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230 A. HAARBLEICHER

Comme les séries lznxn, 1 rn_1 x11 sont absolument convergentes,

les produits infinis

n(i — znxn) n(i —Tn_iXn)

sont aussi absolument convergents et par conséquent sont
différents de zéro. On en déduit que Cn tend vers une limite finie,
ce qui est en contradiction avec la condition et le théorème est
démontré.

SUR LES POLAIRES GÉNÉRALISÉES

ET COURBES MOYENNES

PAR

André Haarbleicher (Paris).

M. d'OcAGNE m'a communiqué les résultats de deux Notes1,
l'une de lui, l'autre de M. Harmegnies sur les courbes polaires
et les courbes moyennes, et m'a demandé de rechercher

l'application des coordonnées isotropes à cette étude 2.

Je donne ci-après cette application pour la courbe moyenne
relative à deux cercles quelconques.

Soit Cl5 C2 les deux cercles, Ox, 02 leurs centres, 0 un point
quelconque par lequel on mène une sécante qui coupe le cercle Cx

en des points Mx, le cercle C2 en des points M2. Lieu du milieu M
des segments de droite Mx M2 lorsque la sécante tourne autour
da point 0.

Prenons pour axes de coordonnées les droites isotropes
passant par 0. Soit

XY — bxX — ax Y + 0

XY — b2X — a2Y + c2 0

Y — mX 0

1 Voir L'Eus. Math., t. XXXI, p. 31-49, 50-57.
2 Voir: De l'emploi des droites isotropes comme axes de coordonnées, par A. Haar-

bleicher (Paris, Gautliier-Villars, 1931). [X. cl. 1. R.]
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les équations des cercles Clt C2 et de la sécante. Soit Xx, Y lt
X2, Y2, X, Y les coordonnées des points M1; M2, M. Les équations

du problème sont

XjYj — b1X1— a, Y -f Ci 0 (1)

X,Y, — b,X2— a. Y, - C» 0 (2)

Yj-mXj Q (3)

Y, — mX, 0 (4)

2 X Xj -r X, (5)

2 Y \\ + Y, (6)

L'équation du lieu s'obtient en éliminant Xx, Yx, X2, Y2, m entre

ces 6 équations. Des quatre dernières, on tire Remplaçant

dans les deux premières Yx par ^ Xx et Y2 par ^ (2 X

—• Xx), on a
YX* — (&xX + Y) Xx -r 0 (')

YX* — (4 XY — è,X — a. Y) Xx + 4 X2Y — 2 X X

Y a2 Y) — %X — 0 (8)

L'élimination de X1 donne

XY[4 XY — 2Yo X — 2 a2 Y + c2 — cj2

— (b±X Y a1Y)[4XY~ 2 b2 X — 2agY Y c, — cJ[4XY — (b± Y b2) X

— (a, Y a2)Y] Y q[4XY — (bt Y b2)X — [a, Y o2)Y]2 0 (9)

qui est l'équation du lieu. Si l'on pose

4XY — (b± Y b2) X — (y Y a2) Y -= K

4XY — 2 b2X — 2 a2 Y Y c2 — K2

cette équation prend la forme

XYIC — {btX Y aLY) KK2 Y q K2 0 (10)

K 0 et K2 0 sont les équations de deux cercles K et K2.
Cette équation est du sixième degré. X et Y n'entrent pas

dans l'équation à un degré supérieur à 3. Donc le lieu cherché est

une courbe du sixième ordre qui a les points cycliques pour
points triples.
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Les termes de degré inférieur sont du second degré. Donc
l'origine 0 est un point double. Sous la forme (10) de l'équation,
on voit qu'elle a pour points doubles les points Qx et Q2 d'intersection

des cercles K et K2. Le cercle K passe par l'origine et a

pour centre le point ^ a2
— ^ ^ c'est-à-dire le milieu

de la droite qui joint le point 0 au milieu A de Cb 02: c'est donc
le cercle de diamètre OA. Les points Qx et Q2 sont les points
d'intersection du cercle K et de l'axe radical des cercles K et K2
qui a pour équation

(b2 — bx) X + (a2 — ay) Y — c2 -f cx 0

c'est l'axe radical des cercles C1 et C2 d'après les équations (1)
et (2).

Les équations des asymptotes, parallèles aux axes de

coordonnées, s'obtiennent en annulant les coefficients de X3 et de Y3
dans l'équation de la courbe. Pour le coefficient de X3, on obtient

Y (4 Y -2 b%Y — M4Y -2 b2) (4 Y - bx - b2)

OU

(4Y-261){4Y-26,)(Y-^±_Ë!)

De même pour le coefficient de Y3

(4X-2a1}(4X-2a2)(x-^^)

les asymptotes sont donc les droites d'équations

X — I1 0 X — y o X — 0

Y - | 0, Y >— y 0 J Y- Y+Jï o

ce sont les droites isotropes qui passent par les milieux des côtés
du triangle OOx 02.

Le lieu cherché est donc une courbe du sixième ordre qui a pour
points triples les points cycliques, pour points doubles le point O

et les points Ql7 Q2 d'intersection de l'axe radical des cercles Cls
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et C2 avec le cercle K de diamètre OA, A étant le milieu de Ox 02.

Elle a pour foyers doubles les milieux A, B, C des côtés du triangle
OOi 02.

En général, cette courbe n'est pas une courbe des trois barres.

Pour qu'elle le soit, il faut et suffit que les triangles OQx Q2 et

ABC soient inscrits dans un même cercle et circonscrits à une
même parabole.

Le cercle K passe par les points 0, Q1? Q2, A. Le point B

> y) es^ sur ce cerc'e s^

a1b1 — (bx + b2) -L — [ax + a2) y 0

OU

ax b2 a2bx — 0

h. _ h.
ax a2

c'est-à-dire si les droites 00x et 002 sont rectangulaires. La
même condition exprime que le point C est sur le cercle.

Elle exprime aussi que les triangles 0QX Q2 et ABC sont
circonscrits à une même parabole. Le quadrilatère AB OC est
alors un rectangle et la droite Qx Q2, axe radical des cercles Cx et C2

est perpendiculaire à BC, parallèle à Ot 02. Je dis qu'étant donné

un rectangle AB OC et une corde du cercle circonscrit Qx Q2

quelconque perpendiculaire à la diagonale BC, les triangles
ABC et OQi Q2 sont circonscrits à une même parabole. Prenons

pour origine des coordonnées isotropes le centre du cercle.
Soit

1 1
fj

1 1 1 1

a, -, ß, p-ß, -j, -a, Zl, -,
les coordonnées des points A, B, C, 0, Q1? Q2. Il faut démontrer
que les produits des abscisses des sommets des deux triangles
sont égaux.

— a [j2 — az1z2

OU

ß2 (11)
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Or le coefficient angulaire de BC est ^ ; celui de Qx Q2,

i
h. *2

ou — La condition de perpendicularité de BC et Qj 02 est
*1 *2

done
l _ l
ß2 ~ *1*2

'

égalité identique à l'égalité (11).
Donc la condition nécessaire et suffisante pour que le lieu soit

une courbe des trois barres est que le point 0 soit sur le cercle de

diamètre
La polaire généralisée du point 0 par rapport aux cercles

(Mx) et (M2) inverses de Cx et C2, 0 étant le centre d'inversion,
1 la puissance d'inversion, est la quartique circulaire d'équation.

[4 — 2 ft2 X — 2a2 Y + (c2 — cx) XY]2

— (ôjX + ax Y) [4 — 2 b2X — 2a2Y

+ (c2 — ct) XY][4 — (bx -f- b2) X — (ax + a2) Y]

+ cx XY [4 — (bx + b2) X— K +aa)Y? 0
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