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SUR LA MESURE DES GRANDEURS1

PAR

M. Henri Lebesgue,

Membre de l'Institut (Paris).

III. — Aires.

Comme précédemment je commencerai par un exposé; pour
éviter tout malentendu, je précise que cet exposé exigerait, à

mon avis, de sérieux allégements, qu'on pourrait obtenir par
exemple en supprimant les démonstrations de certains points,
pour être à la portée des élèves moyens de la classe de Mathématiques.

Je ne le préconise donc nullement comme exposé à faire
dans cette classe; seule une expérience permettrait de juger dans

quelle mesure il pourrait y être adopté. Je le donne seulement
comme base à partir de laquelle nous discuterons.

24. — Notion d'aire. — Supposons que l'on ait à sa disposition
des carreaux ayant la forme de carrés tous égaux et qu'on veuille
carreler diverses pièces. Pour celle-ci il suffira de 100 carreaux
utilisés convenablement et entièrement, peut-être après subdivision

de certains d'entre eux; pour celle-là il faudrait 150
carreaux. On dit que la. première pièce a une aire plus petite que la
seconde et l'on précise en disant que la première a une aire égale
à 100 carreaux, et la seconde une aire de 150 carreaux.

On conçoit que cette question pratique et d'autres analogues
ait conduit à des notions mathématiques, comme la comparaison
d'un segment à un segment unité a conduit aux notions de

longueur et de nombre.

1 Voir L'Enseignement mathématique, XXXIe année, p. 173-206.
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Pour évaluer les longueurs des différents segments AB portés
par une droite nous avons construit sur cette droite, § 8, à partir
d'un point m et dans les deux sens, une graduation en unités U,
une graduation en unités Ux, etc. Et c'est la comparaison de

AB à la graduation totale T, à intervalles indéfiniment petits,
ainsi obtenue qui permettait de définir et d'évaluer la longueur
de AB. Nous procéderons exactement de la même manière.

Soit donné, en position dans le plan considéré, un carré G,

soient n>y les droites portant deux de ses côtés. Parallèlement
à u>x traçons toutes les droites dont les distances à sont des

multiples entiers du côté du carré C, faisons de même parallèlement

à oy y. Nous couvrons le plan d'un réseau R de carrés égaux
à C, que nous appellerons les carrés U. Subdivisons les côtés de

ces carrés en dix parties égales, par les points de subdivision
menons des parallèles à, et wj/, nous obtenons un réseau Rx
de carrés qui sont dits les carrés Ux. On passe de même à un
réseau R2 de carrés U2, etc. La réunion de tous ces réseaux
donne ce que nous appellerons le réseau total T déduit de C.

C'est par comparaison à T que nous allons définir et évaluer les

aires.
Soit1 un domaine D ; comptons combien il y a de carrés

formés entièrement de points de D; soit /?,•. Gomme un carré Lfi
contient 100 carrés Ui + 1, on a donc

n —
Ul

~
712 ^ 71-3

100 ÏOO2 ïoô3

tous ces nombres sont dits au plus égaux à l'aire de D. Comptons
combien il y a de carrés U! dont certains points appartiennent
à D ; soit N^. On a évidemment Ni ^ et pour la même raison

que plus haut,
N rît

^"1 ^ ^ N~3

100 ïoô2 ïôô3

1 Le mot domaine n'a pas, en géométrie élémentaire, un sens bien précisé; il deviendrait

parfaitement clair si l'on se restreignait à la famille des domaines polygonaux,
ou à celle des domaines limités chacun par un nombre fini de segments de droite et
d'arcs de cercle, etc.. Mais c'est à dessein et pour bien marquer que la définition est la
même pour toutes ces familles de domaines qu'on a laissé au mot domaine toute sa
généralité imprécisée.

L'emploi de ce mot exigerait, du point de vue strictement logique, que nous démontrions

celles des propriétés de ces domaines que nous utiliserons, par exemple celles
relatives aux frontières. Mais là encore il s'agit de propriétés parfaitement claires
pour les familles particulières simples de domaines et qu'il est alors d'usage constant
d'admettre sans démonstrations dans les cours élémentaires.
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tous ces nombres, qui sont au moins égaux aux précédents, sont

dits au moins égaux à l'aire de D.

Lorsque ces deux suites sont deux suites de valeurs indéfiniment
Ni — ni

approchées, c'est-à-dire lorsque tend vers zero quand 1

augmente indéfiniment, on dit que le nombre défini par ces deux

suites est Faire de D par rapport à l'unité U.
Cette définition fournit, comme dans le cas des longueurs,

un procédé expérimental pour déterminer le nombre défini.
Dans l'un ou l'autre cas, on ne peut réaliser la graduation totale
T, mais on peut du moins marquer les premières graduations R,

Ri, R2, par exemple, en unités U, U2. Lorsqu'il s'agit de

longueurs, on marque ces graduations le long d'une règle qu'on
applique ensuite sur le segment à mesurer et on lit de suite les

nombres n% n1: n2; N, Nl7 N2. S'il s'agit d'aire, on marque ces

réseaux sur un transparent que l'on place ensuite sur le domaine
à étudier et on lit encore n: n1: N, Nl7 N2.

25. — Nous allons éclairer cette définition en l'appliquant à un
rectangle OACB de côtés OA et OB respectivement parallèles
à a) x et ci) y ; prenant suivant l'usage le côté v de U pour unité
de longueur, nous désignerons par a et b les longueurs de OA
et OB.

Les côtés de Ui parallèles à r^y découpent sur OA une gradua¬
te

tion en segments — -• ; cq de ces segments ont tous leurs points

appartenant à, OA, At d'entre eux ont certains de leurs points
a- A-

appartenant à OA. —. et sont des valeurs approchées de a,

respectivement par défaut et par excès; § 8. On a d'ailleurs
Aj *f~-- aj -j- 2.

En intervertissant les rôles de OA et de OB, de o>x et de coy
bi

on a de même —. sA b AL —
10* 10*

Or les ni carrés dont tous les points appartiennent à OACB
sont ceux qui se projettent sur OA et OB respectivement suivant
les a- segments et les segments considérés ; on a donc

*i ai.bi.
Les Ni carrés L5 dont certains points appartiennent à OACB
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sont ceux qui se projettent sur OA et OB respectivement suivant
les Ai segments et les segments considérés; on a donc

Ni A,. Bt.
ni ai hi A Bi »Les deux nombres —: —p x —: et — —: X —: fournis

100* 10* 10* 100* 10* 10*

par les carrés U, comprennent donc entre eux le produit ab

et l'on a:

Ni — ni — aibi ^ (ai + 2)(bi + 2) — aibi
100* 100* 100*

<
10

;

donc les deux suites —et -A sont indéfiniment approchées.
100* io*

La valeur qu'elles définissent est ab. Le rectangle OACB a,

par rapport à l'unité U, une aire égale à ab.

Ainsi, il a été prouvé que tout rectangle de côtés parallèles à

cùx et cùy a une aire, nous avons évalué cette aire et, de l'expression
obtenue, il résulte que l'aire est la même pour deux rectangles
déduits l'un de l'autre par translation, que l'aire d'un rectangle
de côtés parallèles à et &>y formé par l'accolement de deux
autres rectangles, a pour aire la somme des aires de ces deux
autres.

Pour que notre notion mathématique d'aire soit bien en accord

avec la notion expérimentale et puisse être utilisée pratiquement
pour un polygone quelconque, il faut évidemment que nous
démontrions que tout polygone a une aire, que nous évaluions
cette aire, que nous prouvions que deux polygones déduits l'un
de l'autre par un mouvement quelconque ont même aire, qu'un
polygone formé par l'accolement de deux autres a une aire égale
à la somme des aires de ces deux autres.

26. — Tout polygone a une aire. Soient P un polygone,
et n{ les nombres relatifs à ce polygone et fournis par les carrés

TJô; il faut évaluer — ni. Or ce nombre est celui des carrés

U; comptant dans les Nf sans compter dans les nh c'est-à-dire
celui des carrés Ui; qui contiennent à la fois les peints de P et des

points n'appartenant pas à P. Lin tel carré contient des points

2

10* 10*
X + A
i0i 10i
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de la frontière (ou contour) de P; cette frontière est constituée par
un nombre fini de segments de droites. Donc il sera prouvé que
N. n.
——r— tend vers zéro pour i indéfiniment croissant, si l'on

1001 r
U •

démontre que -^tend vers zéro, m étant le nombre des carrés
H lOO1 '

qui contiennent des points d'un segment arbitraire AB. Or ceci

est facile à établir.
Supposons d'abord que AB ne soit parallèle ni à &>#, ni è <*\y.

Soit A un rectangle de côtés parallèles à et wy dont les côtés

parallèles à &>?/ découpent sur la droite AB un segment aß contenant

le segment AB. Les carrés qui contiennent des points
de AB sont parmi ceux qui contiennent des points de A

; si ceux-ci
jx.

sont en nombre N4 le nombre t est au plus égal à r, c'est-
1 100* r 1002

à-dire à la valeur approchée par excès de l'aire de A laquelle,
pour i assez grand, surpasse cette aire d'aussi peu qu'on le veut.

u^Si donc a et à sont les côtés de A, pour i assez grand, surpasse

ab d'aussi peu qu'on le veut.
Soit y le milieu de aß, recommençons le raisonnement pour oty

d'une part, pour yß de l'autre ; remplaçons la figure A, a/3, par des

figures semblables Ax, ay ; A2, y[3; *a1 et A2 sont de dimensions

— et j et comme, pour qu'un carré Uf contienne des points de

aß, il faut qu'il contienne des points de y-y ou des points de yß,

pour i assez grand, surpasse d'aussi peu qu'on le veut

ab ab ab
2

'
2

' + 2
'

2 Y '

Une nouvelle subdivision donnerait de même puis etc.

est donc aussi petit qu'on le veut pour i assez grand.

Si AB est parallèle à ou &y, on remplacera A par un
rectangle de base AB et de hauteur arbitrairement petite.

27. — Si Von subdivise un polygone P en polygones Pl5 P2,... Pm
on a: aire de P aire de P1 + aire de P2.+ -f aire de Pm.
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En effet, les ni carrés Vi contenus dans P sont soit contenus
en entier dans l'un des polygones Pfe, il y en aura par exemple
n\ dans Pfe, soit tels qu'ils contiennent les points des frontières
des Pk. Soit p,; le nombre de ceux-ci. On a:

n\ + ni + • • • + nm + K •

71 Tiî

Or, pour i augmentant indéfiniment, —-et les —-r se rappro-1

100* 100*

chent indéfiniment de l'aire de P et des aires des Pft, tandis que
f"i—rtend vers zéro; d'où l'égalité annoncée.

100* ' 6

Il en résulte de suite

aire de P > aire de F1 + + aire de Pm •

— pour le cas d'un polygone P contenant des polygones
P-t, P2, Pm extérieurs les uns aux autres et ne constituant pas
tout P à eux seuls — et

aire de P < aire de P1 -f y aire de Pm

— pour le cas d'un polygone P formé par la réunion de polygones
Pfe qui ne sont pas tous entièrement extérieurs deux à deux.

28. Dans une classe, il conviendrait de traiter entièrement
le cas des polygones avant d'aborder celui des autres domaines;
m'adressant ici à des Professeurs j'éviterai les redites, autrement
inévitables, en parlant de la condition nécessaire et suffisante

pour qu'un domaine D ait une aire.
N • — niOn a vu qu'il fallait que le nombre r— tende vers zéro^ 1 100*

Ni
pour i croissant indéfiniment. est l'aire d'un polygone E formé

ni
par les N, carrés IL utilisés, E couvre D ; —r est la somme des

_

100*

aires des polygones I formés par les ni carrés U?- utilisés; I est
couvert par D.

Donc pour qu'un domaine D ait une aire1 il faut qu'il puisse
être couvert par un polygone E et qu'il couvre des polygones I,
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extérieurs les uns aux autres, et de manière que Faire de E surpasse
la somme des aires des I d'aussi peu qu'on le veut. La réciproque

est vraie\ car alors, pour i assez grand, les N-carrés contenant
des points d'un tel polygone E ont une aire qui surpasse celle de E

d'aussi peu qu'on le veut et les n[ carrés formés uniquement
de points des I ont une aire totale aussi peu inférieure qu'on le

veut à celle des I. Et comme, si Ni et sont les nombres habituels
relatifs à D, on a

K ^ N4 - ^ ^ n\

N,- — n- N 'i — ri,
qui est inférieur à —— lequel surpasse d aussi peu

qu'on le veut aire de E — aire de I, est aussi petit qu'on le veut.
De plus, l'aire de D est comprise entre celles de E et de I.

L'application de cet énoncé à l'extension des énoncés du
paragraphe précédent, comme aussi à la démonstration du fait qu'un
domaine provenant de la réunion de plusieurs autres a une aire
dès que ceux-ci en ont une, est immédiate. Il va nous permettre
aussi de donner au paragraphe suivant une portée plus générale.

29. — Deux polygones égaux ont même aire. Plus généralement,
si D est un domaine ayant une aire et si À est égal à D, A a
une aire; cette aire est égale à celle de D. Nous subdiviserons la
démonstration, en supposant d'abord que D est un polygone
et en faisant des hypothèses sur la nature du mouvement qui
transforme D en À.

a) Le polygone A se déduit de D par une translation. D est
couvert par carrés Ui et en contient n{\ la translation transforme

les carrés Lb en carrés Vi de même aire, § 25. Donc A est
couvert par Ni carrés Vi et en contient ni de sorte que l'on a:

ni Ni
: — aire de A ^ T

100* 100*

Ce qui montre que A et D ont la même aire.
b) Le polygone A se déduit de D par une symétrie par rapport

à l'axe ZZ'. Soit C un carré dont un côté est sur ZZ', à partir de
C construisons un réseau T' comme, à partir de C, nous avons



30 HENRI LEBESGUE

construit le réseau T au § 24. Les carrés successifs de T7 seront
désignés par U7, Uj, U^, Soient N- et n\ les nombres des

carrés U- qui contiennent des points de À, et qui ne contiennent
que des points de D. Tous ces carrés U- ont la même aire, § 29a;

il y en a 100* dans C', ils ont, §27, une aire égale à —r, si S est' 6 îoo*
Taire de G'. Donc on a:

ni Ni
— aire de D ^ —L S
100* 100*

et, pour i croissant indéfiniment, la différence entre les deux
N- — n-

membres extrêmes tend vers zéro, puisque, § 26, ——. - tend' r ^ ' ' 100*

vers zéro.
Mais à cause de la symétrie de T' de D et A par rapport àZZ7,

les nombres N- et n[ valent aussi pour A, l'aire de A vérifie
aussi l'inégalité précédente. Donc A et D ont la même aire.

c) Le polygone A est égal au polygone D. Soient A, a; B, ß deux
couples de points correspondants de D et A. La translation Aa
transforme B en ß'; la symétrie par rapport à la médiatrice
de ßß' transforme D en D' tel que A est en a, B en ß. Alors,
ou D7 est confondu avec A, ou D7 est symétrique de A par rapport
à 3. Dans les deux cas, on passe de D à A par une suite de

transformations laissant l'aire invariable: D et A ont même aire.
d) D est un domaine ayant une aire. Soient E et I deux

polygones, l'un qui couvre D l'autre couvert par lui, et dont les aires
diffèrent de moins de c. Le déplacement qui transforme D en A
transformé E et I en des polygones de mêmes aires dont l'un
couvre A et l'autre est couvert par lui. Et, puisque la différence s

de ces aires est arbitrairement petite, A a une aire; celle-ci
diffère de celle de E de moins de s, donc D et A ont même aire.

Le résultat que nous venons d'obtenir peut encore se formuler
ainsi: l'aire d'un domaine ne dépend pas de la donnée du carré
unité C en position, mais seulement en grandeur; c'est-à-dire,
puisque nous convenons de prendre le côté de C pour unité de

longueur, que l'aire ne dépend que de l'unité de longueur.
En effet, soient deux carrés égaux C et C', soient T et T7

les deux réseaux qui se déduisent respectivement de l'un et de
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l'autre. Pour évaluer l'aire d'un domaine D à partir de C7 il
faut, par exemple, compter les nombres Ni et relatifs à D

et T\ Ces nombres sont aussi ceux relatifs à A et T, si A est ce

que devient D par le déplacement qui transforme C7 en C;

donc, si D a une aire par rapport à C', A a une aire par rapport
à C et ces deux aires sont égales. Or, puisque A et D sont égaux,
D a aussi une aire par rapport à G et égale à celle de A par
rapport à C; donc D a une aire et par rapport à G et par rapport
à C7, et ces deux aires sont égales.

Les deux énoncés précédents se résument en un seul: un
déplacement relatif d'un domaine et du réseau T n'a aucune influence,
ni sur l'existence de l'aire du domaine, ni sur la valeur de cette
aire.

30. — Examinons maintenant l'influence du changement
d'unité de longueur, c'est-à-dire le remolacement du carré G par
un carré C7 de grandeur différente, sur l'existence de l'aire d'un
domaine D et sa valeur, c'est-à-dire traitons la question
analogue à celle qui, au § il, nous a conduit à la multiplication.

Supposons qu'avec G les nombres relatifs aux carrés U$
soient N- et nb la frontière de D peut donc être couverte avec des

polygones (des carrés UJ dont l'aire totale avec la nouvelle unité
de longueur est (N?- — nA—si S est la nouvelle aire de G.

1 1 i00l
N- n-

Or, par hypothèse, —
1 lend vers zéro quand i croît

indéfiniment, car on suppose que D a une aire par rapport à G.

Donc D a encore une aire par rapport à G7. Et cette aire A7,
S S

étant comprise entre N. —et due^ (ïue s0^ h es^ égale à

l'aire A de D par rapport à G multipliée par S; A7 — AS. Si c

est la nouvelle longueur du côté de C, ceci s'écrit

A' A.c2

Le changement de Vunité de longueur a pour effet de multiplier
toutes les aires par le carré dx la longueur de Vancienne unité de

longueur par rapport à la nouvelle.
Cette proposition qui exprime l'effet, sur la comparaison de
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D à, C, d'une transformation relative par figures semblables
effectuée sur l'un des deux domaines D et C, peut comme la
précédente être énoncée sous une forme inverse.

Laissons en effet C fixe et remplaçons D par un domaine
semblable D7, le rapport de similitude étant k; si G' désigne le
transformé de C, dans la similitude de rapport /r, les nombres
Ni et ni relatifs à C et D d'une part, à C' et D' d'autre part sont
les mêmes. Donc D' a une aire par rapport à G', et celle-ci est
égale à l'aire de D par rapport à G, soit A; donc l'aire de D' par
rapport à C existe et est AA:2, puisque k2 est l'aire de C', le
côté de C' étant k.

Donc, une transformation par figures semblables de rapport k
transforme un domaine D ayant une aire A en un domaine D'
ayant une aire Ak2.

31. —- Les propriétés de l'aire, qui viennent d'être prouvées,
sont bien en accord avec les modes d'utilisation de l'aire dans la
pratique et c'est même parce qu'il y a cet accord que l'on peut
espérer avoir bien traduit mathématiquement la notion
vulgaire d'aire. Si, pourtant, il y avait d'autres manières que celles

que nous avons envisagées d'attacher aux domaines des nombres
jouissant eux aussi des propriétés que nous venons de prouver
dans les paragraphes précédents pour les nombres que nous
avons appelés aires, il y aurait plusieurs traductions mathématiques

possibles de la notion pratique d'aire et l'on pourrait
craindre de ne pas avoir choisi la meilleure. De sorte que, même
en considérant les mathématiques comme une science expérimentale,

il est important de démontrer que les aires que nous venons
de considérer sont entièrement déterminées par les conditions
suivantes :

ot — A chacun des domaines d'une famille de domaines dont font
partie tous les polygones est attaché un nombre positif que Von

appelle son aire.

ß — A un domaine formé par la réunion de deux autres
extérieurs l'un à l'autre est attaché comme aire la somme des aires des

deux autres.
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y — A deux domaines égaux sont attachés des aires égales.

De plus, on verra que:
§ — Ces nombres aires sont entièrement fixés numériquement,

quand on connait Faire attachée à Vun des domaines.

En effet, prenons un carré C quelconque, soit A2 le nombre

attaché à C. Alors, si D est un domaine quelconque de la famille,
et si et ni sont les nombres relatifs à D et au réseau T construit

k2 k2
à partir de C, Paire de D est comprise entre et de

sorte que c'est celle que notre procédé permet d'attacher à D

quand on prend pour carré d'aire 1 le transformé de G dans le

rapport D'ailleurs le nombre k est connu; si, en effet, ff0 est
k

l'aire connue d'un domaine D0, et si c est l'aire que notre procédé

permet d'attacher à D0à l'aide du réseau T (c'est-à-dire si cr est
N i ni \ a i

la limite des nombres —T et —? on a k2 —
îoo* îooy

Les propriétés «, /3, y constituent la définition axiomatique de

l'aire, débarrassée de ce qu'avait d'apparemment trop particulier
l'emploi du réseau T pour définir cette aire. Le réseau T joue
dans la conception de l'aire un rôle analogue celui de la numération

décimale dans la conception de la notion générale de nombre.

32. —- On utilise surtout la propriété suivante qui découle de

suite de a, /3, y: deux polygones qui sont décomposables en

polygones égaux, c'est-à-dire deux polygones qui proviennent de deux

arrangements différents des mêmes parties polygonales, ont la
même aire.

Nous avons démontré cette propriété même pour le cas où
il s'agirait de deux domaines provenant de deux arrangements
différents de parties de formes quelconques, pourvu que ces

parties aient chacune une aire et nous pouvons par suite revenir

1 A la vérité cette démonstration suppose que D fasse à la fois partie de la famille
des domaines pour lesquels notre procédé des paragraphes précédents s'applique et à la
famille de ceux auxquels l'énoncé de ce paragraphe suppose qu'on ait attaché un nombre
satisfaisant aux conditions s, v. Mais il s'agit de prouver que les conditions % 3, y
suffisent à définir les aires des domaines D précédemment considérés, nous ne devions
donc nous occuper que de la famille de ces domaines ou d'une famille plus restreinte.

Si, au contraire, on prenait une famille plus vaste, les conditions «, e, y pourraient
encore être satisfaites; mais, comme je l'ai prouvé jadis, on n'aurait plus la proposition S.
En d'autres termes les propriétés *, % y ne suffiraient plus pour caractériser l'aire à
un changement près de l'unité d'aire.

L'Enseignement ma thé m., 32e année; 1933. 3
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maintenant à l'exposé classique. Nous pouvons donc légitimement

trouver à la façon ordinaire l'aire du parallélogramme, puis
celle du triangle et par suite l'aire d'un polygone quelconque,
puisque tout polygone est décomposable en triangles. On peut
résumer les résultats dans cet énoncé classique: soient ABCD...
un polygone plan tu et 0 un point de son plan : l'aire du polygone
est égale à

j[±ABx dist O AB ± BC X dist O BG ± ...] ;

Le signe pris devant le terme en PQ étant + ou — suivant
que O est ou non du même côté du segment PQ que la partie du
polygone tu qui avoisine PQ.

Pour justifier cet énoncé, l'aire du triangle étant supposée
obtenue, remarquons que les côtés des triangles OAB, OBC,

que nous appellerons les triangles T7-, partagent le plan en
polygones partiels, que nous désignons ainsi que leurs aires par
Pi? P25 ••• et que chaque triangle T? est formé de certains des

P^. De sorte que l'expression annoncée, qui est la somme des

aires de ces triangles affectés de signes + et —, se présente à

nous sous la forme

± (pa + Pö + •••) ± (Pa + Pfc + •••) ± ;

il suffit de prouver qu'après la réduction des termes semblables

il ne figurera plus que les P intérieurs au polygone tu et
chacun d'eux avec le coefficient + 1. Or, soit une demi-droite
issue de O et ne passant par aucun des sommets A, B, C, ...;
parcourons-la en sens inverse et soient Z1? Z2, les points de

rencontre successifs avec la frontière de tu. Fixons les notations
de manière qu'à l'entrée dans n en Zl7 on entre dans T1 et dans
P1 ; qu'à la sortie de tu en Z2, on passe de P1 à P2, qu'on entre
dans T2, sans d'ailleurs sortir de T1; qu'à l'entrée de tu en Z3, on

passe de P2 à P3, qu'on entre dans T3, sans d'ailleurs sortir ni de

T1, ni de T2 ; etc. Les Pi contenant des points de la demi-droite
considérés ne figurent dans la somme que par

+ (P1 + P2 + P3 + — (P2 + P3 + + (P3...)

+ — P1 + P3 +
ce qui démontre le théorème.
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33. — En possession de cet exposé, qui sera complété plus
tard pour les domaines non polygonaux, on verra mieux la

portée exacte des raisonnements classiques. Ordinairement, on
admet que la notion mathématique d'aire est clairement imposée

par son emploi pratique et on utilise, le plus souvent implicitement,

les axiomes », /37 y; la seule modification importante que
nous ayons apportée ici est la démonstration de », ß, y. Sauf sur
des points accessoires, il n'y a donc pas opposition entre l'exposé
classique et celui d'ici qui est seulement logiquement plus
complet.

Que fournit exactement l'exposé classique L'évaluation
des aires définies par a, /3, y, d. Même on n'y utilise S

qu'apparemment et quelques précautions de langage insignifiantes
(consistant uniquement à parler parfois d'une aire au lieu de

l'aire) permettent de se passer de Si bien que l'exposé classique,
en fournissant l'évaluation des aires dès que l'unité d'aire est
fixée, prouve la proposition â.

On peut donc dire aussi que l'exposé classique permet de

calculer les aires, s'il existe des aires, et qu'il suffirait de constater
après coup que les nombres obtenus vérifient les propriétés », ß, y

pour avoir traité la théorie des aires sans avoir fait appel à
des axiomes nouveaux. C'est ce qu'ont fait divers géomètres
(Schur, Gérard, etc. 1) donnant ainsi à l'exposé classique une
valeur logique équivalente à celle de l'exposé qu'on a pu lire ici.

Voici, légèrement modifiée dans la forme, la méthode des
auteurs cités 2.

A chaque polygone ABC attachons le nombre

A (± AB x dist. 0 AB ± BG x dist. O BC ±

0 étant un point choisi dans le plan et les signes étant pris
comme il a été dit. Nous allons d'abord prouver que ce nombre
est, en réalité, indépendant de O.

1 Pour la bibliographie, voir les Grundlagen der Geometrie de Hilbert et les Questioni
riguardanti la Geometria elementari de Enriques.

2 Je signale de suite que la phrase a, qui a été qualifiée plusieurs fois précédemment
de proposition ou d'axiome bien qu'elle n'était en réalité alors qu'une indication de
dénomination, deviendra maintenant une proposition et même la proposition
principale: de quelque manière que l'on décompose un polygone P en triangles partiels T^
la somme des aires de ces triangles est toujours la même.
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étant un point de AB, situé entre A et B, considérons
l'angle droit x1 oô1 yx dont le premier côté es^ dont le
second est dirigé vers l'intérieur du polygone avoisinant AB.
On sait que si l'on transporte cet angle en x2(»2y2 de façon que
to vienne en un point w2 de BC et que r*\x1 prenne la direction &>2C,

to2y2 sera encore dirigé vers l'intérieur du polygone avoisinant
BC; etc. De sorte qu'il suffira de mesurer les vecteurs AB, BC,
suivant les directions successives de u>x et les vecteurs HO, KO,
distances des côtés à 0 suivant les positions successives de wy
pour que l'expression précédente devienne

i(ÄB.HÖ + BC. KO +

Si l'on a remplacé 0 par 0', ce nombre est remplacé par

~{ÄB [HÖ + cos (00', col2/l).ÜÖ']

+ BC[KÖ + cos (00', Mgj/J.ÖÖ7] + ...}.
Il varie donc de

[AB cos (Dû, w1rr1) + BG cos (OQ u2x2) + ...]

Oû étant la direction qui provient de 00' quand on effectue
la rotation qui amène en &)i^i > w2?/2 en (t)2x2? etc- Or la parenthèse

est nulle comme mesure de la projection du contour
du polygone sur l'axe Oû; le nombre attaché au polygone est
bien indépendant du choix de 0. Dans un instant on verra
qu'il est bien positif.

Constatons d'abord que ce nombre vérifie la propriété ß et pour
cela faisons la somme des nombres attachés à deux polygones
Pl9 P2 extérieurs l'un à l'autre et qui, par leur réunion forment
un polygone P; ces deux nombres étant évalués à l'aide d'un
même point 0. Comme on ne modifie pas le nombre attaché
à un polygone ABC en intercalant un sommet Z situé sur AB
entre A et B, c'est-à-dire en remplaçant AB X dist. (0, AB)
par AZ X dist. (0, AZ) -f ZB X dist. (0, ZB) on peut supposer
que Pi et P2 sont adjacents tout le long de certains côtés. Alors,
si AB est un de ces côtés, AB X dist. (0, AB) intervient dans les
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nombres attachés à Px et P2 et avec des signes différents car Pt
et P2 sont de part et d'autre de AB.

D'autre part si KL est un côté de PA, par exemple, n'appartenant

pas à P2, le produit KL X dist. (0, KL) intervient dans les

nombres attachés à P et à Px et avec le même signe puisque P

et Px, sont du même côté de KL.
Donc, après réduction des termes semblables dans la somme

des expressions, à l'aide de 0, des nombres attachés à Px et à P2,

on trouve l'expression, à l'aide de 0, du nombre attaché à P.

ß étant ainsi prouvée, le nombre attaché à un polygone sera la
somme de ceux attachés aux triangles d'une quelconque des

décompositions de P en triangles; donc ce nombre sera positif
et vérifiera la condition y si le nombre attaché à un triangle est

positif et indépendant de la position du triangle dans le plan.
Or, calculons le nombre relatif à un triangle ABC en prenant

l0 en A, nous le trouvons égal à -yBC X hauteur issue de A.

La démonstration est achevée; on la présente généralement
sous la forme suivante: on prend 0 fixe; on démontre /3, puis,
ayant ainsi ramené le calcul du nombre attaché à P à l'addition
des nombres attachés à des triangles, exactement comme plus haut,
on vérifie directement que, dans un triangle, les trois produits
de ses côtés par les hauteurs correspondantes sont égaux et que,
quelle que soit la position du point 0 par rapport au triangle,
le nombre attaché à ce triangle est égal à ce demi produit.
Ce sont ces constatations que nous avons remplacées par le
raisonnement plus ramassé, mais moins élémentaire, relatif
au passage de 0 à 0'. La démonstration se réduit donc à ceci:
Des hypothèses a, /3, y résultaient des manières innombrables
de calculer l'aire; parmi elles nous en choisissons une bien déterminée

; de cette façon nous satisfaisons à la partie principale de la
condition a : à chaque domaine nous attachons un nombre bien
déterminé. Puis nous vérifions que ce nombre satisfait aux
conditions ß et y, et de plus est positif.

34. — C'est en somme exactement ce que nous avions fait
dans notre première méthode; à cela près que nous n'avions pas
discriminé quelles étaient, parmi toutes les propriétés de l'aire
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concrète, celles que nous utilisions dans notre construction
mathématique; nous n'avions donc pas énoncé a, /3, y. En fait,
l'ordre que nous avons suivi est exactement celui que l'on suit
toujours quand on a à traduire mathématiquement une notion
concrète: on commence par utiliser tout ce que l'expérience
vous a appris sur la notion ; puis, quand on a réussi à construire
une première définition mathématique, on peut se proposer de

l'épurer en fixant exactement ce qui a été utilisé avec raison.
L'axiomatique se fait en dernier, quand le principal a déjà été

traité; mais alors, elle fixe exactement la valeur du résultat
obtenu, en prépare les généralisations, etc.

Donc, à des détails près d'exposition, nos deux méthodes
suivent la même marche, ainsi on ne pourrait reprocher à la
seconde son caractère de vérification1 sans le reprocher à la
première. On ne peut reprocher à celle-ci l'emploi artificiel du
réseau T, sans reprocher à la deuxième l'emploi du point 0.
La seule différence profonde est que la première, utilisant
une définition générale de l'aire, s'applique dans des cas plus
étendus, tandis que la seconde, utilisant un mode d'évaluation
spécial aux aires polygonales, est d'application plus restreinte;
par contre, elle possède les avantages d'élégance des procédés
finis, elle met à part les domaines polygonaux à la façon dont,
ordinairement, on distingue des autres les nombres commen-
surables, ainsi qu'il a été rappelé au chapitre précédent.

35. — Nous pouvons maintenant, utilisant ces remarques,
construire de nouveaux exposés de la théorie des aires; voici le

seul qui vaille d'être indiqué ici. Nous avons, dans le second

procédé, appliqué en somme la formule d'intégration en coordonnées

polaires et, dans le premier, la formule d'intégration en

coordonnées rectilignes rectangulaires; on peut évidemment
particulariser et, par le procédé des arpenteurs, obtenir une
méthode finie applicable aux seuls polygones. On opérera donc

comme il suit.
a.. -— Une direction (oy ayant été choisie, atout polygone P

i Caractère commun à toutes les démonstrations d'existence d'un être E : admettant
provisoirement l'existence de E, on en déduit une construction de E que l'on vérifie
fournir un résultat satisfaisant à toutes les conditions requises.
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nous attachons le nombre ^-(B! + &!)&!+ 2
(B2 + h)K + •••

Bj, bx'iB2, b2;étant les longueurs des bases des trapèzes en

lesquels P est décomposé par les parallèles menées par les

sommets de P et hx, h,. les hauteurs respectives de ces

trapèzes.
Dans cet énoncé on considère comme un trapèze un triangle

dont un côté est parallèle à <»y, pour un tel trapèze l'une des

deux bases est de longueur nulle.
ß. —Soit un trapèze (ou triangle) T de bases parallèles à«î/;

partageons le en et T2 par une sécante qui rencontre ses bases

(et non leurs prolongements), d'après son expression même,

le nombre (T) attaché à T est la somme des nombres (Ti), (T2)

attachés à Tx et à T2; c'est un cas particulier de la proposition ß.

Un autre cas particulier est celui où T est divisé en Tx et T2

par une parallèle aux bases; grâce au cas précédent on peut

supposer que T est un triangle ABC de base BC parallèle à «|f,

soit DE la sécante. Le nombre (T) est yBG, dist. (A, BC) ou,

comme on le vérifie de suite, AB. dist (C, AB); or

1-AB.dist. (C.AB) 1-AD.dist.(C.AD) + {-DB.dist. (C.DB)
2 A £

|AG.dist. (D.AC) + l-BC.dist.(D.BC) |-AE.dist.(D.AE)

+ iEG-disMD-EG>] + ^-BC-dist. (D .BC) i-AE.dist.fD.AE)

+ DE.dist. (C.DE) + |BC.dist,(D.BC)J •== (Td + (T2)

Soit maintenant le cas général d'un polygone P, partagé en

deux polygones adjacents Pl7 P2. Pour évaluer les nombres(P),
(Pi), (P2) attachés à ces polygones, on peut utiliser les décompositions

faites par toutes les parallèles à y passant par les sommets
de ces trois polygones, alors que la définition ne fait usage que de

certaines de ces parallèles, à cause du second cas particulier étudié.
Examinons les contributions dans (P), (Px), (P2) des trapèzes

limités par deux parallèles a «y consécutives; les trapèzes qui
comptent dans (P) sont partagés, à la façon examinée dans le

premier cas particulier, par les côtés de P1 et P2 qui leur sont
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intérieurs, en trapèzes partiels dont les uns comptent dans (PJ et
les autres dans (P2); donc, à cause du premier cas particulier,

(P) (PJ + (P2)

y. — Pour démontrer la proposition (y) il suffira d'évaluer
le nombre attaché à un triangle ABC; on le connait déjà si l'un
des côtés est parallèle à <*>y. Supposons qu'il n'en soit pas ainsi
et que ce soit la parallèle à <*y menée par C qui le divise en deux
triangles ACD, BCD, on aura

(ABC) y CD dist. (A. CD) + |-CD dist. (B.CD)

r AD dist. (C.AD) + ~BD.dist.(C.BD) -1 AB dist. (C.AB).

36. — Doit-on adopter dans l'enseignement l'un des trois
exposés, complets au point de vue logique, que nous venons
d'obtenir, ou quelque autre procédé analogue

Le premier, je l'ai déjà dit, serait sans doute trop savant et

compliqué pour les élèves moyens, une expérience seule permettrait

d'en décider; les deux autres leur seraient plus accessibles.
Les élèves pourtant comprendraient mal l'intérêt de cette
vérification de a, /3, 7, qui, ne venant qu'après qu'on a beaucoup
utilisé ces énoncés, conduirait peut-être à penser qu'on peut
toujours remettre en question ce qui a été démontré et
donnerait ainsi une singulière idée du raisonnement logique. Il
est certain, en tout cas, que le second exposé est bien connu,
qu'il a été introduit depuis longtemps dans des manuels, et que,
pourtant, il n'a pas pénétré dans l'enseignement. Les professeurs
ne voient donc pas d'inconvénient à admettre a, /3, 7, implicitement

ou explicitement; je crois, avec eux, que cela n'a aucun
inconvénient. Il est nécessaire seulement de ne rien dire d'inexact
sur la portée de l'exposé que l'on adopte et, pour cela, de s'en être
bien informé en comparant soigneusement ce que l'on fait à ce

qu'il faudrait faire pour tout prouver. Faute d'avoir effectué cette
confrontation certains ont fait de curieuses erreurs.

On a cru, par exemple, que les procédés classiques qui
conduisent à transformer chaque rectangle R en un rectangle p
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dont une dimension est l'unité suffisaient pour résoudre le

problème des aires pour les rectangles ; l'aire de R étant alors la

seconde dimension du rectangle p. Il y a là, certes, une manière

de définir l'aire; mais il n'est nullement évident que d'autres

procédés que les procédés classiques ne conduiraient pas à un
autre rectangle p comme associé au même rectangle R, donc à

une autre aire.

37. — Précisons en traitant le cas des équivalences finies.
Deux polygones sont dits équivalents de façon finie si on peut
les décomposer chacun en un même nombre fini de triangles,
deux à deux égaux. Montrons que, par équivalence finie, tout
triangle est transformable en un rectangle a, d'où il résultera

qu'un polygone quelconque est équivalent au rectangle p formé
d'un nombre fini de tels rectangles p correspondant aux triangles
provenant d'une décomposition du polygone.

Or, soient un triangle ARC, A',B' les milieux de CA et CB;
faisons tourner de 180° en B"B'B le triangle A'B'C autour de

B'; nous transformons ARC en un parallélogramme ABB''A';
soit M un point quelconque de A'B". Faisons subir au triangle
AA'M la translation AB, nous avons le parallélogramme ABNM ;

sur lequel nous pouvons opérer de même, etc. Donc, comme on
peut aussi intervertir les rôles de A et B, on transforme AB B"A'
en n'importe lequel des parallélogrammes de même base AB et
de même hauteur correspondante.

Parmi ces parallélogrammes ABDE, il y en a pour lesquels AE
est un multiple entier d'une longueur donnée l.

Si, par exemple, AE 3/, en partageant AE en trois parties
égales et en menant par les points de division des parallèles à

AB, on partage ABDE en trois parallélogrammes égaux qui,
arrangés dans un autre ordre, donnent un parallélogramme

aß étant 3 fois AB, ocs étant l. Opérant maintenant sur
<*ß$e comme sur ABB "A', as jouant le rôle de AB, on parvient à

n'importe lequel des parallélogrammes de base as et dont la base
parallèle est portée par en particulier à celui qui est un
rectangle.

Si on a pris l 1, on a donc transformé le triangle ABC en un
rectangle p dont un des côtés est égal à 1. Quel est l'autre côté?
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ABB "A' a pour base AB et pour hauteur correspondante la
moitié de la hauteur de ABC issue de G. Dans le passage de AB
BGA' à ABMN, AB est resté le même ainsi que la hauteur
correspondante, mais l'autre base et l'autre hauteur ont changé.
Seulement, si on remarque que le produit d'une base par la
hauteur correspondante est le même pour les deux bases d'un
parallélogramme, on voit que ce produit reste le même dans le

passage de ABB"A' à ABMN et dans toutes les transformations
ultérieures. D'où il résulte que si b est la base de ABC, h la hauteur

correspondante, pour tous les parallélogrammes obtenus le

produit de la base par la hauteur est ~ bh.

Le second côté du rectangle p est donc -bh. Plus généralement,

étant donné un polygone P, nous avons appris, en décomposant P

en triangles et en transformant chaque triangle en un rectangle P,
à transformer par équivalence finie P en un rectangle dont l'une

des dimensions est 1 et l'autre égale à la somme 2-^bh étendue

aux divers triangles considérés.

Y a-t-il là une théorie complète des aires Non, car il n'est

pas prouvé que l'aire obtenue est unique, c'est-à-dire indépendante

de celle des décompositions en triangles utilisée. Le croire
serait d'abord commettre une faute analogue à celle que nous
reprochons si souvent à nos élèves quand, par exemple, ils
concluent qu'un nombre est décomposable d'une seule manière
en facteurs premiers alors qu'ils ont seulement constaté que le

procédé particulier de décomposition employé donnait un résultat
déterminé.

Précisons, nous avons vu que deux polygones ne peuvent être
transformés l'un en l'autre, par équivalence finie, à Vaide de

notre procédé, que si les nombres que nous leur avons attachés
sont les mêmes. Mais nous savons de plus que, dans le cas de

deux parallélogrammes, cette condition est suffisante ; il en résulte
de suite qu'elle est aussi suffisante pour deux polygones
quelconques. Partant de là on montrerait que, s'il est possible de

satisfaire aux conditions 5, y, les nombres aires sont
déterminés à un facteur près, c'est-à-dire de prouver <J.

Ainsi, cette quatrième théorie des aires est exactement équiva-
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lente à la théorie classique 1, comme celle-ci elle s'appuie sur a,

ßi 7> prouve à et donne la détermination des aires, en ce qui
concerne les polygones.

Pour compléter cette quatrième théorie il faudra prouver a,
jS, 7; par l'un des trois procédés que nous avons indiqués, par
exemple. Puisqu'on ne s'occupe que de polygones, les deux
derniers surtout sont indiqués. On verra dans les Grundlagen der

Geometrie, de M. Hilbert, la forme simple que l'on peut alors

donner au second procédé. Le troisième pourrait être utilisé de

façon analogue. Si des simplifications sont possibles c'est que
maintenant, plus nettement encore qu'auparavant, tout se réduit
à montrer que le nombre défini est bien déterminé. Car, s'il en

est ainsi, ß et 7 en résultent puisque, ß, le nombre est défini par
une décomposition du polygone et que, 7, il est défini pour un
triangle indépendamment de la position de celui-ci.

38,-—Ainsi, la théorie est complète quand on prouve quAn ne

peut jamais partager un polygone en un nombre fini de morceaux
polygonaux de telle façon que ces morceaux arrangés autrement
fournissent seulement un polygone intérieur au premier. C'est
cette propriété qui est le fondement géométrique de la théorie
des aires. Pour les polygones, celle-ci peut être décomposée en
trois parties:

1° Tout polygone est équivalent de façon finie à un rectangle
dont un côté est égal à un segment donné.

2° Deux tels rectangles ne sont pas équivalents si leurs seconds
côtés sont inégaux.

3° La mesure des seconds côtés.
La troisième partie c'est la mesure des longueurs, l'introduction

même du nombre en général; les deux autres ne supposent que
la notion d'entier et, pour cette raison, on dira volontiers qu'elles
sont de nature purement géométrique. Mais, si nous avons
démontré la première par un raisonnement purement géométrique
les démonstrations indiquées de la deuxième partie font appel à

la troisième partie, donc à la notion du nombre en général.

1 Plus élégante que celle-ci elle a, d'autre part, l'inconvénient de ne pouvoir être
transposée pour les volumes car Dehn a montré que deux polyèdres qui ont même
volume ne sont pas en général transformables l'un en l'autre par équivalence finie.
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Jusqu'ici, nul n'a su démontrer la deuxième partie, c1 est-à-dire
le fait géométrique qui est à la base de la théorie des aires des

polygones dans la méthode de l'équivalence finie, sans faire appel à la
notion générale du nombre; et c'est en somme la notion d'aire,
acquise autrement pourrait-on dire, qui justifie, après coup, la
méthode des équivalences.

39. Ce fait géométrique nous est pourtant si familier, de

par nos expériences journalières, que nous avons quelque peine
à admettre qu'il faut le démontrer; ne s'agit-il pas, en effet,
simplement de la place qu'occupe un domaine indépendamment
de sa position dans l'espace et de l'agencement de ses parties
Cette place, ce serait l'aire et le nombre dont nous avions parlé
ne serait que la mesure de l'aire ; mesure qu'il conviendrait de ne

pas confondre avec l'aire.
On reconnaît là, malgré la vulgarité du mot place, une présentation

métaphysique analogue à celle relative aux entiers et que
j'ai critiquée. Un entier, c'était ce qu'avaient de commun toutes
les collections déduites d'une collection par changement de l'ordre
et de la nature des objets qui la composaient ; une aire, ce serait ce

qui est commun à tous les domaines déduits d'un domaine par
changement de position et d'arrangement des parties de celui-ci.
Un entier métaphysique avait une notation décimale; une aire
métaphysique aurait une mesure, ce serait un nombre
métaphysique qui pourrait être noté dans le système décimal.

Et quand on songe à ce qu'est le nombre métaphysique non
entier, on voit à quel point les entités se superposent; mais

comme tout cela est inutile mathématiquement, on n'adopte
jamais franchement cette présentation métaphysique de la
définition. Cependant, pour beaucoup, l'aire est restée différente du
nombre qui la mesure; pour moi, l'emploi du mot mesure dans la
dénomination « mesure des aires » a la même signification que

pour la « mesure des longueurs » : il rappelle qu'on doit avoir
choisi une unité pour pouvoir parler de l'aire ou de la longueur,
lesquelles sont des nombres. Ce sont ces nombres qui, seuls,
servent en mathématiques; libre à chacun de surajouter à ces

notions mathématiques des notions métaphysiques, mais celles-ci

ne doivent pas intervenir dans l'enseignement. Ni quand il
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s'agit de juger de la valeur logique d'une théorie; l'erreur sur

l'aire des rectangles, dont j'ai parlé, vient sans doute de ce que,

tout en examinant si l'existence de l'aire avait été prouvée

logiquement, on conservait quelque peu l'idée que l'aire est une

notion première dont l'existence n'a pas à être prouvée.
Il y eut une époque où le fait qui nous occupe résultait d'une

sorte d'axiome à tout faire: le tout est plus grand que la partie,

que l'on utilisait et pour les longueurs et pour les aires et pour les

volumes. Comment nous en sommes nous passés
Pour les longueurs: les axiomes relatifs au mouvement, qui

nous ont servi, impliquaient en particulier que si on transporte
AB sur la droite qui le contient de façon que A vienne entre les

positions primitives de A et de B, alors B viendra en dehors de

ces positions; ceci, c'est l'axiome: le tout est plus grand que la

partie, que nous avons donc encore admis sous une forme
précisée.

Pour les aires: les trois méthodes que nous avons indiquées
déduisent le fait que les deux rectangles 1, h et i, h' ne sont pas
équivalents du fait que les longueurs A et A' ne sont pas équivalentes.

L'axiome pour le cas des aires a été déduit de l'axiome

pour le cas des longueurs ; nous avons rencontré les nombres non
entiers dans nos démonstrations parce que nous raisonnions sur
les côtés de divers rectangles et que l'on emploie toujours le

nombre pour individualiser et distinguer les divers segments.
On pourrait, certes, masquer cet emploi; ce ne serait cependant
pas là, la démonstration purement géométrique à laquelle nul
n'est encore parvenu, je l'ai dit, et, après ces explications, il
paraîtra sans doute peu probable qu'on puisse jamais la
construire car pour être vraiment différente des précédentes elle ne
devrait pas utiliser l'axiome relatif aux longueurs.

40. — Maintenant que nous connaissons bien la portée exacte
de la théorie classique, que nous voyons bien les difficultés à

vaincre pour la compléter et les objections d'ordre pédagogique
qui s'opposent à l'emploi d'un exposé logiquement complet, nous
sommes mieux en mesure d'apporter quelques améliorations à

l'enseignement.
Je n'en proposerai que deux. L'une d'elles est accessoire;
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se passer du théorème de proportionnalité des aires de rectangles
ayant un côté commun aux longueurs des autres côtés et obtenir
directement l'aire du rectangle comme au § 25, c'est-à-dire
comme dans l'enseignement primaire et dans le calcul intégral.
Ce serait plus rapide, plus naturel et cela éviterait des longueurs
bien inutiles quand on admet avec nous qu'un rapport d'aires
est un rapport de nombres; la méthode qu'on emploierait serait
celle que les élèves intelligents pourraient vraiment réinventer
d'eux-mêmes. Et on ne serait plus tenté d'invoquer un théorème
grandiloquent sur les grandeurs proportionnelles à plusieurs
autres, que certains comprennent peut-être, mais auquel ni les

élèves, ni moi ne comprenons rien. Je m'occuperai plus tard de ce

théorème à l'occasion de la mesure des grandeurs en général.
L'autre amélioration serait de plus d'importance, elle consisterait

à admettre que l'aire n'est pas une notion première et à

en donner la définition du § 24. Définition qu'on pourrait alléger
car on ne raisonnerait pas à partir d'elle ; on affirmerait seulement

qu'elle permet de prouver les propositions des § 26 à 29, que Von

énoncerait. Puis on reprendrait la marche classique. Cette façon de

faire est déjà à peu près celle de certains professeurs; c'est celle
du manuel de géométrie de Claude Guichard.

4L — Pour bien mettre en évidence l'intérêt de cette
modification, traitons d'abord d'une façon complète la question des

aires des domaines limités par des arcs de cercle et des segments
de droite.

Aire du cercle. — Soit pK un polygone régulier de K côtés inscrit
dans le cercle C, PK le polygone régulier circonscrit de K. côtés.

Les nombres n,L et relatifs au cercle sont compris entre les

nombres n[ relatif à pK et N" relatif à PK, quels que soient K et i.
n[ N"

Or pour i augmentant indéfiniment —- et —t tendent versF 6 100* 100*

les aires de pK et de PK, le premier en croissant, le second en
ni Ni

décroissant, donc les nombres —: et —: sont compris entre
1007' 100*

aire de pK et aire de PK. Or, § 30,
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donc
/ R'2 \aire de P — aire de p aire de pK X I — 1 j

W J

quantité qui tend évidemment vers zéro avec Donc un cercle

a une aire, cette aire est la limite de celles de pK et PK.
En même temps, nous avons montré que l'aire des carrés

nécessaires pour couvrir un arc de cercle tend vers zéro quand i
croit, donc que tout domaine borné limité par des segments de

droite et des arcs de cercle a une aire.
Aire du secteur. — Soit a 4235,43 l'angle au centre du

secteur, en secondes sexagésimales par exemple. Si S est l'aire du
cercle, comme ce cercle contient 360 X 60 X 60 secteurs égaux
d'ouverture une seconde, chacun d'eux a une aire 5 égale à

777 77 77 et le secteur considéré a une aire comprise entre
dot) X bO X 60 1

4235 «s* et 4236 s. Un secteur d'ouverture 0,1 seconde a une
aire s X 0,1 car il y a dix de ces secteurs dans un secteur d'aire s,

donc le secteur d'ouverture cl a une aire comprise entre 4235,4 X 5

et 4235, 5 X -S. etc.
On reconnait le mode de raisonnement que j'ai plusieurs fois

préconisé et qui est celui de l'enseignement primaire. Je ne
reviens pas sur ce qu'a d'inutilement précis l'emploi dans ce

raisonnement de la numération décimale.
L'aire du secteur étant obtenue et les propriétés s*, /?, y, ô se

trouvant acquises pour les domaines limités par des droites et des

arcs de cercle, la théorie des aires de ces domaines est terminée 1*

42. — Comparons maintenant cet exposé à celui des manuels.
Certes, ils diffèrent peu, mais ils diffèrent cependant sur un point
essentiel: c'est qu'ici nous ne posons pas pour l'aire d'un cercle
une définition arbitraire. Naturelle certes, mais arbitraire du
point de vue logique.

Tous les manuels, en effet, depuis quelque vingt-cinq ans
ont adopté le mode d'exposition consistant à dire: la limite des

1 II y aurait naturellement à calculer l'aire S du cercle; d'après le § 30, elle est de la
forme It'2, mais la relation entre le nombre r. et la longueur de la circonférence ne
pourra être établie qu'après que nous nous serons occupés des longueurs des courbes.
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aires des pK sera appelée, par définition, l'aire du cercle. Ceci dit, 1

certains manuels démontrent l'existence de cette limite, d'autres
l'admettent, mais peu importe. |

Auparavant, au temps de mon enfance par exemple, on disait
tout bonnement puisque les polygones pK diffèrent de moins en
moins du cercle, l'aire du cercle est la limite de celles des pK. \

On raisonnait sur l'aire, considérée comme notion première, j

aussi bien pour le cercle que pour les polygones, et on s'appuyait j

sur des propriétés non énoncées et supposées de ces aires. Ce

n'était évidemment pas satisfaisant logiquement; il se trouvait i

pourtant qu'on ne disait rien d'incorrect tandis que l'exposé
actuel est, à mon avis, entaché d'une faute grossière, non si

l'on veut contre la logique, mais contre le bon sens, ce qui est plus

grave. En même temps on manifeste cette naïve crédulité en la l

puissance des mots qui fait espérer qu'une difficulté sera vaincue

par un artifice verbal; comme si un véritable progrès pouvait être

acquis à si bon marché

Que fait-on en effet? L'aire du cercle est la limite des pK; c'est

une définition arbitraire, une dénomination que l'on aurait pu
remplacer par toute autre. Il s'en suit qu'il ne suffit pas d'avoir
adopté cette dénomination et non une autre pour que le nombre
ainsi dénommé aire du cercle se dépêche de rentrer sagement
dans la famille de ceux pour qui sont vraies les propriétés a, /5, y, S%

Par suite, de l'aire connue du cercle on ne peut pas déduire
logiquement celle du secteur, le croire et faire un prétendu
raisonnement c'est errer gravement. L'aire du secteur est

par définition. De l'aire du secteur, ainsi posée
360 x 60 X 60 1 ' r

par définition, on ne peut pas déduire par un raisonnement
celle du segment; c'est par définition que l'aire du segment est la
différence entre l'aire d'un secteur et l'aire d'un triangle.

Si la limite des pK avait été dénommée le tarababoum du
cercle on ne se serait certes pas permis d'en déduire la valeur des

tarababoums du secteur et du segment; on se le permet parce
qu'au lieu du mot tarababoum on a utilisé le mot aire C'est là une

grossière erreur contre le bon sens. On a pourtant la ressource
de prétendre qu'on ne la commet pas, mais qu'on spécule sur la
confusion que ne manqueront pas de faire les élèves en assimilant



SUR LA MESURE DES GRANDE URS 49

cette nouvelle aire à, celles qu'ils ont l'habitude de manier; libre
à chacun de choisir entre erreur et hypocrisie.

Qu'on ne croie pas, d'ailleurs, se tirer d'affaire en répétant trois
fois les mots fatidiques par définition, à l'occasion du cercle, du

secteur et du segment ; car les aires ainsi définies ne pourraient
servir à, rien. On ne pourrait traiter à leur sujet aucune question,

aucun problème, sans rencontrer sur sa route les propositions a, ß,

Y, S dont on n'aurait pas le droit de se servir; par exemple, la question

classique des lunules d'Hippocrate ne pourrait être traitée.
Il faut donc de toute nécessité être en possession de la notion

d'aire avant de calculer les aires ; notion entraînant les propriétés

a, /S, $ pour tous les domaines dont on s'occupera. La méthode
du temps de mon enfance, qui utilisait en somme ces propriétés
sans les énoncer de la même manière pour tous les domaines,
était meilleure que celle des manuels actuels qui fait une discrimination

malencontreuse entre les différents domaines; il aurait
suffit de débarrasser l'ancienne méthode de l'emploi de l'idée de

domaine limite, en disant que l'aire du cercle était comprise
entre celles des polygones inscrits pK et celles des polygones
circonscrits PK, pour la rendre tout à fait acceptable. Elle se

raccorderait en somme avec celle que je préconise ici. Bien
entendu, dans celle-ci on démontrera ou on admettra l'existence
de l'aire pour un domaine limité par des droites et des cercles

suivant qu'on aura démontré ou admis l'existence de l'aire
pour les polygones.

On pourrait évidemment se borner à dire que l'on pose de la
manière choisie les définitions des aires du cercle, du secteur et du
segment parce que c'est avec ces définitions, et avec elles seulement,

que l'on a les propositions «, /3, y, $ ; mais cela serait avouer
qu'il ne s'agit pas de définitions arbitraires, qu'au contraire on a
choisi ces dénominations et non d'autres à, cause de recherches;
seulement on renoncerait à donner idée de ces recherches, alors
que les considérations du § 24 suffisent à les faire deviner.

43. — J'en ai fini avec la question des aires planes; pourtant,
pour montrer la souplesse du procédé préconisé, envisageons le
cas de domaines plans limités par des segments de droites et
des arcs de coniques, domaines qu'on rencontre parfois en

L'Enseignement mathém., 32e année ; 1933. 4
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géométrie élémentaire. De tels domaines ont-il une aire, dès

qu'ils sont bornés En d'autres termes, un arc fini de conique
peut-il être recouvert à l'aide de polygones dont la somme des
aires est arbitrairement petite

S'il s'agit d'un arc d'ellipse nous utiliserons le théorème des

projections orthogonales. Soit D un domaine, d une projection
orthogonale de D; prenons, dans le plan de D, le réseau T ayant
des côtés parallèles à l'intersection XX' des plans de D et de d,
dont l'angle est 6. Un carré U; a pour projection un rectangle u-t

A 1dont le côté parallèle à XX' est celui perpendiculaire à

XX ' est - u a une ajre égale à -°S-rj. Or D contient m
10*

5 1 6 100* 1

carrés Ui et est contenu dans Ni de ces carrés, donc d est contenu
IN" • cos 0

dans le polygone formé par Ni rectangles u0 d'aire 1 et

cos 0

contient un polygone d'aire —. Donc, si D a une aire, d en^ 100* '

a une et on a: aire de d aire de D x cos 6.

S'il s'agit d'un arc d'hyperbole ou de parabole, on pourrait
utiliser de façon analogue une relation

aire de d ^ aire de D x K

entre les aires de deux polygones d et D projections coniques
l'un de l'autre; relation dans laquelle K est fixé pour tous les

couples rf, D situés dans deux régions bornées se correspondant
par projection conique. Mais il est plus simple et plus général
de prouver que: tout arc convexe et borné peut être couvert par des

polygones dont la somme des aires est arbitrairement petite.
Soit un tel arc, décomposons-le en arcs partiels tels que chacun

d'eux ne soit pas rencontré en plus d'un point par les parallèles
à deux directions rectangulaires OX, OY. La possibilité d'une
telle décomposition est immédiate, pourtant il serait difficile
de la prouver de façon très précise,non à cause du mot convexe,
mais parce que les mots courbe, arc de courbe n'ont pas en
géométrie élémentaire une définition précise. Quoique il en soit, c'est
sur un tel arc partiel que nous allons raisonner; la démonstration
vaudra pour les arcs formés d'un nombre fini de ces arcs partiels.

Soit donc un tel arc T tout entier couvert par le rectangle
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AA'BB' de côtés parallèles à OX, OY et dont deux sommets opposés

sont les extrémités A et B de T ; soit S l'aire de ce rectangle.

T est tout entier dans le triangle AA'B, ou tout entier dans le

triangle ABB' à cause de sa convexité ; supposons-le dans AA'B.
On peut couvrir AA'B à l'aide de rectangles de côtés parallèles
à OX et OY et dont la somme des aires surpasse l'aire de AA'B
d'aussi peu qu'on le veut. On peut donc supposer cette somme

d'aire inférieure à S. Ne conservons de ces rectangles que ceux

qui contiennent des points de F, restreignons chacun d'eux au

rectangle de côtés parallèles suffisant pour contenir les mêmes

points de T; après ces modifications, nous avons des rectangles

d'aire totale inférieure à
-g-

S et contenant respectivement les

arcs ri? r2, dont T est la réunion. Si l'on recommence le
même raisonnement sur rl? T2, on couvre T à l'aide de

rectangles d'aire totale S, etc. La démonstration est faite.

Ainsi, la théorie élémentaire des aires que nous avons développée

s'applique, en particulier, à tous les domaines bornés limités par un
nombre fini de segments de droites et d'arcs de courbes convexes.

Des raisonnements comme le précédent prépareraient, et
éclairciraient peut-être, ceux qu'on fera lorsqu'il s'agira de

l'intégrale définie. Les élèves ne comprendraient-ils pas plus
facilement qu'au passage de la géométrie élémentaire à l'analyse
rien d'autre n'a été changé que le langage, plus géométrique
avant, plus analytique après Et peut-être sentiraient-ils
quelque peu le progrès accompli: Toujours, en mathématiques,
le point de départ initial est concret, le langage aussi est concret,
géométrique le plus souvent. Ceci est favorable à, l'imagination;
trop favorable même car la réalité est très riche; trop de

remarques sollicitent l'attention. Aussi les premiers raisonnements
n'ont-ils qu'une portée très limitée car ils font état de beaucoup
de ces remarques particulières. Peu à peu on isole chaque
question des autres, on discerne ce qui est essentiel pour chacune,
les raisonnements deviennent plus généraux en même temps
que le langage devient plus analytique et abstrait. Cet abstrait
n'est pas vide de contenu, bien au contraire le langage n'est
devenu abstrait que pour être plus immédiatement applicable
à des réalités plus nombreuses. (A suivre)
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