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66 J. WOLFF ET A. DENJOY

Application a la cycloide ordinaire. — En considérant le cercle
entier de rayon R:
m=1, A=2xR?, (¢ =azR, §=2zR,
R2
— 2
y == B, re = 2 ’
1 R? 3

L’ordonnée du centre de gravité de I’aire totale de la boucle de
cycloide sera donnée par I’équation des moments statiques:

2Cy, + CR = 3Cy
d’ou =

1 3 5

SUR LA DIVISION D'UNE SPHERE
EN TROIS ENSEMBLES

PAR

Juiius Worrr (Utrecht) et Armand Densoy (Paris).

M. KaAroL Borsuk a démontré le théoréme suivant:

St une sphére a n dimensions est partagée en n ensembles de

points, alors au moins UN de ces n ensembles a pour diamétre le
diaméire de la sphére 1.

Nous allons donner une démonstration simple pour le cas
n=3.

1 Internationaler Mathematiker- Kongress, Zirich, 1932. Sektionsvortriage, Band II,
page 192. )
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1. — Démontrons d’abord le théoréme plus simple suivant:
supposons qu’on partage la surface S d’une sphére en un nombre
fini de domaines, coloriés en rouge, blanc et bleu, tel que I'en-
semble des frontiéres se compose d’un nombre fini de courbes y
fermées simples de Jordan. Convenons de plus qu'un point de
la frontiére de deux ou trois couleurs porte ces deux ou trois
couleurs. Alors S contient deux antipodes de méme couleur.

En effet, admettons pour un instant que ’assertion soit en
faute. Au moins une des courbes fermées » délimite un
domaine A simplement connexe et & une seule couleur, disons
blanche. Soit P un point de y, alors P est blanc et posséde encore
une autre couleur, disons rouge. Je dis que tout point de y est
blanc et rouge. Car dans le cas contraire y posséderait un point
limite de points blancs, de points rouges et de points bleus.
Ce point serait blane, rouge et bleu et aurait donc méme couleur
que son antipode. Construisons les antipodes des points de A. Ils
forment un domaine A’, limité par la courbe y’, antipode de y.
Or »', dont la courbe antipodaire est blanche et rouge, doit étre
bleue et intérieure & une bande bleue. Remarquons en outre
que A et A’ n’ont pas de point commun, car autrement S contien-
drait deux antipodes blancs. Colorions A en rouge, A’ en bleu.
La frontiére y disparait et aucune frontiere nouvelle n’apparait.
Comme dans la premiére division, S ne contient pas deux anti-
podes de méme couleur dans la nouvelle division. Continuons ce
procédé. Le nombre des courbes y diminuant toujours, nous
aboutissons & une division de S en deux couleurs par une seuie
coube y. Or, antipode de y aurait la troisiéme couleur. Cette
contradiction démontre le théoréme.

2. — Passons au théoréeme général. Soit S divisée en trois
ensembles E,;, E,, E;, rouge, blanc et bleu. Soit ¢ un nombre

positif. Divisons S par un systéme de grands cercles en un
~ nombre fini de domaines ¢, dont les diamétres sont tous plus
petits que . Dans chaque d, choisissons un point P, et attribuons
a d; la couleur de P,. Le coloriage résultant de S satisfait aux
conditions du théoréme précédent. On en conclut qu’au moins
UN des trois ensembles E;, E,, E; a pour diamétre une quantité
plus grande que 2R — 2¢, R étant le rayon de S. Par consé-
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quent, ¢ étant arbitraire, au moins UN de ces trois ensembles a
le diamétre 2 R.

Remarque. En réalité nous avons démontré par le raisonnement
précédent le théoréme plus général suivant:

Soit S une surface simple de Jordan, sur laquelle on a donné
une correspondance biunivoque et continue. St Uon partage S
en trois ensembles Ky, E,, By alors aa moins UN de ces ensembles
contient une suite P,, P,' de paires de points, tels que P, et P,’
tendent vers une paire de potnts conjugués dans la correspondance
donnée.

SUR L’EQUATION 23 + 33 = 23
PAR

F. J. Duarte (Geneve).

Le but de cette Note est de compléter un travail! que nous
avons publié récemment: Sur les solutions irrationnelles et
complexes de Déquation z" 4 y" = z", dans lequel nous avons

donné les formules suivantes pour le cas de n = 3:

. 26+s+\/_A—
= 5 ,
26 + s — VA (1)
y: 2 ’
z = 0+ s,
X b . 4 2 49?
ou l'on a posé pour abréger A = s TR

On donnera aux parameétres 0 et s des valeurs rationnelles
quelconques; on peut toujours, en multipliant ou divisant les

sImprimerie A. Kundig, Genéve, 1933.
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