — et un bref rappel du « Programme d'Er-
langen»1 de Klein, selon qui la topologie est l'étude des propriétés des

figures géométriques que n'altèrent pas les transformations biuni-

1 F. Klein, Ges. Math. Abhandlungen (Berlin, 1921), t. 1, p. 460 sq.
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voques et continues — « topologiques » — (de là vient qu'il est si

difficile, dans la confection d'un dessin ou d'un modèle, de commettre
une erreur tolopogique), il fut question de quelques propriétés
topologiques connues de figures élémentaires, découvertes et étudiées par
Euler: le théorème d'Euler sur les polyèdres (dans toute division de

la sphère en polygones, le nombre de sommets et de faces est égal au
nombre d'arêtes plus deux)1 et le problème « des ponts de Königsberg

»2, ainsi que ce théorème analogue, qu'on retrouve sous
différentes formes en géométrie amusante: « 5 points sont donnés dans le

plan; il est alors impossible de les unir deux à deux par des chemins
de manière que ces 10 chemins n'aient aucun point commun, excepté
leurs extrémités communes. » Il y a quelque chose d'analogue,
semble-t-il, dans le fameux « théorème des quatre couleurs », encore
non démontré: «les pays de toute carte géographique, tracée sur le

plan ou sur la sphère, peuvent être colorés, avec quatre couleurs au
plus, de manière que deux pays qui ont une ligne frontière commune
ne soient pas de la même couleur »3, et cette analogie suggère
précisément d'en chercher la démonstration.

Il est remarquable, au sujet du problème des quatre couleurs, que
la solution d'une question aussi simple et même accessible au laïque
soit encore inconnue sans qu'on sache proprement où git la difficulté;
d'autre part, beaucoup d'autres assertions (et plus importantes) de topo-
logie paraissent si plausibles à l'intuition normale, qu'une démonstration

n'en est pas jugée nécessaire et qu'on accuse de pédanterie celui qui
les démontre; est-il donc vraiment indispensable, demande-t-on par
exemple, de démontrer complètement et avec tous les détails le
«théorème de Jordan pour les polygones», que tout polygone fermé
à n sommets partage le plan en deux régions; l'intuition saine ne
dit-elle pas déjà que ce théorème a lieu Deux arguments réfutent
cette accusation de pédanterie: d'abord l'intuition ne vous dit pas
que le théorème de Jordan est juste pour tout polygone, car vous ne
pouvez pas vous représenter un polygone à 1010 sommets; il y a lieu
de se méfier de la certitude intuitive; nous sommes loin de connaître
par l'expérience toute l'abondance des figures géométriques possibles;
c'est ainsi qu'avant la découverte du ruban de Möbius on ne pressentait

rien de l'existence des surfaces unilatères 4. En second lieu, une
démonstration ne doit pas seulement confirmer l'exactitude d'une
affirmation, mais elle doit aussi nous conduire aux racines du théo-

1 On trouve des démonstrations dans les livres suivants: Hilbert und Cohn-Vossen,
Anschauliche Geometrie (Berlin, 1932), p. 255 sq. et Rademacher und Toeplitz, Von
Zahlen und Figuren (Berlin, 1930), p. 55 sq.

2 On trouve une traduction allemande du mémoire en latin de Euler dans le recueil
de A. Speiser, Klassische Stücke der Mathematik (Zurich, 1925).

3 Cf. Hilbert und Cohn-Vossen, l. c., § 51, et Rademacher und Toeplitz, l. c.,
§ 12a.

4 Au sujet des surfaces unilatères, cf. Hilbert und Cohn-Vossen, L c., § 46.
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rème et nous apprendre à ranger le théorème particulier dans un
cercle de théorèmes plus généraux. Ainsi la démonstration du théorème

cité de Jordan 1 nous conduit non seulement à ses rapports avec
le théorème analogue dans l'espace (tout polyèdre fermé partage
l'espace) mais encore à la théorie si importante des « enlacements »

des polygones fermés dans l'espace 2; ces enlacements sont à leur tour
en relation avec le problème beaucoup plus difficile « des nœuds » :

« comment peut-on reconnaître si un polygone fermé P, donné dans
l'espace, n'est pas noué, c'est-à-dire si l'on peut construire un disque
polyédral limité par P qui soit l'image topologique d'un morceau de

plan limité par un polygone » Malgré les plus grands efforts, ce

problème n'est pas plus résolu que le problème des quatre couleurs,
mais son importance géométrique est beaucoup plus grande 3.

Tout cela fait partie de la topologie « combinatoire » ou «

algébrique » (dont l'édification systématique est due à Poincaré): les

figures sont formées par la combinaison d'éléments en nombre fini
(segments, triangles, tétraèdres, etc.) et les méthodes sont celles de

l'algèbre linéaire (matrices, groupes abéliens) 4.

La topologie combinatoire doit encourir le reproche d'une certaine
inconséquence (ce qui n'amoindrit pas ses mérites): son matériel
consiste en segments, triangles, etc. rectilignes; ses théorèmes traitent
de propriétés que n'altèrent pas les transformations biunivoques et
continues; or ces transformations privent en général les figures de
leur caractère rectiligne; la portée des théorèmes ne peut donc pas
être utilisée avec le matériel donné. Pour correspondre au contenu
des théorèmes topologiques, il faudrait un stock de figures qui
contienne avec une figure toutes ses images biunivoques et continues;
pour être tout de suite aussi radical que possible, le champ de figures
le mieux adapté serait celui de tous les ensembles de points.

Tel est le point de vue adopté par la topologie des ensembles. En
fait, on sait, depuis la fondation de la théorie des ensembles par
G. Cantor, qu'on peut émettre des jugements géométriques concrets
même sur des ensembles quelconques de points. Contrairement à la
manière de concevoir les figures en topologie combinatoire, les élé-

1 La démonstration fut esquissée dans la conférence; elle repose sur le fait suivant:
a étant un point non situé sur le polygone P, les rayons issus de a et ne passant pas par
un sommet de P coupent P ou bien tous en un nombre pair de points ou bien tous en un
nombre impair de points, a est dit point « extérieur » de P dans le premier cas, «

intérieur » dans le second cas. On démontre: deux points ai et a2 peuvent être unis par un
chemin qui évite P s'ils sont tous les deux intérieurs ou tous les deux extérieurs, et dans
ce cas seulement.

2 Cf. pour une première orientation Alexandroff, Einfachste Grundbegriffe der
Topologie (Berlin, 1932), en particulier p. 2-3 et p. 46-47.

3 Une monographie complète de la difficile théorie des nœuds est due à
K. Reidemeister, Knotentheorie (Berlin, 1932).

4 La brochure citée (i) de Alexandroff fournit une introduction à la topologie
combinatoire avec des perspectives sur des questions de la géométrie des ensembles
de points.
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ments sont maintenant les points seuls, chaque figure en contient un
nombre infiniL L'introduction des ensembles de points dans le champ
des recherches, qui entraîne un enrichissement de la géométrie
insoupçonné, n'a pas été provoquée seulement par les points de vue de

méthode indiqués et par l'obligation de viser à une généralité aussi

grande que possible, mais aussi par des problèmes d'autres disciplines
mathématiques; ainsi la frontière du domaine d'existence d'une
fonction analytique peut être par exemple un ensemble qui n'appartient

pas au matériel de l'ancienne géométrie.
Mais cette géométrie des ensembles de points mérite aussi la

qualification «élémentaire»: celle-ci ne concerne plus toutefois les figures
étudiées, mais bien la méthode d'étude; car les raisonnements propres
de la théorie des ensembles sont un outil extrêmement primitif, en

comparaison duquel les méthodes géométriques classiques sont des

appareils très délicats. Il est naturel que dans le domaine élargi de

la géométrie, une méfiance encore plus grande qu'avant doive être
réservée à l'intuition: dans le champ immense des figures se trouvent
les paradoxes les plus remarquables 2.

Dans cette géométrie élémentaire des ensembles, où les anciennes
figures rectilignes sont privées de leur place à part, le but est le
suivant: on démontre des théorèmes aussi généraux que possible, c'est-
à-dire valables pour le plus grand nombre possible d'ensembles —
(plus le théorème est général, plus la méthode est primitive) —, et
l'on reconnaît ensuite les anciens théorèmes de géométrie élémentaire
comme cas particuliers. Un exemple expliquera cette tendance; le
théorème suivant a lieu: « F et F' étant deux ensembles fermés dans
le plan, et F' étant une image biunivoque et continue de F, Y ensemble
F' partage le plan en autant de domaines que l'ensemble F. » Ce

théorème contient le théorème de Jordan non seulement pour les
polygones, mais aussi pour les courbes fermées quelconques sans point
double; car une telle courbe F' est en effet l'image biunivoque et
continue d'une circonférence F ; et pour une circonférence, il est
immédiat qu'elle partage le plan en exactement deux domaines.

Mais justement l'exemple de ce théorème montre aussi les limites
auxquelles est liée la tendance de la topologie des ensembles, du moins
encore aujourd'hui. Car le but visé ne serait naturellement atteint
que si l'on réussissait à démontrer le théorème cité pour les ensembles
par les seuls moyens de la théorie des ensembles, et à en tirer ensuite
comme cas particulier le théorème relatif au polygone rectiligne à
n sommets. Or on procède en fait dans l'ordre inverse: on démontre
d'abord le théorème de Jordan (et des théorèmes un peu plus géné-

1 Comme traité de la géométrie des ensembles, citons: K. Menqer, Kurventheorie
(Leipzig, 1933) et pour la théorie des ensembles elle-même: F. Hausdorff, Mengenlehre

(Berlin, 1927).
2 Cf. par exemple Alexandroff, l. c. p. 4, et Mexger, L c.
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raux) pour les polygones, et ensuite on étend les connaissances ainsi
obtenues, par des approximations, à des ensembles quelconques F et
F'. Les théorèmes de l'ancienne géométrie élémentaire n'apparaissent
donc pas seulement comme des cas particuliers des théorèmes de la
géométrie des ensembles, mais comme leurs bases. Telle est dans bien
des cas la situation actuelle, et cette constation ne doit pas diminuer
la valeur de la tendance de la topologie des ensembles. Au contraire:
par l'obligation de fournir des bases à la nouvelle géométrie des

ensembles, l'ancienne géométrie élémentaire a reçu un nouvel élan
de vie, et l'on est arrivé à des théorèmes d'un genre nouveau, extrêmement

intéressants même au point de vue de la géométrie élémentaire
pure L La valeur de la géométrie élémentaire est justement mise en
pleine lumière par ses relations avec la géométrie générale des
ensembles: les propriétés des figures spatiales, si compliquées soient-elles,
se présentent pour la plupart le plus clairement déjà sur les figures
simples, élémentaires.

(Traduction de M. G. de Rham, Dr ès sc. (Lausanne).)

i Un exemple est le théorème suivant de Sperner: Soit un triangle D subdivisé en
petits triangles dlt d2, dn de manière que deux petits triangles ou bien n'aient aucun
point commun, ou bien aient un sommet commun ou bien un côté commun; la
subdivision étant par ailleurs quelconque. Supposons qu'à chaque sommet du réseau ainsi
constitué corresponde l'un des chiffres 1, 2, 3 d'après la règle suivante: aux trois sommets

de D correspondent les trois chiffres distincts 1, 2, 3; à chaque sommet de l'arête
ij de D correspond l'un quelconque des chiffres i et j (ij — 12, 23, 31); à chaque sommet
intérieur à D correspond l'un quelconque des chiffres 1, 2, 3. Conclusion: il y a au moins
un petit triangle d^ aux trois sommets duquel correspondent les trois chiffres distincts
1, 2, 3. Démonstration: Abh. Math. Seminar Hamburg, VI (1928).
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