Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 32 (1933)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Buchbesprechung: N. Saltykow. — Méthodes modernes d'intégration des Equations aux

dérivées partielles du premier ordre à une fonction inconnue

(Mémorial des Sciences mathématiques dirigé par Henri Villat; fasc. LXX). — Un fascicule gr. in-8° de 66 pages. Prix: 15 francs. Gauthier-

Villars & Cie. Paris, 1934.

Autor: Buhl, A.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

de M. Delens. En attendant, les symboles de Laplace, de Jacobi, de Schrödinger sont unis très simplement en utilisant surtout des considérations d'homogénéité.

H. Fehr.

N. Saltykow. — Méthodes modernes d'intégration des Equations aux dérivées partielles du premier ordre à une fonction inconnue (Mémorial des Sciences mathématiques dirigé par Henri Villat; fasc. LXX). — Un fascicule gr. in-8° de 66 pages. Prix: 15 francs. Gauthier-Villars & Cie. Paris, 1934.

Encore un sujet où les équations canoniques s'imposent immédiatement et triomphent d'éclatante façon. Soit l'équation $F(x_i, p_i) = 0$. La différentielle de celle-ci est identiquement vérifiée par le système canonique (avec i variant de 1 à n)

$$\frac{dx_i}{dt} = \frac{\partial F}{\partial p_i}, \quad \frac{dp_i}{dt} = -\frac{\partial F}{\partial x_i}$$

qui admet 2n-1 intégrales en x, p. Parmi ces intégrales, je puis en *choisir* n-1 qui, jointes à F=0, permettront de déterminer des p_i , en nombre n, avec n-1 constantes arbitraires. Enfin $dz=p_i\,dx_i$ doit permettre d'obtenir z, par intégration, avec n constantes. Ce sera l'intégrale complète. Mais que de rameaux vont se greffer rapidement sur cette souche archi-sèche!

D'abord il y a le choix souligné qui laisse le champ libre à une foule d'opérations, combinant des intégrales du système canonique. Ensuite il y a la question de l'élément intégrable dz; il ne suffit pas de l'écrire comme cidessus pour que l'existence de z soit acquise. Il y a une question d'intégrabilité qu'on peut encore aborder par des méthodes fort diverses. Tout cela explique pourquoi un problème d'apparence assez élémentaire a été profondément travaillé, et sous des formes différentes, par d'illustres géomètres tels Jacobi, Cauchy, Bour, Lie, Joseph Bertrand. M. Saltykow fait d'abord l'historique du sujet et insiste beaucoup sur l'élément intégrable auquel correspond une équation aux différentielles totales quand l'équation F = 0 contient explicitement la fonction inconnue. Il faut aussi étendre tout cela aux systèmes d'équations. C'est ce que fait l'auteur avec beaucoup d'élégance et grand emploi de déterminants fonctionnels; ces déterminants pourraient même servir à relier la question aux intégrales multiples et aux invariants intégraux mais elle est mise sous une forme qui se suffit à elle-même et qui semble avoir été choisie après de longues méditations. Il ne fallait pas retomber dans des considérations à la Sophus Lie, très générales, à coup sûr, mais qui submergent souvent des régions dont l'abord direct est simple.

Le fascicule résume et prolonge le volume fait, en 1925, sur le même sujet, avec des conférences données en Belgique sous les auspices de la Fondation Universitaire (voir Ens. math., 25^{me} année, 1926, p. 138). Il complète également un premier exposé fait dans le fascicule L du même Mémorial et déjà analysé ici avec le plus grand intérêt (30^e année, 1931, p. 311).

La publication du fascicule retardera peut-être sur celle de ces lignes, la présente analyse ayant été faite sur épreuves.