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SUR LA MESURE DES GRANDEURS!?

PAR

M. Henri LEBESGUE,

Membre de I’Institut (Paris).

ITI. — AIREs.

Comme précédemment je commencerai par un exposeé; pour
éviter tout malentendu, je précise que cet exposé exigerait, &
mon avis, de sérieux allegements, qu’on pourrait obtenir par
exemple en supprimant les démonstrations de certains points,
pour étre & la portée des éleves moyens de la classe de Mathéma-
tiques. Je ne le préconise donc nullement comme exposé § faire
dans cette classe; seule une expérience permettrait de juger dans
quelle mesure il pourrait y étre adopté. Je le donne seulement
comme base & partir de laquelle nous discuterons.

24. — Notion d’atre. — Supposons que 'on ait & sa disposition
des carreaux ayant la forme de carrés tous égaux et qu’on veuille
carreler diverses pieces. Pour celle-ci il suffira de 100 carreaux
utilisés convenablement et entiérement, peut-étre apres subdi-
vision de certains d’entre eux; pour celle-1a il faudrait 150 car-
reaux. On dit que la premiére piéce a une aire plus petite que la
seconde et I'on précise en disant que la premiére a une aire égale
& 100 carreaux, et la seconde une aire de 150 carreaux.

On concoit que cette question pratique et d’autres analogues
ait conduit & des notions mathématiques, comme la comparaison
d’un segment & un segment unité a conduit aux notions de
longueur et de nombre.

1 Voir L’Enseignement mathématique, X X XIe année, p. 173-206.
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Pour évaluer les longueurs des différents segments AB portés
par une droite nous avons construit sur cette droite, § 8, & partir
d’un point » et dans les deux sens, une graduation en unités U,
une graduation en unités U,, etc. Et c¢’est la comparaison de
AB a la graduation totale T, & intervalles indéfiniment petits,
ainsi obtenue qui permettait de définir et d’évaluer la longueur
de AB. Nous procéderons exactement de la méme maniére.

Soit donné, en position dans le plan considéré, un carré C,
solent wz, »y les droites portant deux de ses cotés. Parallelement
a wx tracons toutes les droites dont les distances & «x sont des
multiples entiers du c¢6té du carré C, faisons de méme paralléle-
ment & wy. Nous couvrons le plan d’un réseau R de carrés égaux
a G, que nous appellerons les carrés U. Subdivisons les cotés de
ces carrés en dix parties égales, par les points de subdivision
menons des paralleles § wa et wy, nous obtenons un réseau R,
de carrés qui sont dits les carrés U;. On passe de méme & un
réseau R, de carrés U,, etc. La réunion de tous ces réseaux
donne ce que nous appellerons le réseau total T déduit de C.
(C’est par comparaison & T que nous allons définir et évaluer les
aires.

Soit ! un domaine D; comptons combien 1l y a de carrés U,
formés entiérement de points de D; soit n;. Comme un carré Uj
contient 100 carrés U, ,, on a donc

g n, . nNj

=

100 1002 100%

B =
tous ces nombres sont dits au plus égaux & I’aire de D. Comptons
combien il y a de carrés U, dont certains points appartiennent
a D; soit N.. On a évidemment N, > n;, et pour la méme raison
que plus haut,

N Ns Neon N

100 100* 100

1 L.e mot domaine n’a pas, en géométrie élémentaire, un sens bien précisé; il devien-
drait parfaitement clair si 1’on se restreignait a la famille des domaines polygonaux,
ou & celle des domaines limités chacun par un nombre fini de segments de droite et
d’arcs de cercle, etc.. Mais c’est & dessein et pour bien marquer que la définition est la
méme pour toutes ces familles de domaines qu’on a laissé au mot domaine toute sa géné-
ralité imprécisée.

‘L’emploi de ce mot exigerait, du point de vue strictement logique, que nous démon-
trions celles des propriétés de ces domaines que nous utiliserons, par exemple celles
relatives aux frontiéres. Mais 14 encore il s’agit de propriétés parfaitement claires
pour les familles particuliéres simples de domaines et qu’il est alors d’usage constant
d’admettre sans démonstrations dans les cours élémentaires.
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tous ces nombres, qui sont au moins égaux aux précédents, sont

dits au moins égaux a ’aire de D.
Lorsque ces deux suites sont deux suites de valeurs indéfinument
N, — n.
1 1

™ tend vers zéro quand 1

approchées, c’est-a-dire lorsque

augmente indéfiniment, on dit que le nombre défini par ces deux
suttes est Uaire de D par rapport & Uunité U.

Cette définition fournit, comme dans le cas des longueurs,
un procédé expérimental pour déterminer le nombre défini.
Dans 'un ou I'autre cas, on ne peut réaliser la graduation totale
T, mais on peut du moins marquer les premieéres graduations R,
Ry, R,, par exemple, en unités U, U, U,. Lorsquil s’agit de
longueurs, on marque ces graduations le long d'une regle qu’on
applique ensuite sur le segment & mesurer et on lit de suite les
nombres n, ny, ny; N, Ny, N,. Sl s’agit d’aire, on marque ces
réseaux sur un transparent que I’on place ensuite sur le domaine
a étudier et on lit encore n, nq, ny; N, Ny, N,.

25. — Nous allong éclairer cette définition en 'appliquant a un
rectangle OACB de cotés OA et OB respectivement paralleles
4 wz et wy; prenant suivant 'usage le ¢6té ¢ de U pour unité
de longueur, nous désignerons par a et b les longueurs de OA
et OB.

Les cotés de U, paralleles & «y découpent sur OA une gradua-

v 1% 5
tion en segments T0i> % de ces segments ont tous leurs points

appartenant 4 OA, A, d’entre eux ont certains de leurs points
appartenant a OA. 1—(; et I(%i sont des valeurs approchées de a,

respectivement par défaut et par excés; § 8. On a d’ailleurs
A, =a, + 2

En intervertissant les roles de OA et de OB, de v et de wy
Onademémeﬁébé-i—..

10% 10

Or les n; carrés U, dont tous les points appartiennent & OACB
sont ceux qui se projettent sur OA et OB respectivement suivant
les a; segments et les b, segments considérés; on a done
n; = a;.b,.

Les N, carrés U; dont certains points appartiennent & OACB
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sont ceux qui se projettent sur OA et OB respectivement suivant
les A; segments et les B, segments considérés; on a donc
n, & b N, A B ,
Les deux nombres .= — X — et .= — X -— fournis
100t 10* ~ 10*  100* 10 ¢
par les carrés U; comprennent donc entre eux le produit ab
et 'on a:

2 [ & b 2 2
= —|— 4+ — + — | < -—(a+ b+ 1);
10 [101 10t 101J 0T )

donc les deux suites % et % sont indéfiniment approchées.
La wvaleur qu’elles définissent est ab. Le rectangle OACB a,
par rapport a 'unité U, une aire égale a ab.

Ainsi, il a été prouvé que tout rectangle de cdtés paralleles a
or et oy a une aire, nous avons évalué cette aire et, del’expression
obtenue, il résulte que l'aire est la méme pour deux rectangles
déduits I'un de 'autre par translation, que 'aire d’un rectangle
de cotés paralleles & ox et oy formé par 'accolement de deux
autres rectangles, a pour aire la somme des aires de ces deux
autres.

Pour que notre notion mathématique d’aire soit bien en accord
avec la notion expérimentale et puisse étre utilisée pratiquement
pour un polygone quelconque, 1l faut évidemment que nous
démontrions que-tout polygone a une aire, que nous évaluions
cette aire, que nous prouvions que deux polygones déduits I'un
de Pautre par un mouvement quelconque ont méme aire, qu’un
polygone formé par I'accolement de deux autres a une aire égale
4 la somme des aires de ces deux autres.

26. — Tout polygone a une aire. Soient P un polygone, N;
et n; les nombres relatifs & ce polygone et fournis par les carrés
U,; il faut évaluer N; — n;. Or ce nombre est celui des carrés
U, comptant dans les N; sans compter dans les n;, c’est-&-dire
celui des carrés U, qui contiennent & la fois les pcints de P et des
points n’appartenant pas & P. Un tel carré contient des points
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de la frontiére (ou contour) de P; cette frontiére est constituée par

un nombre fini de segments de droites. Donc il sera prouvé que

N; — n, . . : .
- 01.—3 tend vers zéro pour ¢ indéfiniment croissant, si I'on
10

u.
démontre que onitend vers zéro, u; étant le nombre des carrés U,

qui contiennent des points d’un segment arbitraire AB. Or ceci
est facile & établir.

Supposons d’abord que AB ne soit paralléle ni & wz, ni & »y.
Soit 4 un rectangle de cotés paralléles 4 mx et @y dont les cotés
paralléles & wy découpent sur la droite AB un segment «/3 conte-
nant le segment AB. Les carrés U, qui contiennent des points
de AB sont parmi ceux qui contiennent des points de 4; si ceux-ci

N .

E‘J‘. ’ 2 -
sont en nombre N, le nombre — " est au plus égal & —, c’est-
100* 100"

a-dire a la valeur approchée par exces de l'aire de 4 laquelle,
pour ¢ assez grand, surpasse cette aire d’aussi peu qu’on le veut.

. .
Si donc a et b sont les cotés de 4, pour ¢ assez grand, —— surpasse
’ 7 100

ab d’aussi peu qu’on le veut.

Soit 7 le milieu de /3, recommencons le raisonnement pour «y
d’une part, pour 73 de autre ; remplacons la figure %, «f3, par des
figures semblables 4,, «y; 4,, ¥8; 4, et %, sont de dimensions

a b R . .
5 et 5-et comme, pour qu'un carré U; contienne des points de

af3, il faut qu’il contienne des points de »y ou des points de 7,

. o :
pour ¢ assez grand, ﬁ)i surpasse d’aussi peu qu’on le veut

a b a b ab
72 T g T
Une nouvelle subdivision donnerait de méme 3—?, puis %2, etc.

4
100¢
Si AB est paralléle & oz ou wy, on remplacera % par un

rectangle de base AB et de hauteur arbitrairement petite.

est donc aussi petit qu’on le veut pour ¢ assez grand.

27. — St lon subdivise un polygone P en pol?/gonés P,,P,,...P
on a: aire de P = aire de P; 4 aire de P,.+ ... + aire de P__.

m




28 HENRI LEBESGUE

En effet, les n; carrés U, contenus dans P sont soit contenus
en entier dans 'un des polygones P,, il y en aura par exemple
nj, dans P,, soit tels qu’ils contiennent les points des frontitres
des Pj,. Soit y; le nombre de ceux-ci. On a:

— i 1 1
ni-——nl—}-nz—}— ...—I—nm—{—y.i.

i
_et les " se rappro-
100 100

chent indéfiniment de ’aire de P et des aires des P,, tandis que

i

100¢
Il en résulte de suite

n;

Or, pour ¢ augmentant indéfiniment,

tend vers zéro; d’ou I’égalité annoncée.

aire de P > aire de P, 4+ ... + aire de P, .

— pour le cas dun polygone P contenant des polygones
Py, Py, ... P, extérieurs les uns aux autres et ne constituant pas
tout P a eux seuls — et

aire de P < aire de P, + ... + aire de Pm

— pour le cas d’un polygone P formé par la réunion de polygones
P, qui ne sont pas tous entiérement extérieurs deux a deux.

28. — Dans une classe, il conviendrait de traiter entiérement
le cas des polygones avant d’aborder celui des autres domaines;
m’adressant ici & des Professeurs j’éviterai les redites, autrement
inévitables, en parlant de la condition nécessaire et suflisante
pour qu'un domaine D ait une aire.

i

N .
On a vu qu’il fallait que le nombre ——100—1.——1 tende vers zéro

pour ¢ croissant indéfiniment. ﬁ% est I’aire d’'un polygone E formé

n.
par les N, carrés U, utilisés, E couvre D; I(ﬁ est la somme des

aires des polygones I formés par les n; carrés U, utilisés; I est
couvert par D.

Donc pour qu’un domaine D ait une aire, il faut qu’il puisse
étre couvert par un polygone E et qu’il couvre des polygones 1,
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extérieurs les uns aux autres, et de maniére que U'aire de i surpasse
la somme des aires des 1 d’aussi peu qu’on le veul. La réciproque
est vraie; car alors, pour i assez grand, les N; carrés U, contenant
des points d’un tel polygone E ont une aire qui surpasse celle de I
d’aussi peu qu’on le veut et les n; carrés formés uniquement
de points des I ont une aire totale aussi peu inférieure qu’on le
veut & celle des I. Et comme, si N, et n, sont les nombres habituels
relatifs & D, on a

14 14

~ — ~
Ni—Ni—ni—ni’

14 14

e e N; — n; :
—Roi—‘, qui est inférieur & —--— , lequel surpasse d’aussi peu

qu’on le veut aire de E — aire de 1, est aussi petit qu’on le veut.
De plus, 'aire de D est comprise entre celles de E et de I.
L’application de cet énoncé & ’extension des énoncés du para-
graphe précédent, comme aussi a la démonstration du fait qu'un
domaine provenant de la réunion de plusieurs autres a une aire
deés que ceux-ci en ont une, est immédiate. 1l va nous permettre
aussl de donner au paragraphe suivant une portée plus générale.

N. —n

1

29. — Deux polygones égaux ont méme aire. Plus généralement,
si D est un domaine ayant une aire et si A est égal a D, A a
une aire; cette aire est égale & celle de D. Nous subdiviserons la
démonstration, en supposant d’abord que D est un polygone
et en faisant des hypotheses sur la nature du mouvement qui
transforme D en A.

a) Le polygone A se déduit de D par une translation. D est
couvert par N; carrés U; et en contient n,; la translation trans-
forme les carrés U, en carrés V,; de méme aire, §25. Donc A est
couvert par N; carrés V; et en contient n, de sorte que ’on a:

n; ) N;
—— = airede A = —— .
100* 100?

Ce qui montre que A et D ont la méme aire.

b) Le polygone A se déduit de D par une symétrie par rapport
a Uaxe ZZ'. Soit G’ un carré dont un ¢6té est sur ZZ’, & partir de
C’ construisons un réseau T’ comme, & partir de C, nous avons
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construit le réseau T au § 24. Les carrés successifs de T’ seront,
désignés par U’, U;, U;, ... Soient N et n; les nombres des
carrés U; qui contiennent des points de A, et qui ne contiennent
que des points de D. Tous ces carrés U; ont la méme aire, § 29%;

il y en a 100" dans C’, ils ont, § 27, une aire égale & 1—(%;, si S est
P’aire de C’. Donc on a:

4

—S = airede D = —8S |
100? 100°

et, pour ¢ croissant indéfiniment, la différence entre les deux
’ /
p " g

membres extrémes tend vers zéro, puisque, § 26, - N

tend

00°
vers zéro.

Mais a cause de la symétrie de T'de D et A par rapport 4 ZZ’,
les nombres N et n; valent aussi pour A, P'aire de A vérifie
aussl l'inégalité précédente. Donec A et D ont la méme aire.

¢) Le polygone A est égal au polygone D. Soient A, «; B, 8 deux
couples de points correspondants de D et A. La translation A«
transforme B en (’; la symétrie par rapport a la médiatrice
de BB’ transforme D en D’ tel que A est en «, B en (3. Alors,
ou D’ est confondu avec A, ou D’ est symétrique de A par rapport
a of3. Dans les deux cas, on passe de D a A par une suite de
transformations laissant I’aire invariable: D et A ont méme aire.

d) D est un domaine ayant une aire. Soient E et I deux poly-
gones, I'un qui couvre D 'autre couvert par lui, et dont les aires
different de moins de . Le déplacement qui transforme D en A
transforme E et I en des polygones de mémes aires dont I'un
couvre A et autre est couvert par lui. Et, puisque la différence ¢
de ces aires est arbitrairement petite, A a une aire; celle-ci
difféere de celle de E de moins dee, donec D et A ont méme aire.

Le résultat que nous venons d’obtenir peut encore se formuler
ainsi: ’aire d'un domaine ne dépend pas de la donnée du carré
unité C en position, mais seulement en grandeur; c’est-a-dire,
puisque nous convenons de prendre le coté de C pour unité de
longueur, que l’aire ne dépend que de 'unité de longueur.

En effet, soient deux carrés égaux G et G’, soient T et T’
les deux réseaux qui se dédvisent respectivement de 1'un et de
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autre. Pour évaluer l'aire d’un domaine D & partir de G’ il
faut, par exemple, compter les nombres N; et n; relatifs & D
et T’. Ces nombres sont aussi ceux relatifs &8 A et T, si A est ce
que devient D par le déplacement qui transforme C’ en C;
done, si D a une aire par rapport & C’, A a une aire par rapport
a C et ces deux aires sont égales. Or, puisque A et D sont egaux,
D a aussi une aire par rapport & C et égale a celle de A par
rapport & C; donc D a une aire et par rapport & C et par rapport
a C’, et ces deux aires sont égales.

Les deux énoncés précédents se résument en un seul: un dépla-
cement relatif d’un domaine et du réseau T n’a aucune influence,
ni sur Pexistence de aire du domaine, ni sur la valeur de cette
aire.

30. — Examinons maintenant I'influence du changement
d’unité de longueur, ¢’est-a-dire le remolacement du carré C par
un carré G’ de grandeur différente, sur I’existence de I’aire d’un
domaine D et sa valeur, c¢’est-a-dire traitons la question ana-
logue a celle qui, au §11, nous a conduit & la multiplication.

Supposons qu’avec (G les nombres relatifs aux carrés U,
soient N, et n;, la frontiére de D peut donc étre couverte avec des
polygones (des carrés U,) dont I’aire totale avec la nouvelle unité

de longueur est (Ni“ni)i‘oszﬁv si S est la nouvelle aire de C.

N, —n. . i
Or, par hypothése, —11601 " tend vers zéro quand ¢ croit indéfi-

niment, car on suppose que D a une aire par rapport & C.
Donc D a encore une aire par rapport a C'. Et cette aire A’,

étant comprise entre N

S e ; g
i Togt et n; el quel que soit i, est égale a

Paire A de D par rapport & C multipliée par S; A" = AS. Si ¢
est la nouvelle longueur du c6té de C, ceci s’écrit

A = A.*.

Le changement de Punité de longueur a pour effet de multiplier
toutes les aires par le carré de la longueur de Pancienne unité de
longueur par rapport & la nouvelle.

Cette proposition qui exprime l'effet, sur la comparaison de
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D & (, d'une transformation relative par figures semblables
effectuée sur I'un des deux domaines D et C, peut comme la
précédente étre énoncée sous une forme inverse.

Laissons en effet (. fixe et remplacons D par un domaine
semblable D', le rapport de similitude étant k; si G’ désigne le
transformé de C, dans la similitude de rapport %, les nombres
N; et n; relatifs 8 C et D d’une part, & C’ et D’ d’autre part sont
les mémes. Done D’ a une aire par rapport a C’, et celle-ci est
égale & I’aire de D par rapport a C, soit A; done I'aire de D’ par
rapport 3 C existe et est AL2 puisque k% est Paire de C', le
coté de G’ étant k.

Done, une transformation par figures semblables de rapport k
transforme un domaine D ayant une aire A en un domaine D'
ayant une aire Ak2,

31. —- Les propriétés de ’aire, qui viennent d’étre prouvées,
sont bien en accord avec les modes d’utilisation de l'aire dans la
pratique et c’est méme parce qu’il y a cet accord que l'on peut
espérer avoir bien traduit mathématiquement la notion wvul-
gaire d’aire. Si, pourtant, il y avait d’autres maniéres que celles
que nous avons envisagées d’attacher aux domaines des nombres
jouissant eux aussi des propriétés que nous venons de prouver
dans les paragraphes précédents pour les nombres que nous
avons appelés aires, il v aurait plusieurs traductions mathéma-
tiques possibles de la notion pratique d’aire et ’on pourrait
craindre de ne pas avoir choisi la meilleure. De sorte que, méme
en considérant les mathématiques comme une science expérimen-
tale, il est important de démontrer que les aires que nous venons
de considérer sont enticrement déterminées par les conditions
suivantes :

o — A chacun des domaines d’une famille de domaines dont font
partie tous les polygones est altaché un nombre positif que Uon
appelle son aire.

B — A un domaine formé par la réunion de deux autres exté-
rieurs 'un & Uautre est attaché comme aire la somme des aires des
deux autres.
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y — A deux domaines égaux sont attachés des aires égales.
De plus, on verra que:

0 — Ces nombres aires sont entiérement fixés numériquement,
quand on connait Uaire atlachée & Pun des domaines.

En effet, prenons un carré C quelconque, soit k2 le nombre
attaché a C. Alors, si D est un domaine quelconque de la famille,
et si N, et n, sont les nombres relatifs & D et au réseau T oonstruit
a partir de C, I’aire de D est comprise entre N%gzi et 1001 de
sorte que ¢’est celle que notre procédé permet d’attacher & D
quand on prend pour carré d’aire 1 le transformé de C dans le

rapport —Z—. D’ailleurs le nombre k est connu; si, en effet, o, est

Paire connue d’un domaine D, et si o est I’aire que notre procédé
permet d’attacher & D, & I'aide du réseau T (c’est-a-dire si o est
N. n, 5,

-}, on a k%=

g

1

Ly
00? 100t

Les propriétés «, 3, y constituent la définition axiomatique de
Paire, débarrassée de ce qu’avait d’apparemment trop particulier
Pemploi du réseau T pour définir cette aire. Le réseau T joue
dans la conception de I’aire un réle analogue & celui de la numéra-
tion décimale dans la conception de la notion générale de nombre.

la limite des nombres

32. — On utilise surtout la propriété suivante qui découle de
suite de =, 5, y: deux polygones qui sont décomposables en poly-
gones égaux, c’est-a-dire deux polygones qui proviennent de deux
arrangements différents des mémes parties polygonales, ont la
méme aire.

Nous avons démontré cette propriété meéme pour le cas ou
il s’agirait de deux domaines provenant de deux arrangements
différents de parties de formes quelconques, pourvu que ces
parties alent chacune une aire et nous pouvons par suite revenir

1 A la vérité cette démonstration suppose que D fasse & la fois partie de la famille
des domaines pour lesquels notre procédé des paragraphes précédents s’applique et a la
famille de ceux auxquels I’énoncé de ce paragraphe suppose qu’on ait attaché un nombre
satisfaisant aux conditions », %, ~. Mais il s’agit de prouver que les conditions v, 8, v
suffisent & définir les aires des domames D précédemment considérés, nous ne devmns
done nous occuper que de la famille de ces domaines ou d’une famille plus restreinte.

Si, au contraire, on prenait une famille plus vaste, les conditions «, g, vy pourraient
encore étre satisfaites; mais, comme Jel ai prouvé jadis, on n’aurait plus la proposition 3.

En d’autres termes les propriétés -, g, v ne suffiraient plus pour caractériser 1’aire a
un changement prés de 1'unité d’aire.

[’Enseignement mathém., 32 année; 1933.
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maintenant & I'exposé classique. Nous pouvons done légitime-
ment trouver a la facon ordinaire ’aire du parallélogramme, puis
celle du triangle et par suite I’aire d’un polygone quelconque,
puisque tout polygone est décomposable en triangles. On peut
résumer les résultats dans cet énoncé classique: sotent ABCD...
un polygone plan w et O un point de son plan : Uaire du polygone
est égale a

%[i AB x distO, AB + BC x distO, BC 4 ...] :

Le signe pris devant le terme en PQ étant + ou — suivani
que O est ou non du méme coté du segment PQ que la partie du
polygone ™ quu avoisine PQ).

Pour justifier cet énoncé, l'aire du triangle étant supposée
obtenue, remarquons que les cotés des triangles OAB, OBC, ...,
que nous appellerons les triangles T,, partagent le plan en poly-
gones partiels, que nous désignons ainsi que leurs aires par

Py, Py, ... et que chaque triangle T, est formé de certains des
P,. De sorte que l’expression annoncée, qui est la somme des
aires de ces triangles affectés de signes 4 et —, se présente &

nous sous la forme
4+ (P, + Py ) £ (P, + Py )

il suffit de prouver qu’apres la réduction des termes semblables
il ne figurera plus que les P intérieurs au polygone = et
chacun d’eux avec le coefficient -+ 1. Or, soit une demi-droite
issue de O et ne passant par aucun des sommets A, B, C, ...;
parcourons-la en sens inverse et solent Z;, Z,, ... les points de
rencontre successifs avec la frontiére de w. Fixons les notations
de maniére qu’a ’entrée dans w en Z,, on entre dans T et dans
P1; qu’a la sortie de © en Z,, on passe de P! & P2, qu’on entre
dans T2, sans d’ailleurs sortir de T'; qu’a ’entrée de = en Z;, on
passe de P2 &4 P3, qu’on entre dans T3, sans d’ailleurs sortir ni de
T, ni de T?; etc. Les P; contenant des points de la demi-droite
considérés ne figurent dans la somme que par

4 (PU PP PP g L) — (PP PP L) 4+ (PR

to =P P
ce qui démontre le théoréme.
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33. — En possession de cet exposé, qui sera complété plus
tard pour les domaines non polygonaux, on verra mieux la
portée exacte des raisonnements classiques. Ordinairement, on
admet que la notion mathématique d’aire est clairement imposée
par son emploi pratique et on utilise, le plus souvent implicite-
ment, les axiomes «, 3, y; la seule modification importante que
nous ayons apportée ici est la démonstration de «, 3, 7. Sauf sur
des points accessoires, il n’y a donc pas opposition entre I’exposé
clagsique et celui d’ici qui est seulement logiquement plus
complet.

Que fournit exactement I’exposé classique ? L’évaluation
des aires définies par o, 3, y, . Méme on n’y utilise 9 qu’appa-
remment et quelques précautions de langage insignifiantes
(consistant uniquement & parler parfois d’une aire au lieu de
aire) permettent de se passer de 9. Si bien que 'exposé classique,
en fournissant I’évaluation des aires dés que l'unité d’aire est
fixée, prouve la proposition 0.

On peut donc dire aussi que I'exposé classique permet de
calculer les aires, s’il existe des aires, et qu’il suffirait de constater
aprés coup que les nombres obtenus vérifient les propriétés =, 3, v
pour avoir traité la théorie des aires sans avoir fait appel a
des axiomes nouveaux. C’est ce qu’ont fait divers géométres
(Schur, Gérard; etc.!) donnant ainsi & P’exposé classique une
valeur logique équivalente & celle de 'exposé qu’on a pu lire ici.

Voici, légérement modifiée dans la forme, la méthode des
auteurs cités 2.

A chaque polygone ABC ... attachons le nombre

%(i AB x dist. O, AB 4 BC x dist. O, BC 4 ...) .

O étant un point choisi dans le plan et les signes étant pris
comme 1l a été dit. Nous allons d’abord prouver que ce nombre
est, en réalité, indépendant de O.

! Pour la bibliographie, voir les Grundlagen der Geometrie de Hilbert et les Questioni
riguardanti la Geometria elementari de Enriques.

2 Je signale de suite que la phrase «, qui a été qualifiée plusieurs fois précédemment
de proposition ou d’axiome bien qu elle n’était en réalité alors qu’une indication de
dénomination, deviendra maintenant une proposition et méme la proposition prin-
cipale: de quelgue maniére que 'on décompose un polygone P en triangles partiels T
la somme des aires T, de ces triangles est toujours la méme.
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w; étant un point de AB, situé entre A et B, considérons
Pangle droit x; o, y; dont le premier ¢c6té w,z, est ®B et dont le
second est dirigé vers l'intérieur du polygone avoisinant AB.
On sait que si I’on transporte cet angle en z,w,y, de facon que
w vienne en un point w, de BC et que m,z, prenne la direction o,C,
Wy 1/, Sera encore dirigé vers l'intérieur du polygone avoisinant
BC; ete. De sorte qu’il suffira de mesurer les vecteurs AB, BC,
suivant les directions successives de ox et les vecteurs HO, KO,
distances des cotés 8 O suivant les positions successives de oy
pour que l’expression précédente devienne

5 (8B .HO + BC. KO + ..) .
Si lon a remplacé O par O’, ce nombre est remplacé par

S {ABIHO + cos (00", w,4).00
+ BG[KO + cos (00", w,,).007] + ...} .
I1 varie done de

00’
2

[AB cos (0Q, w,x;) + BG cos (0Q, wyz,) + ...] ,

0Q étant la direction qui provient de OO’ quand on effectue
la rotation qui améne w,y, en w2, ©yY, €N W, 7,, ete. Orla paren-
thése est nulle comme mesure de la projection du contour
du polygone sur I'axe OQ; le nombre attaché au polygone est
bien indépendant du choix de O. Dans un instant on verra
qu’il est bien positif.

Constatons d’abord que ce nombre vérifie la propriété 3 et pour
cela faisons la somme des nombres attachés & deux polygones
P,, P, extérieurs 'un a 'autre et qui, par leur réunion forment
un polygone P; ces deux nombres étant évalués a ’aide d’un
méme point O. Comme on ne modifie pas le nombre attaché
a un polygone ABC ... en intercalant un sommet Z situé sur AB
entre A et B, c’est-a-dire en remplacant AB X dist. (O, AB)
par AZ X dist. (O, AZ) -+ ZB X dist. (O, ZB) on peut supposer
que P, et P, sont adjacents tout le long de certains c6tés. Alors,
si AB est un de ces c6tés, AB X dist. (O, AB) intervient dans les
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nombres attachés & P, et P, et avec des signes différents car Py
et P, sont de part et d’autre de AB.

D’autre part si KL est un ¢oté de P,, par exemple, n’apparte-
nant pas & P,, le produit KL, x dist. (O, KL) intervient dans les
nombres attachés & P et & P, et avec le méme signe puisque P
et Py, sont du méme coté de KL.

Done, aprés réduction des termes semblables dans la somme
des expressions, & Paide de O, des nombres attachés & P, et & Py,
on trouve l'expression, & l'aide de O, du nombre attaché a P.

f3 étant ainsi prouvée, le nombre attaché a un polygone sera la
somme de ceux attachés aux triangles d’une quelconque des
décompositions de P en triangles; donc ce nombre sera positif
et vérifiera la condition y si le nombre attaché a un triangle est
positif et indépendant de la position du triangle dans le plan,

Or, calculons le nombre relatif & un triangle ABC. en prenant

4 .1 .
O en A, nous le trouvons égal & +BC X hauteur issue de A.

La démonstration est achevée; on la présente généralement
sous la forme suivante: on prend O fixe; on démontre B, puis,
ayant ainsi ramené le calcul du nombre attaché a PP a I'addition
des nombres attachés a des triangles, exactement comme plus haut,
on vérifie directement que, dans un triangle, les trois produits
de ses cOtés par les hauteurs correspondantes sont égaux et que,
quelle que soit la position du point O par rapport au triangle,
le nombre attaché & ce triangle est égal & ce demi produit.
Ce sont ces constatations que nous avons remplacées par le
raisonnement plus ramassé, mais moins élémentaire, relatif
au passage de O & O'. La démonstration se réduit donc a ceci:
Des hypotheses «, (3, y résultaient des maniéres innombrables
de calculer I’aire; parmi elles nous en choisissons une bien déter-
minée; de cette fagon nous satisfaisons 4 la partie principale de la
condition o: a chaque domaine nous attachons un nombre bien
déterminé. Puis nous vérifions que ce nombre satisfait aux
conditions 3 et y, et de plus est positif.

34. — (’est en somme exactement ce que nous avions fait
dans notre premiére méthode; & cela prés que nous n’avions pas
discriminé quelles étaient, parmi toutes les propriétés de laire
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concrete, celles que nous utilisions dans notre construction
mathématique; nous n’avions donc pas énoncé «, 3, y. En fait,
Pordre que nous avons suivi est exactement celui que 'on suit
toujours quand on a a traduire mathématiquement une notion
concrete: on commence par utiliser fout ce que Pexpérience
vous a appris sur la notion; puis, quand on a réussi & construire
une premiére définition mathématique, on peut se proposer de
I’épurer en fixant exactement ce qui a été utilisé avec raison.
L’axiomatique se fait en dernier, quand le principal a déja été
traité; mais alors, elle fixe exactement la valeur du résultat
obtenu, en prépare les généralisations, ete.

Donec, a des détails pres d’exposition, nos deux méthodes
suivent la méme marche, ainsi on ne pourrait reprocher a la
seconde son caractere de vérification! sans le reprocher a la pre-
miere. On ne peut reprocher 3 celle-ci 'emploi artificiel du
réseau T, sans reprocher a la deuxiéme l'emploi du point O.
La seule différence profonde est que la premiere, utilisant
une définition générale de I'aire, s’applique dans des cas plus
étendus, tandis que la seconde, utilisant un mode d’évaluation
spécial aux aires polygonales, est d’application plus restreinte;
par contre, elle posséde les avantages d’élégance des procédés
finis, elle met & part les domaines polygonaux a la facon dont,
ordinairement, on distingue des autres les nombres commen-
surables, ainsi qu’il a été rappelé au chapitre précédent.

35. — Nous pouvons maintenant, utilisant ces remarques,
construire de nouveaux exposés de la théorie des aires; voici le
seul qui vaille d’étre indiqué ici. Nous avons, dans le second
procédé, appliqué en somme la formule d’intégration en coordon-
nées polaires et, dans le premier, la formule d’intégration en
coordonnées rectilignes rectangulaires; on peut évidemment par-
ticulariser et, par le procédé des arpenteurs, obtenir une mé-
thode finie applicable aux seuls polygones. On opérera donc
comme il suit.

a. — Une direction wy ayant été choisie, a tout polygone P

1 Caractére commun a toutes les démonstrations d’existence d’un étre E: admettant
provisoirement l’existence de E, on en déduit une construction de E que I’on verlﬁe
fournir un résultat satisfaisant & toutes les conditions requises.
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nous attachons le nombre %-(B,L + b)) by + %—(B2 4+ by by + ...,

By, by; By, by; ... étant les longueurs des bases des trapézes en les-
quels P est décomposé par les paralleles a oy menées par les
sommets de P et hy, Ay, ... les hauteurs respectives de ces
trapeézes.

Dans cet énoncé on considére comme un trapéze un triangle
dont un coté est paralléle & wy; pour un tel trapéze I'une des
deux bases est de longueur nulle.

. — Soit un trapéze (ou triangle) T de bases paralléles & wy;
partageons le en T, et T, par une sécante qui rencontre ses bases
(et non leurs prolongements), d’apres son expression meéme,
le nombre (T) attaché a T est la somme des nombres (T,), (T5)
attachés 3 T, et & T,; ¢’est un cas particulier de la proposition g.

Un autre cas particulier est celui ot T est divisé en T, et Ty
par une paralléle aux bases; grdce au cas précédent on peut
supposer que T est un triangle ABC de base BC paralléle & oy,

soit DE la sécante. Le nombre (T) est %BC. dist. (A, BC) ou,

comme on le vérifie de suite, %AB. dist (C, AB); or

AB.dist. (C.AB) = - AD.dist.(C.AD) + %DB.dist.(C.DB)

I TS
= po| e

— TAG.dist. (D.AC) + 5 BC.dist.(D.BC) = [%AE.dist. (D.AE)

b =

+ —EC.dist.(D.EC)] + %BC.dist. (D.BC) = %—AE.dist.(D.AE}

1 .
1 [iDE.dlst. (C.DE) + %-Bc.dist.(D.BC)] — (T, + (T, .

Soit maintenant le cas général d’un polygone P, partagé en
deux polygones adjacents P;, P,. Pour évaluer les nombres(P),
(P,), (P,) attachés & ces polygones, on peut utiliser les décompo-
sitions faites par toutes les paralléles & =y passant par les sommets
de ces trois polygones, alors que la définition ne fait usage que de
certaines de ces paralléles, a cause du second cas particulier étudié.

Examinons les contributions dans (P), (P,), (P,) des trapezes
limités par deux paralléles & wy consécutives; les trapézes qui
comptent dans (P) sont partagés, a la facon examinée dans le
premier cas particulier, par les cotés de P, et P, qui leur sont
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intérieurs, en trapezes partiels dont les uns comptent dans (P,) et
les autres dans (P,); donc, a cause du premier cas particulier,

y. — Pour démontrer la proposition (y) il suffira d’évaluer
le nombre attaché a un triangle ABC; on le connait déja si 'un
des cOtés est parallele a wy. Supposons qu’il n’en soit pas ainsi
et que ce soit la parallele & wy menée par G qui le divise en deux
triangles ACD, BCD, on aura

(ABC) — —CD dist.(A.CD) + —GD dist. (B.CD)

2 2
= %AD dist. (C.AD) + %BD.dist. (C.BD) = %AB dist. (C.AB).
36. — Doit-on adopter dans l’enseignement l'un des trois

exposés, complets au point de vue logique, que nous venons
d’obtenir, ou quelque autre procédé analogue ?

Le premier, je I’ai déja dit, serait sans doute trop savant et
compliqué pour les éleves moyens, une expérience seule permet-
trait d’en décider; les deux autres leur seraient plus accessibles.
Les éleves pourtant comprendraient mal I'intérét de cette vérifi-
cation de «, 5, ¥, qui, ne venant qu’aprés qu'on a beaucoup
utilisé ces énoncés, conduirait peut-étre a penser qu’on peut
toujours remettre en question ce qui a été démontré et don-
nerait ainsi une singuliére idée du raisonnement logique. Il
est certain, en tout cas, que le second exposé est bien connu,
qu’il a été introduit depuis longtemps dans des manuels, et que,
pourtant, il n’a pas pénétré dans I’enseignement. Les professeurs
ne voient donc pas d’inconvénient & admettre «, 5, 7, implicite-
ment ou explicitement; je crois, avec eux, que cela n’a aucun
inconveénient. Il est nécessaire seulement de ne rien dire d’inexact
sur la portée de ’exposé que I’on adopte et, pour cela, de s’en étre
bien informé en comparant soigneusement ce que 'on fait & ce
qu’il faudrait faire pour tout prouver. Faute d’avoir effectué cette
confrontation certains ont fait de curieuses erreurs.

On a cru, par exemple, que les procédés classiques qui con-
duisent a transformer chaque rectangle R en un rectangle p
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dont une dimension est l'unité suffisaient pour résoudre le
probléme des aires pour les rectangles; 'aire de R étant alorg la
seconde dimension du rectangle o. Il y a la, certes, une maniere
de définir Paire; mais il n’est nullement évident que d’autres
procédés que les procédés classiques ne conduiraient pas a un
autre rectangle p comme associé au méme rectangle R, donc a
une autre aire.

37. — Précisons en traitant le cas des équivalences finies.
Deux polygones sont dits équivalents de facon finie s1 on peut
les décomposer chacun en un méme nombre fini de triangles,
deux & deux égaux. Montrons que, par équivalence finie, tout
triangle est transformable en un rectangle 2, d’ou il résultera
quun polygone quelconque est équivalent au rectangle » formé
d’un nombre fini de tels rectangles o correspondant aux triangles
provenant d’une décomposition du polygone.

Or, soient un triangle ABC, A’ B’ les milieux de CA et CB;
faisons tourner de 180° en B"'B’B le triangle A'B’C autour de
B’; nous transformons ABC en un parallélogramme ABB"'A’;
soit M un point quelconque de A'B’’. Faisons subir au triangle
AA'M la translation AB, nous avons le parallélogramme ABNM ;
sur lequel nous pouvons opérer de méme, etc. Donc, comme on
peut aussi intervertir les roles de A et B, on transforme AB B"/A’
enn’importe lequel des parallélogrammes de méme base AB et
de méme hauteur correspondante.

Parmi ces parallélogrammes ABDE, il y en a pour lesquels AE
est un multiple entier d’'une longueur donnée /.

Si, par exemple, AE = 3[, en partageant AE en trois parties
égales et en menant par les points de division des paralleles a
AB, on partage ABDE en trois parallélogrammes égaux qui,
arrangés dans un autre ordre, donnent un parallélogramme
af3ds, of3 étant 3 fois AB, «¢ étant [. Opérant maintenant sur
230¢ comme sur ABB'’A’, «: jouant le role de AB, on parvient &
n’importe lequel des parallélogrammes de base a¢ et dont la base
paralléle est portée par B9; en particulier & celui qui est un
rectangle.

Sion a pris [ =1, on a donc transformé le triangle ABC en un
rectangle £ dont un des c6tés est égal & 1. Quel est 'autre coté?
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ABB"’A’ a pour base AB et pour hauteur correspondante la
moitié de la hauteur de ABC issue de C. Dans le passage de AB
B'’A” 3 ABMN, AB est resté le méme ainsi que la hauteur
correspondante, mais 'autre base et ’autre hauteur ont changé.
Seulement, si on remarque que le produit d’une base par la
hauteur correspondante est le méme pour les deux bases d’un
parallélogramme, on voit que ce produit reste le méme dans le
passage de ABB’A’ & ABMN et dans toutes les transformations
ultérieures. D’ow il résulte que si b est la base de ABG, 4 la hau-
teur correspondante, pour tous les parallélogrammes obtenus le

produit de la base par la hauteur est »j}bh.

A

Le second c¢oté du rectangle o est done % bh. Plus généralement,

étant donné un polygone P, nous avons appris, en décomposant P
en triangles et en transformant chaque triangle en un rectangle p,
a transformer par équivalence finie P en un rectangle dont I'une

: . , . IS
des dimensions est 1 et Pautre égale & la somme zibh étendue

aux divers triangles considérés.

Y a-t-il 14 une théorie compléte des aires ? Non, car il n’est
pas prouvé que 'aire obtenue est unique, c’est-a-dire indépen-
dante de celle des décompositions en triangles utilisée. Le croire
serait d’abord commettre une faute analogue a celle que nous
reprochons si souvent & nos éleves quand, par exemple, ils
concluent qu’un nombre est décomposable d'une seule maniere
en facteurs premiers alors qu’ils ont seulement constaté que le
procédé particulier de décomposition employé donnait un résultat
déterminé.

Précisons, nous avons vu que deux polygones ne peuvent étre
transformés I'un en D’autre, par équivalence finie, a [’aide de
notre procédé, que si les nombres que nous leur avons attachés
sont les mémes. Mais nous savons de plus que, dans le cas de
deux parallélogrammes, cette condition est suffisante; il en résulte
de suite qu’elle est aussi suffisante pour deux polygones quel-
conques. Partant de la on montrerait que, s’il est possible de
satisfaire auz conditions «, 8, y, les nombres aires sont déter-
minés & un facteur prés, c’est-3-dire de prouver 9.

Ainsi, cette quatrieme théorie des aires est exactement équiva-
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lente & la théorie classique 1, comme celle-ci elle s’appuie sur 2,
B, 7, prouve ¢ et donne la détermination des aires, en ce qul
concerne les polygones.

Pour compléter cette quatriéeme théorie il faudra prouver o,
B, 7; par 'un des trois procédés que nous avons indiqués, par
exemple. Puisqu’on ne s’occupe que de polygones, les deux der-
niers surtout sont indiqués. On verra dans les Grundlagen der
Geometrie, de M. Hilbert, la forme simple que I'on peut alors
donner au second procédé. Le troisiéme pourrait étre utilisé de
facon analogue. Si des simplifications sont possibles c¢’est que
maintenant, plus nettement encore qu’auparavant, tout se réduit
4 montrer que le nombre défini est bien déterminé. Car, s’1l en
est ainsi, 5 et 7 en résultent puisque, B, le nombre est défini par
une décomposition du polygone et que, y, il est défini pour un
triangle indépendamment de la position de celui-ci.

38. — Ainsi, la théorie est complete quand on preuve qu’on ne
peut jamats partager un polygone en un nombre fint de morceaux
polygonaux de telle facon que ces morceaux arrangés autrement
fournissent seulement un polygone intérieur au premier. (Gest
cette propriété qui est le fondement géométrique de la théorie
des aires. Pour les polygones, celle-ci peut étre décomposée en
trois parties:

10 Tout polygone est équivalent de facon finie & un rectangle
dont un coté est égal & un segment donné.

20 Deux tels rectangles ne sont pas équivalents si leurs seconds
cotés sont inégaux.

3° La mesure des seconds cotés.

La troisiéme partie ¢’est la mesure des longueurs, 'introduction
méme du nombre en général; les deux autres ne supposent que
la notion d’entier et, pour cette raison, on dira volontiers qu’elles
sont de nature purement géométrique. Mais, si nous avons dé-
montré la premiére par un raisonnement purement géométrique
les démonstrations indiquées de la deuxiéme partie font appel a
la troisieme partie, don¢ &4 la notion du nombre en général.

1 Plus élégante que celle-ci elle a, d’autre part, ’inconvénient de ne pouvoir éfre
transposée pour les volumes car Dehn a montré que deux polyedres qui ont méme
volume ne sont pas en général transformables I’un en ’autre par équivalence finie.
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Jusqu’ier, nul n’a su démontrer la deuxiéme partie, c’est-a-dire
le fait géométrigue qui est a la base de la théorie des aires des poly-
gones dans la méthode de I'équivalence finie, sans faire appel a la
notion générale du nombre; et c’est en somme la notion d’aire,
acquise autrement pourrait-on dire, qui justifie, apreés coup, la
méthode des équivalences.

39. — Ce fait géométrique nous est pourtant si familier, de
par nos expériences journaliéres, que nous avons quelque peine
a admettre qu’il faut le démontrer; ne s’agit-il pas, en effet,
simplement de la place qu’occupe un domaine indépendamment
de sa position dans l'espace et de I'agencement de ses parties ?
Cette place, ce serait 'aire et le nombre dont nous avions parlé
ne serait que la mesure de I’aire ; mesure qu’il conviendrait de ne
pas confondre avec I'aire.

On reconnait la, malgré la vulgarité du mot place, une présen-
tation métaphysique analogue & celle relative aux entiers et que
j’ai eritiquée. Un entier, ¢’était ce qu’avaient de commun toutes
les collections déduites dune collection par changement de 'ordre
et de la nature des objets quila composaient; une aire, ce serait ce
qui est commun a tous les domaines déduits d’un domaine par
changement de position et d’arrangement des parties de celui-ci.
Un entier métaphysique avait une notation décimale; une aire
métaphysique aurait une mesure, ce serait un nombre méta-
physique qui pourrait étre noté dans le systéme décimal.

Et quand on songe & ce qu’est le nombre métaphysique non
entier, on voit & quel point les entités se superposent; mais
comme tout cela est inutile mathématiquement, on n’adopte
jamais franchement cette présentation métaphysique de la défi-
nition. Cependant, pour beaucoup, I’aire est restée différente du
nombre qui la mesure; pour moi, 'emploi du mot mesure dans la
dénomination « mesure des aires» a la méme signification que
pour la « mesure des longueurs»: il rappelle qu'on doit avoir
choisi une unité pour pouvoir parler de I'aire ou de la longueur,
lesquelles sont des nombres. Ce sont ces nombres qui, seuls,
servent en mathématiques; libre & chacun de surajouter & ces
notions mathématiques des notions métaphysiques, mais celles-ci
ne doivent pas intervenir dans l’enseignement. Ni quand il
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s'agit de juger de la valeur logique d’une théorie; lerreur sur
laire des rectangles, dont j’ai parlé, vient sans doute de ce que,
tout en examinant si Dexistence de l’aire avait été prouvée
logiquement, on conservait quelque peu l'idée que I’aire est une
notion premiére dont ’existence n’a pas a étre prouvée.

Il y eut une époque ou le fait qui nous occupe résultait d’'une
sorte d’axiome a tout faire: le fout est plus grand que la partie,
que I’on utilisait et pour les longueurs et pour les aires et pour les
volumes. Comment nous en sommes nous passés ?

Pour les longueurs: les axiomes relatifs au mouvement, qui
nous ont servi, impliquaient en particulier que si on transporte
AB sur la droite qui le contient de facon que A vienne entre les
positions primitives de A et de B, alors B viendra en dehors de
ces positions; ceci, ¢’est ’axiome: le tout est plus grand que la
partie, que nous avons don¢ encore admis sous une forme preé-
cisée.

Pour les aires: les trois méthodes que nous avons indiquées
déduisent le fait que les deux rectangles 1, & et 1, 2’ ne sont pas
équivalents du fait que les longueurs & et 2’ ne sont pas équiva-
lentes. L’axiome pour le cas des aires a été déduit de 'axiome
pour le cas des longueurs; nous avons rencontré les nombres non
entiers dans nos démonstrations parce que nous raisonnions sur
les cotés de divers rectangles et que l'on emploie toujours le
nombre pour individualiser et distinguer les divers segments.
On pourrait, certes, masquer cet emploi; ce ne serait cependant
pas 1§ la démonstration purement géométrique a laquelle nul
n’est encore parvenu, je l’ai dit, et, aprés ces explications, il
paraitra sans doute peu probable qu'on puisse jamais la cons-
truire car pour étre vraiment différente des précédentes elle ne
devrait pas utiliser I’axiome relatif aux longueurs.

40. — Maintenant que nous connaissons bien la portée exacte
de la théorie classique, que nous voyons bien les difficultés a
vaincre pour la compléter et les objections d’ordre pédagogique
qui s’opposent & I’emploi d’un exposé logiquement complet, nous
sommes mieux en mesure d’apporter quelques améliorations 2
I'enseignement.

Je n’en proposerai que deux. L’une d’elles est accessoire;
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se passer du théoreme de proportionnalité des aires de rectangles
ayant un coté commun aux longueurs des autres cotés et obtenir
directement !’aire du rectangle comme au §25, c¢’est-a-dire
comme dans ’enseignement primaire et dans le calcul intégral.
Ce serait plus rapide, plus naturel et cela éviterait des longueurs
bien inutiles quand on admet avec nous qu’un rapport d’aires
est un rapport de nombres; la méthode qu’on emploierait serait
celle que les éleves intelligents pourraient vraiment réinventer
d’eux-mémes. Et on ne serait plus tenté d’invoquer un théoréeme
grandiloquent sur les grandeurs proportionnelles a plusieurs
autres, que certains comprennent peut-étre, mais auquel ni les
éléves, ni moi ne comprenons rien. Je m’occuperai plus tard de ce
théoreme a 1’occasion de la mesure des grandeurs en général.

L’autre amélioration serait de plus d’importance, elle consis-
terait & admettre que 1’aire n’est pas une notion premieére et a
en donner la définition du § 24. Définition qu’on pourrait alléger
car on ne raisonnerait pas g partir d’elle; on affirmerait seulement
qu’elle permet de prouver les propositions des § 26 a 29, que l'on
énoncerail. Puis on reprendrait la marche classique. Cette fagon de
faire est déja & peu pres celle de certains professeurs; c’est celle
du manuel de géométrie de Claude Guichard.

41. — Pour bien mettre en évidence l'intérét de cette modi-
fication, traitons d’abord d’une facon compléte la question des
aires des domaines limités par des arcs de cercle et des segments
de droite.

Aire du cercle. — Soit p, un polygone régulier de K cotés inscrit
dans le cercle C, P, le polygone régulier circonscrit de K cotés.
Les nombres n; et N, relatifs au cercle sont compris entre les
nombres 7 relatif & p, et N relatif & P, quels que soient K et 7.

"
72'.2"
00*

Or pour ¢ augmentant indéfiniment ; et F(i)i tendent vers
les aires de p, et de P, le premier en croissant, le second en

n.

N, _
décroissant, donc les nombres 1051. et 10& sont compris entre

atre dep, et airede P. Or, § 30,

atre de PK B ( rayon de G )2 B R2

aire de p,  \apoth. de p.
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done
. . . /R2 1
aire de P, — aire de p, = aire de p, X 5 — )

%

ST o x 1
quantité qui tend évidemment vers zéro avec 4 . Donc un cercle

a une aire, cette aire est la limite de celles de p, et P .

En méme temps, nous avons montré que 'aire des carrés U,
nécessaires pour couvrir un arc de cercle tend vers zéro quand ¢
croit, donc que tout domaine borné limité par des segments de
droite et des arcs de cercle a une aire.

Aire du secteur. — Soit « = 4235,43 ... 'angle au centre du
secteur, en secondes sexagésimales par exemple. Si S est 'aire du
cercle, comme ce cercle contient 360 X 60 X 60 secteurs égaux

d’ouverture une seconde, chacun d’eux a une aire s égale &

S Yo , .
360 % 60 % 60 et le secteur considéré a une aire comprise entre

4235 s et 4236 s. Un secteur d’ouverture 0,1 seconde a une
aire s X 0,1 car il y a dix de ces secteurs dans un secteur d’aire s,
donc le secteur d’ouverture « a une aire comprise entre 4235,4 X s
et 4235, 5 X s., ete.

On reconnait le mode de raisonnement que j’ai plusieurs fois
préconisé et qui est celui de l’enseignement primaire. Je ne
reviens pas sur ce qu’a dinutilement précis ’emploi dans ce
raisonnement de la numération décimale.

L’aire du secteur étant obtenue et les propriétés «, £, 7, 0 se
trouvant acquises pour les domaines limités par des droites et des
arcs de cercle, la théorie des aires de ces domaines est terminée -

42, — Comparons maintenant cet exposé a celui des manuels.
Certes, ils different peu, mais ils différent cependant sur un point
essentiel: ¢’est qu’ici nous ne posons pas pour I'aire d’un cercle
une définition arbitraire. Naturelle certes, mais arbitraire du
point de vue logique.

Tous les manuels, en effet, depuis quelque vingt-cinq ans
ont adopté le mode d’exposition consistant & dire: la limite des

1 11 y aurait naturellement a calculer I’aire S du cercle; d’apres le § 30, elle est de la
forme tARZ, mais la relation entre le nombre = et Ia longueur de la circonférence ne
pourra etre établie qu’apres que nous nous serons occupés des longueurs des courbes.




48 HENRI LEBESGUE

aires des p, sera appelée, par définition, I’aire du cercle. Ceci dit,
certains manuels démontrent I'existence de cette limite, d’autres
Padmettent, mais peu importe.

Auparavant, au temps de mon enfance par exemple, on disait
tout bonnement puisque les polygones p, different de moins en
moins du cercle, 'aire du cercle est la limite de celles des p..
On raisonnait sur l'aire, considérée comme notion premiere,
aussi bien pour le cercle que pour les polygones, et on s’appuyait
sur des propriétés non énoncées et supposées de ces aires. Ce
n’était évidemment pas satisfaisant logiquement; il se trouvait
pourtant qu’on ne disait rien d’incorrect tandis que I’exposé
actuel est, & mon avis, entaché d’une faute grossiére, non si
I’on veut contre la logique, mais contre le bon sens, ce qui est plus
grave. En méme temps on manifeste cette naive crédulité en la
puissance des mots qui fait espérer qu’une difficulté sera vaincue
par un artifice verbal; comme siun véritable progres pouvait étre
acquis a si bon marché!

Que fait-on en effet? L’aire du cercle est la limite des p,; ¢’est
une définition arbitraire, une dénomination que l’on aurait pu
remplacer par toute autre. Il s’en suit qu’il ne suffit pas d’avoir
adopté cette dénomination et non une autre pour que le nombre
ainsi dénommé aire du cercle se dépéche de rentrer sagement
dans la famille de ceux pour qui sont vraies les propriétés «, 3, v, 9.
Par suite, de l’aire connue du cercle on ne peut pas déduire
logiquement celle du secteur, le croire et faire un prétendu
raisonnement c¢’est errer gravement. [’aire du secteur est

ed
S360 X 60 X 6
par définition, on ne peut pas déduire par un raisonnement

celle du segment; ¢’est par définition que I'aire du segment est la
différence entre I’aire d’'un secteur et ’aire d’un triangle.

5 par définition. De 'aire du secteur, ainsi posée

Si la limite des p, avait été dénommée le tarababoum du
cercle on ne se serait certes pas permis d’en déduire la valeur des
tarababoums du secteur et du segment; on se le permet parce
qu’au lieu du mot tarababoum on a utilisé le mot aire! C’est la une
grossiére erreur contre le bon sens. On a pourtant la ressource
de prétendre qu’on ne la commet pas, mais qu’on spécule sur la
confusion que ne manqueront pas de faire les éléves en assimilant
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cette nouvelle aire § celles qu’ils ont ’habitude de manier; libre
3 chacun de choisir entre erreur et hypocrisie.

Qu’on ne croie pas, d’ailleurs, se tirer d’affaire en répétant trois
fois les mots fatidiques par définition, & I'occasion du cercle, du
secteur et du segment; car les aires ainsi définies ne pourraient
servir 4 rien. On ne pourrait traiter & leur sujet aucune question,
aucun probléme, sans rencontrer sur sa route les propositions «, 8,
v, 8 dont on n’aurait pas le droit de se servir; par exemple, la ques-
tion classique des lunules d’Hippocrate ne pourrait étre traitée.

I1 faut donc de toute nécessité étre en possession de la notion
d’aire avant de calculer les aires; notion entrainant les propriétés
a, 3,7, 0 pour tous les domaines dont on s’occupera. La méthode
du temps de mon enfance, qui utilisait en somme ces propriétés
sans les énoncer de la méme maniére pour tous les domaines,
était meilleure que celle des manuels actuels qui fait une diserimi-
nation malencontreuse entre les différents domaines; il aurait
suffit de débarrasser 'ancienne méthode de I'emploi de I'idée de
domaine limite, en disant que laire du cercle était comprise
entre celles des polygones inscrits p, et celles des polygones
circonscrits P, pour la rendre tout & fait acceptable. Elle se
raccorderait en somme avec celle que je préconise ici. Bien
entendu, dans celle-ci on démontrera ou on admettra 'existence
de P’aire pour un domaine limité par des droites et des cercles
suivant qu’on aura démontré ou admis l’existence de I’aire
pour les polygones.

On pourrait évidemment se borner a dire que ’on pose de la
maniére choisie les définitions des aires du cercle, du secteur et du
segment parce que ¢’est avec ces définitions, et avec elles seule-
ment, que I’on a les propositions «, B, y, 0; mais cela serait avouer
qu’il ne s’agit pas de définitions arbitraires, qu’au contraire on a
choisi ces dénominations et non d’autres § cause de recherches;
seulement on renoncerait & donner idée de ces recherches, alors
que les considérations du § 24 suffisent & les faire deviner.

43. — J’en ai fini avec la question des aires planes; pourtant,
pour montrer la souplesse du procédé préconisé, envisageons le
cas de domaines plans limités par des segments de droites et
des . arcs de coniques, domaines qu’on rencontre parfois en

L’Enseignement mathém., 32¢ année ; 1933.

4
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géométrie élémentaire. De tels domaines ont-il une aire, dés
qu’ils sont bornés ? En d’autres termes, un arc fini de conique
peut-il étre recouvert a4 ’aide de polygones dont la somme des
aires est arbitrairement petite ?

Sl s’agit d’un arc d’ellipse nous utiliserons le théoréme des
projections orthogonales. Soit D un domaine, d une projection
orthogonale de D; prenons, dans le plan de D, le réseau T ayant
des cotés paralléles a l'intersection XX’ des plans de D et de d,
dont ’angle est §. Un carré U, a pour projection un rectangle u;

dont le coté paralléle & XX’ est 1%” celui perpendiculaire a

0s

. Or D contient n;

cos 6 . . s
XX" est —; u; a une aire égale a
10* :

00*
carrés U, et est contenu dans N, de ces carrés, donc d est contenu
. , . Njcosbt
dans le polygone formé par N, rectangles u,, d’aire - o

. . n.cosf . .
contient un polygone d’aire 7"100,; . Donc, s1 D a une aire, d en

a une et on a: aire de d = aire de D X cos 6.
S’il s’agit d’un arc d’hyperbole ou de parabole, on pourrait
utiliser de facon analogue une relation

aire de d =< aire de D x K ,

entre les aires de deux polygones d et D projections coniques
I’'un de I’autre; relation dans laquelle K est fixé pour tous les
couples d, D situés dans deux régions bornées se correspondant
par projection conique. Mais il est plus simple et plus général
de prouver que: tout arc convexe et borné peut étre couvert par des
polygones dont la somme des atres est arbitrairement petite.

Soit un tel arc, décomposons-le en arcs partiels tels que chacun
d’eux ne soit pas rencontré en plus d’un point par les paralléles
a deux directions rectangulaires OX, OY. La possibilité d’une
telle décomposition est immédiate, pourtant il serait difficile
de la prouver de facon tres précise,non a cause du mot convexe,
mais parce que les mots courbe, arc de courbe n’ont pas en géo-
métrie élémentaire une définition précise. Quoique il en soit, c’est
sur un tel arc partiel que nous allons raisonner; la démonstration
vaudra pour les arcs formés d’un nombre fini de ces ares partiels.

Soit done un tel arc I' tout entier couvert par le rectangle
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AA'BB’de cotés parallélesa OX, QY et dont deux sommets opposeés
sont les extrémités A et B de T'; soit S Daire de ce rectangle.
' est tout entier dans le triangle AA’B, ou tout entier dans le
triangle ABB’ & cause de sa convexité ; supposons-le dans AA'B.
On peut couvrir AA’B & I’aide de rectangles de ¢Gtés paralleles
4 OX et OY et dont Ia somme des aires surpasse 'aire de AA’B
d’aussi peu qu’on le veut. On peut donc supposer cette somme

e e o . 2
d’aire inférieure a —3—8. Ne conservons de ces rectangles que ceux

qui contiennent des points de I', restreignons chacun d’eux au
rectangle de cdtés paralléles suffisant pour contenir les mémes
points de T'; aprés ces modifications, nous avons des rectangles

. = g s . 2 .
d’aire totale inférieure a o5 et contenant respectivement les

arcs I'y, T'y, ... dont T" est la réunion. Si l'on recommence le

méme raisonnement sur I'y, Ty, ..., on couvre I' & l'aide de

2

E 2 . .
rectangles d’aire totale <§> S, etc. La démonstration est faite.

Azwnst, la théorie élémentaire des aires que nous avons développée
s’applique, en particulier, a tous les domaines bornés limités par un
nombre fint de segments de droites et d’arcs de courbes convezxes.

Des raisonnements comme le précédent prépareraient, et
éclairciraient peut-étre, ceux qu’on fera lorsqu’il s’agira de
I'intégrale définie. Les éléves ne comprendraient-ils pas plus
facilement qu’au passage de la géométrie élémentaire 4 'analyse
rien d’autre n’a été changé que le langage, plus géométrique
avant, plus analytique aprés ? Et peut-étre sentiraient-ils
quelque peu le progrés accompli: Toujours, en mathématiques,
le point de départ initial est concret, le langage aussi est concret,
geométrique le plus souvent. Ceci est favorable 4 I’imagination;
trop favorable méme car la réalité est trés riche; trop de
remarques sollicitent ’attention. Aussiles premiers raisonnements
n'ont-ils qu'une portée trés limitée car ils font état de beaucoup
de ces remarques particulitres. Peu & peu on isole chaque
question des autres, on discerne ce qui est essentiel pour chacune,
les raisonnements deviennent plus généraux en méme temps
que le langage devient plus analytique et abstrait. Cet abstrait
n'est pas vide de contenu, bien au contraire le langage n’est
devenu abstrait que pour étre plus immédiatement applicable
a des réalités plus nombreuses. | (A suiore)
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