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326 W. MICHEL

et, d'une manière analogue, nous trouverions l'autre

4{*2){**} (a}{ c} '

Alors

{a}{è}{c}{d} 16{^} {é2} {£3} {*4}

et, en définitive,
S* {*i}{*a}{*sl{*4} •

Catanzaro, juillet 1932.

LA TRANSFORMATION w
1

\/Az2 + Bs + G

PAR

W. Michel (Berne).

I. — Introduction.

Toute fonction de deux variables complexes de la forme

l
vr

'y/Az'2 + Bz + G

peut être mise sous la forme

(i)

-J== (2)

v* — 1

par les transformations homothétiques des plans des z et des w

Dz' — B l'sjA
z IV ' T"" '

où nous supposons D \/B2, — 4 AC ^ 0.

Le caractère de la représentation d'une fonction n'est pas
modifié par une transformation homothétique. Nous pouvons
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donc nous borner à étudier la formule (2), qui est plus simple
à traiter que la formule (1).

II. — LA SURFACE DE RlEMANN POUR W
-\A" —1

w ne prend qu'une seule valeur aux points z1 +1, z2 —1,

z3 oo et à ces points correspondent respectivement les points
w1 w2 — oo, w3 =3 0 dans le plan des w. Pour tout autre
point du plan des z, w prend deux valeurs, égales en valeur
absolue, mais de signes contraires.

Considérons le plan des z comme étant constitué par deux

plans infiniment rapprochés l'un de l'autre. En deux points
opposés, la fonction w prendra deux valeurs ne différant que

par le signe. Aux points zu z2, z3, les deux valeurs de la fonction
sont égales. Ce sont donc des points de ramification de la fonction.
Reste à savoir si le plan des w est lui aussi composé de deux
surfaces.

Formons la fonction inverse

Vw2 + 1 -\/{w + i) (w — i) ,0.^ 3)
w w

Nous en déduisons immédiatement que le plan des w est
aussi double. Ainsi le double plan des z est transformé par la
fonction (2) en plan double des w. La transformation est conforme
en chaque point où l'on a

on a

dw S

dz -\/ (z~ — l)3

dw
dz

dw

et ^ ce ; (4

0 pour z3 co zA 0

dz ~ °° P0ur % + 1
> z2 — 1

Les deux surfaces de Riemann sont donc transformées de
façon conforme l'une dans l'autre à l'exception des cinq couples
de points

%1 t j =z 1 z3 co
5

0 z5 0

wx oo w2 co w3 0. w4 + i w- — i.
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