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QUELQUES EXPRESSIONS REMARQUABLES DE I’AIRE
D’UN QUADRILATERE INSCRIPTIBLE
DANS LE CERCLE?

PAR

Letterio Toscaxo (Messine).

1. Dans un mémoire intitulé Metrische Relationen am Sehnen-
vtereck (Archiv der Mathematik und Physik, zweite Reihe,
Siebenter Teil, 1889, pages 64-98) M. Otto ZIMMERMANN a
calculé la valeur de quelques éléments remarquables du qua-
drilatere inscrit et a exprimé les cotés et 'aire du quadrilatere
lui-méme en fonction de ces éléments.

Nous démontrons ici trois autres expressions de I’aire du qua-
drilatére insecrit, expressions qui se dégagent naturellement des
éléments introduits dans le mémoire en question, et nous don-
nons une démonstration plus simple d’une formule établie par
M. Zimmermann.’

2. Soit ABCD un quadrilatére inscriptible dans un cercle,
et tel que AB > GD et BGC > AD.
Si nous intervertissons les c6tés BC et CD, en posant BG' =

CD et C'D = BC, nous obtenons le nouveau quadrilatére
ABC'D, inscriptible dans le méme cercle.
Posons

AB=a, BC=2b, GCD
AC=7, BD=g, AC =h,

l
~
b
I
I3

1 Traduit de I’italien par A. PitTeET (Genéve).
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et appelons O, P, Q les trois points diagonaux obtenus par 'inter-
section des couples de droites (AC, BD), (AB, CD), (AD, BC).
Désignons par S l'aire du quadrilatere.
Posons en outre pour abréger:

(ab) = ab + cd , (ac) = ac + bd (ad) = ad + bc
fa}=—a+b+c+d, fb}=a—b+c+d,
{c}: a+b—c+d, {d}za—{—b—i—c——d.

Nous avons les relations:

o (ac) (ad) s __ lac) (ad) B2 — (ab) (ad)
P="ay » 7 g (ac)
tg = (ac) , jh=(ad), gh= (ad) ;
ad ab be _ _C_(_l v
AO:—h—*, BO=’—h—, CO—Z‘y DO*-h;
 d(ad) _ b(ab) _ b(ad) ___d{ab)
AP bo—'d), BP—b:’_d?’ GP———bg__dz’ DP_—b2—d2’
_ a(ed) __af(ab) _ _clad) L
M=w_e B=p—5, Q=u—5, DU=u_5;
168 = {aj{o}{c}{d} ;
. a’S . b*S ; _ S
aire ABQ = L BCP = g g2 Aire ChQ = PRl
i d*S
aire DAP = i

3. Soient donnés

le cercle (1) exinscrit au triangle QAB,
» oy (2) » » » PBC,
» »  (3)inscrit dansle »  QCD,
» oy (4) » » » PAD.

Ils touchent les c6tés AB, BC, CD, DA du quadrilatére respec-
tivement aux points H;, H,, H,, H,.
Posons AH, = m/, HB = m,, BH, — m,, H,C = m,,

CHy = m,, H,D = m,, DH, = m, H,A = m,.
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Nous avons les relations («)

af} {4

T et g T e+ g

I b{c} o b{a}

2206+ 4d)° 2 2(b+d)’ (@
c{d} , c{b}

s = 5Ta 1 o) T 2@ + o)

N C O

YT 2(b 4+ d) 2(b + d)

Ces mémes cercles (1), (2), (3), (&) touchent les cotés QA, PB,
QD, PA, respectivement aux points K;, K,, K, K,; et en posant
QK; = vy, PK, = v,, QK; = v;, PK, = v,, nous aurons les
relations (B)

a{c} o b{d} \ c{a} d{b}

N oa—0 T —a

Q
e

ca—q T —aq @

Soient donnés:

le cercle (b) inscrit dans le triangle QAB,
» »  (6)  » » oY » PCB,
» » (7)-exinscrit au » QDC,
» v (8) » » » PAD.

Ils touchent les droites AD, AB, CB, CD respectivement aux
points L, L,, Lz, L;; et en posant

QL, = v, Ply=1v, QLg=v;, PL, =y,

nous aurons les relations (38)

afey o dey L efey o a{d

Sh—d ® Ia—9g ““p—ag @
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4. Les cercles exinscrits aux triangles QAB, PBC, QCD, PDA,
ont pour rayon

Py == = 2-@——— r, — ————Ebs P — __2_C_S_._.__
1_(a—i—c){a}’ 2 (b—{—d}{b}7 ? (a —}—c){c}’
2dS
ry o= ——————— (v)
d){d}

et les rayons des cercles inscrits dans les triangles QAB, PBC,
QCD, PAD, sont

248 _2b8 . 2e8
TTaraly T ewa{e)’ U @ afa)
—— (v
(b + d){b}

5. A Paide des segments m;, my, my, my d’abord, et ensuite
a 'aide des segments m;, m;, m;, m;, M. Zimmermann donne
deux expressions assez compliquées de I'aire du quadrilatere.

Par contre, en prenant ensemble les segments m; et m;, (qui
du reste s’obtiennent par les mémes considérations appliquées
aux cercles inscrits et exinscrits) nous obtenons aisément une
formule simple et élégante.

En effet, on tire facilement des formules («)
{a} =20m +m) {0} =20m +my
{eh=20m+m), {4} =20m +m)
et par suite
{a}{b}{c}{d} = 16(my + ma) (my + ma) (my + m)) (my + m,)
82 = (my + ma) (my + my) (my + mi) (my + my)

D’une maniére analogue, on déduit des formules (B) et (B")
{af =200—v), {8} =200—0u),
{eb=200—w),  {d}=20,—),

{ad{o} {e}{d} = 1600 — %) (1 — v) [y — va) (s — va)
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et en définitive:

4 14 ’ 4
S = (v, — v3) (vl — Yy) (Vg — ‘/4) (\/2 — V) .

On déduit encore des formules (v) et (y')

28 28

r1+93={a}’ "2+P4:“{2€S}7 r3+912%, r4+92:@,

et par suite
16 51

(3o} {eHa

87 = (ry + pa) (1 + 79) (12 4 a) (P2 + 74)

(ry + p3) (py =+ 73) (ra + pa) (pe + 74) »

6. En désignant par ¢,, t,, t5, {,, les segments qui joignent le
point diagonal O aux points milieux des c6tés du quadrilatere,
nous avons la formule

s = (1} {u}{s} {u}

Nous donnons maintenant, de cette formule, une démonstration
plus simple que celle de M. Zimmermann. Par le théoréme sur
les médianes d’un triangle on a:

4ty = 2A0° + 2BO® — a? 4, = 2BO? + 2C0% — b° ,
/{tﬁ:: 2C0% 4+ 2D0O? — %, 4ti=2DOQ+2AO“’——d2,

et, en tenant compte des relations fondamentales du n° 2, les
égalités précédentes se transforment en:

B2 = a®(2b° 4+ 24° — B GhE = b*(2a + 2¢° — RY)
KRty = ¢*(20° + 2d° — BY) LR, = d?(2a2 + 2¢* — hY) .

D’ou il s’ensuit d’abord que

et ensuite que

bl aTe b+t btd
t,—1ty, a-—c’ ly—1t, b—d’
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Ces derniéres relations nous donnent

t, + 1 = Aa + ¢, (1) t, —t; = Aa —c) (2)
t + 1, =p(+d, (3) — 1t = p(b—d) , (&)
ou
y 2% 4+ 2d* — B* o 2a° + 2¢* — h*
7\ = 7 . WS == 5
4 h? ’ ‘ 4 h°

Effectuons maintenant les opérations (3) — (2), (1) — (&),
(2) + (3), (1) + (4), et nous aurons

{a}=—2a—o + (b +4d
{,} = Ma-+o—pb—d
{t,} = na—o +p(b+ 4
{t,}= e+ +pb—2

Multiplions la premiére et la troisiéme de ces égalités:

a{t,f{ta} = &p?(b + d)) —4¥(a — ) =

2a® + 2¢* — h? ., 20 4+ 24— R?
= h‘Z (b + d)-_—— kg (

(@ + &) (b + d)— (5 + d%) (o — 7] + (@ — o) — (b—d)* =

a—c¢)? =

Tl vo

== [a bd + ab®c + be*d + acd®] + (@ — o)’ — (b —d)? =

= 2(ab) (ad) + (@ — * — (b — d)* :

(ad) (ad)
(ac)

s{n} {6} =4(ac) + (a— 0 — (b — )’
=(a+c—(b—dP={b}{d}.

mais A% = et par conséquent

Nous aboutissons ainsi & la relation remarquable

s{t} {u} = (v} {a},
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et, d'une maniére analogue, nous trouverions 'autre
s{tnf{uy ={a}{ e}
{oj {3 {e{a} = 16{u}{tu}{u){u}

et, en définitive,

Alors

8 = {aj{ni{ui{s} -

Catanzaro, juillet 1932.

LA TRANSFORMATION w — —
vV Az + Bz + C

PAR

W. MicueL (Berne).

I. — INTRODUCTION.

Toute fonction de deux variables complexes de la forme

1

w = 1)
VAZ + Bz + G |
peut étre mise sous la forme
1
W= 2
N (2)
par les transformations homothétiques des plans des z et des w
Dz — B 24/A
SR M VR

ol nous supposons D = I/B2 — 4AC =0,
Le caractére de la représentation d’une fonction n’est pas
modifié par une transformation homothétique. Nous pouvons
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