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SUR LE CONOIDE DROIT A NOYAU SPHERIQUE

PAR

M. p’OcacNE, Membre de I'Institut (Paris).

L’objet de cette note est de faire connaitre un exemple simple
d’application de la théorie des intégrales elliptiques, relatif & un
probléme de cubature.

On sait que le conoide droit & noyau sphérique est une surface
réglée du quatriéme ordre, & centre, engendrée par une droite
rencontrant & angle droit une directrice rectiligne en restant
tangente a une sphere.

Sur la figure ci-contre, la directrice rectiligne est (ac, a’c’).
Coupons la surface par un plan de trace horizontale mm,, normal
a la perpendiculaire oc abaissée du centre de la spheére sur la
directrice et cherchons a évaluer le volume V l1m1te par ce plan,
la directrice et le conoide.

En appelant z la cote rapportée au plan d’équateur de la
sphére (de trace verticale o’c’), r le rayon de cette sphére et S
la surface du triangle amm,, nous avons

V:dez::Zdez.
—r 0

Or, s1 nous appelons p le rayon du petit cercle de la sphere,
de cote z, auquel sont tangentes les génératrices ab et ab,, nous
avons d’abord, en posant ao = [, an = h,

h? k_2 oa.ob h2o h’r sin o
l? l ab \/l2 —? \/lz 7 sin? g

puis _ |
3 =Trcosg d’ou dz = — rsing do ,
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d’ou nous déduisons

U1

2 3
V — Zh‘-’r?f sinf¢ do — 2 h2r2/- sin® ¢ do .
v VE = sin’o ! - r? .

S1 nous représentons par

de

— k*sin?o

Fe, i) = [
; V1

les intégrales elliptiques de premiere et seconde espéce de

Legendre, de module & < 1, ou k peut étre pris égal a —rl— nécessaire-
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ment < 1, on voit que

et

2

sin® o P o T
JRV/ 2 d**‘}E[F<§” 7)"'E<2’ z)]

0

et, par suite, que
. X 7 N

On peut remarquer que, si pour deux conoides -’;- et K2l ont les

mémes valeurs, le volume sera le méme pour ces deux conoides.
. A r -
D’ailleurs, pour une méme valeur de -, les conoides sont sem-

blables; en ces conoides semblables les volumes seront donc
équivalents si la valeur de A% est la méme.

On peut remarquer que si, avec Legendre, on représente le
module, ici égal & %, parsin @, ’angle g est celui que les généra-
trices du conoide situées dans le plan d’équateur du noyau
sphérique (contour apparent en projection horizontale) font avec
le plan de symétrie contenant la directrice et le centre du noyau.

En se servant des tables de Legendre, on trouve, pour le

coefficient numérique K qui multiplie 2% dans Pexpression (1)
de V, les valeurs suivantes:

pour 0 = 15°, K = 0,10798 ,
30° 0,43658 |
45° 1,00686 |
60° | 1,89092 |

75° 3,38332 .

Mais, avec la limite supérieure 5 de 9, il n’est pas besoin de

faire intervenir les intégrales elliptiques si 'on a recours au

développement de la fonction hypergéométrique G de Gauss,
savoir

NEE +1) 2
Gl &, ,x=1+i.£ a(oe 4 1) B (| .
(o, By, @) R T 5

Ay
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On sait, en effet, que

Si ’on se borne aux trois premiers termes du développement,

on trouve, pour% = %(c’est—a—dire o = 30°)

V = 0,43527 k2l .

Le coefficient numérique ne differe que de 0,00131 de celui
obtenu plus haut pour cette méme valeur de ¢.

SUR LA GOURBE D’ARCHYTAS

PAR

M. p’OcacNE Membre de I'Institut, (Paris).

1. — La courbe d’Archytas est une des rares courbes gauches
algébriques qui aient été connues dans ’antiquité, peut-étre
méme celle qui 'a été le plus anciennement. Elle a, comme on
sait, été imaginée environ quatre cents ans avant I’ere chrétienne
par le géometre grec dont elle porte le nom pour résoudre le
probléme déliaque, autrement dit de la duplication du cube.

On peut la définir ainsi: ayant pris, sur 'axe Oz du triedre
trirectangle Oxy, le segment OA = a, on considere les cercles
y et y, déecrits sur OA comme diametre respectivement dans les
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