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SOCIÉTÉ MATHÉMATIQUE SUISSE

Conférences et communications.

Réunion cle Thoune, 7 août 1932.

La Société mathématique suisse a tenu sa séance ordinaire à

Thoune, le 7 août 1932, lors de la session (113me) de la Société helvétique

des Sciences naturelles, sous la présidence de M. le professeur
G. Juvet (Lausanne). Au programme de la Société helvétique figurait
une conférence de M. le professeur F. Gonseth (Zurich) intitulée
« La vérité mathématique et la réalité ».

Malgré la proximité du Congrès international des Mathématiciens
(Zurich, 4-12 septembre 1932), une vingtaine de membres ont pris
part à la réunion de la Société mathématique. Au cours de la partie
scientifique six communications ont été présentées.

La prochaine réunion annuelle aura lieu à Altorf, en 1933.

i, —- R. Wavre (Genève). — Fonctions harmoniques multiformes
et fonctions de Green. —- Soient S une surface analytique à deux côtés
distincts et p la densité analytique d'une couche répartie sur S. Le
potentiel de simple couche

U fj dB

est prolongeable analytiquement au travers de S dans ce sens que
le potentiel U^ du côté i se prolonge au travers de S et le potentiel
Ue du côté e de même. Ils sont tous deux analytiques dans une
région D qui contient à son intérieur tout point intérieur à S. Ces
deux potentiels, égaux sur S, ne coïncident pas dans tout le domaine
D, car l'on a

d<-üj-
Soient, alors, S' une portion de S, c sa frontière et S" la partie
restante; puis U' et U" les potentiels correspondants. On a

U' + U" x= Ui du côté de i U' -h U" Ue du côté de e
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Envisageons le potentiel U' pris du côté i et posons

W U' Ut — U"

Cette fonction est harmonique hors de S' et hors de S". Elle ne peut
admettre que le contour c de S' comme singularité dans D. Allons en
un point du côté e en traversant S', on aura à l'arrivée

W U- — U" Ui — Ue + U'

puis retournons au point de départ en traversant S". La fonction W

n'a pas cessé d'être harmonique le long de ce trajet et l'on trouve

XT' \T — TT TT
arrivée départ i e '

Cette dernière valeur représente la fonction période de la fonction T
pour un circuit fait autour de la ligne c qui est donc une ligne de
ramification de W. Cette dernière a une infinité de déterminations
puisque l'on peut décrire un nombre quelconque de circuits autour
de c; la fonction période est indépendante de la forme de S' comme
d'ailleurs de l'étendue de S. Elle est toujours nulle sur S, cela résulte
de la continuité du potentiel de simple couche.

La densité en chaque point est égale à la dérivée normale de la
fonction période. Envisageons maintenant différents cas particuliers:

1° Supposons que S soit une surface de niveau pour un potentiel ü
dû à une certaine distribution de matière à l'intérieur de S et posons

u' _ JL ri — d<v ~ir.Jrànx
'

Le potentiel Uj est ici constant Ui K. La fonction période est
donc K — U. Le potentiel U' n'admet que les singularités de U dans
les masses attirantes et la ligne c de ramification. Une charge
électrique en équilibre à la surface d'un conducteur donnerait lieu à des

remarques analogues. L'on retrouve ainsi les fonctions harmoniques
multiformes que M. Vasilesco et moi-même avons mises en évidence
au moyen du potentiel conducteur.

2° Supposons que le potentiel de simple couche prenne sur la
surface fermée S les mêmes valeurs que l'inverse de la distance d'un
point A quelconque à un point P de S

1 - r/(p,)^s
AP ~ J APP7" *

Considérons le second membre; si P est du même côté que A le

potentiel n'est autre qu'une fonction harmonique « (A, P) prenant.

sur S les mêmes valeurs que ^p. Si P est de l'autre côté, le potentiel
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se réduit à La fonction période est donc ici égale à la fonction

de Green pour la surface S et relative à la région où se trouve A:

G(A, P) «(A, P)

En résumé, Vintégrale

considérée comme fonction de P représente une branche de fonction
harmonique multiforme qui admet le contour de S' comme ligne de

ramification avec la fonction de Green G (A, P) comme période. Les

autres singularités sont le pôle A et celles de « (A, P).
3° Si S est une sphère de rayon R et de centre 0, la fonction de

Green est
_1 R 1

AP ~ OA AT

où A' est le conjugué de A par rapport à la sphère. La fonction multiforme

n'admet alors pas d'autre singularité que la ligne de
ramification c et les deux pôles A et A' de la fonction période.

4° L'intégrale de Poisson

"P 2 A A 2 A

U(A> TFfT^y /(P,,XÏ^S (J>

fournit une fonction U (A) harmonique à l'intérieur de la sphère S,

harmonique aussi à l'extérieur. La première de ces fonctions tend vers
/ lorsque A tend vers S par l'intérieur. La seconde vers — / quand A
se rapproche de S par l'extérieur. Si la fonction / est analytique, U* et
Ue sont prolongeâmes au travers de S. En étendant l'intégrale précédente

à une portion S' de la sphère S, la fonction Ur obtenue est une
branche de fonction harmonique multiforme dont la fonction période
pour le contour c de S' est Ut— Ue. Cette dernière est égale à 2/
sur S. Elle n'est pas identiquement nulle. Cela tient à ce que le second
membre de (1) contient en fait un potentiel de double couche.

5° Enfin, si dans l'intégrale de Poisson étendue à S' l'on prend
1

/(P7) — pp, les raisonnements précédents prouvent que la fonction

R2 ôÂ2 r* 1 1

u'(A'p> T^/Ï^ïp^s' <2>

est une branche de fonction harmonique multiforme, admettant le
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contour c de S' comme ligne de ramification. Lorsque c'est le point P
qui décrit un circuit entourant c la période est

1 J_
AP OA AT

et si c'est A qui décrit ce circuit, la période est

1 R 1

AP + OA A'P '

La fonction multiforme n'admet pas d'autre singularité que c,
les pôles A, P et les points conjugués. On sait que l'intégrale (2)
prise sur la sphère totale est à la base de la méthode du balayage de
Poincaré.

2. — G. de Rham (Lausanne). — Sur les périodes des intégrales
abéliennes — On connaît les relations établies par Riemann entre les

périodes des intégrales abéliennes attachées à une courbe algébrique.
Ces relations découlent tout de suite du théorème suivant, qui semble
être leur véritable fondement topologique: l'intégrale double, étendue
à une surface fermée bilatère de genre p, du produit extérieur de deux
éléments d'intégrales curvilignes régulières et remplissant la condition
d'intégrabilité en tout point de la surface, est égale à une fonction
bilinéaire des périodes de ces deux intégrales relativement aux
2p cycles d'un système fondamental; cette fonction bilinéaire est à
coefficients entiers, non dégénérée, et ne dépend que du système
fondamental et non des intégrales envisagées. Ce théorème n'est qu'un
cas particulier d'un théorème général relatif à des intégrales d'ordre
quelconque dans une variété à un nombre quelconque de dimensions L
En l'appliquant aux intégrales de première espèce attachées à une
variété algébrique à plusieurs dimensions, on obtient immédiatement
les résultats de M. Hodge 2. L'application aux intégrales ayant des

singularités présente une difficulté qui peut être aisément levée si l'on
se borne aux intégrales de deuxième espèce (sans résidus).

3. — P. Finsler (Zurich). — Sur les fondements de la théorie des

ensembles. — Un système de fondements complets de la théorie des
ensembles est condition nécessaire et suffisante pour établir un système
de fondements complets de toutes les mathématiques, mais elle n'est

1 Voir ma thèse (Journal de math, pures et appt., 1931), § 27, et Commentant Mathematik

Helvetici, Vol. 4, p. 151.
2 Voir les deux travaux de M. W. V. D. Hodge {Journal of the London Math. Soc.,

October 1930, p. 283, et Proceedings of the Nat. Academy of Sciences, December 1931,
Vol. 17, Number 12). Cf. aussi notre note aux Commentant Math. Helvetici, Vol. 3,

p. 151.
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possible que si les antinomies sont réellement éclaircies. Une contradiction

en soi ne pouvant se former que si l'on se contredit en fait,
on n'a qu'à éviter ceci. Pour le système de tous les ensembles, fixé

par les axiomes de la relation, de l'identité et de l'intégralité, on

peut donner un exemple, donc il ne contient pas de contradiction.
Pour le système partiel des ensembles sans cercle on a les

théorèmes connus de la théorie des ensembles; les axiomes d'existence
sont remplacés par des théorèmes d'existence. Surtout il s'ensuit
l'existence de la suite des nombres, donc l'existence d'objets en
nombre infini.

4. — G. Juvet (Lausanne). —- Les nombres de Clifford et le calcul
vectoriel. — On voudra bien se reporter pour la définition des nombres
de Clifford à un article des Comm. Math. Helv. (vol. 2, p. 225-235).
Ici je me borne au cas de n — 3. Les formules de l'algèbre vectorielle
se déduisent des règles de multiplication des unités de Clifford; il n'est
pas possible de les rappeler ici; elles sont d'ailleurs très semblables
aux formules du calcul des quaternions.

Pour l'analyse vectorielle, il faut remarquer que l'opérateur

se définit intrinsèquement par la limite:

vc.r1r2r3 iim -^r-

où C est un nombre variable, - un volume limité par la surface S;
ses éléments sont représentés par le bivecteur der dont l'expression
clifîordienne est dx1dx2T1T2 + dx2dxiT2T3 + dx3dx1T3T1 (forme
à multiplication extérieure). On trouve alors la formule

///vCdx //d«rC
Y H

où 2 est une surface fermée limitant le volume V, d? étant le trivecteur
qui représente l'élément du volume. Cette identité exprime en particulier

le théorème du gradient, celui du rotationnel et celui de la
divergence (Ostrogradski). Soit 2 une surface limitée par une courbe
fermée P et n le nombre de Clifford qui représente la normale unité
à 2, on tire de (1) par un calcul simple la formule

ff(vn.C-^nd*G
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cil étant l'élément d'arc (en clifîordien) de T. Cette formule contient
comme cas particulier celle de Stokes qui donne la circulation d'un
vecteur le long de T, et celle qui donne l'intégrale analogue du produit
vectoriel dl x v [Cf. Lagally, Vektorrechnung, S. 142]. On trouvera
dans un mémoire détaillé [Bulletin de la Soc. neuchâteloise des Se. nat.
2me volume du Centenaire] la démonstration de ces formules, une
extension de ces résultats et quelques applications.

5. — Alice Roth (Zurich). — Sur une extension du théorème
d'approximation de Weierstrass au domaine complexe. — Comme généralisation

d'un lemme de M. Carleman (Sur un théorème de Weierstrass.
Arkiv för Matematik, Astronomi och Fysik, Bd. 20 B) j'ai démontré
le théorème suivant:

Soient Mx et M2 deux ensembles de points du plan complexe fermés
et bornés ayant un seul point commun z «b s0. Supposons de plus ces
ensembles tels qu'ils puissent être séparés par deux courbes sans points
multiples conduisant du point z z0 à l'infini et ayant le point z — z0

comme seul point commun entre elles et avec les ensembles Mx et M>.
Etant donnés deux polynômes Pi(z) et p2(z), où pi(z0) p2(z0), et un
nombre positif quelconque g, il existe un polynôme p(z) tel qu'on ait

| (z) -— p (z) | < s dans Vensemble Mx

p2 (z) —p (z) < s dans Vensemble M2

Pour la démonstration j'utilise les considérations de M. Carleman
et j'y ramène le cas général en faisant usage de certaines représentations

conformes élémentaires.
A l'aide de la proposition énoncée on peut démontrer d'une manière

simple certaines parties de la généralisation du théorème d'approximation
de Weierstrass trouvée par MM. Hartogs et Rosenthal (Math.

Annalen, Bd. 100 u. 104) par une voie différente. Les théorèmes
énoncés par M. Carleman qui concernent l'approximation d'une
fonction continue sur certaines courbes allant à l'infini peuvent être
généralisés un peu; il est par exemple superflu de supposer les courbes
considérées rectifiables.

6. — J. Grize (Le Locle). — Sur les corps algébriques et les quaternions

complexes. — Cette communication résume une thèse de doctorat
présentée par l'auteur à l'Université de Neuchâtel1.

La première partie traite de l'arithnomie du corps algébrique lv
de degré 2n, corps dont les nombres s'expriment rationnellement à
l'aide de n racines carrées: VAn • VS, où les A^ sont des

3 Sur les corps algébriques dont les nombres s'expriment rationnellement à l'aide de
racines carrées et sur les quaternions complexes, par Jean Grize, licencié ès sciences
mathématiques, 1932.
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nombres entiers ordinaires dont aucun ne contient un facteur carré.

L'auteur traite principalement dans cette première partie de la forme

des entiers du corps K, de la base des entiers, du discriminant et de la

forme fondamentale du corps, de la décomposition des idéaux, des

unités du corps et du nombre de classes d'idéaux. Plusieurs démonstrations

sont d'ailleurs faites pour le cas de n 3 seulement.

La seconde partie est consacrée à l'étude des quaternions dits

complexes, c'est-à-dire des quaternions dont les coordonnées sont

tirées d'un corps algébrique, en l'espèce le corps K étudié plus haut.
Les quaternions complexes présentent avec les quaternions à coordonnées

rationnelles de grandes analogies mais aussi de profondes
différences. C'est ainsi que si A représente un quaternion complexe
différent de zéro, le produit AB de A par un quaternion complexe B

peut s'annuler sans que B soit nul. A est alors dit un diviseur de zéro.

L'auteur appelle idéal de quaternions complexes et représente

par 21 ëë id {a}, l'ensemble infini des quaternions complexes
entiers dont les quatre coordonnées parcourent indépendamment
les unes des autres tous les nombres de l'idéal a du corps K des

coordonnées. Cette généralisation de la notion d'idéal a permis
d'étendre au domaine des quaternions complexes celle d'indicateur
d'Euler ainsi que le théorème de Fermât.

MÉLANGES ET CORRESPONDANCE

A propos d'un article de MM. Barzin et Errera.

A propos de l'article de MM. Barzin et Errera dans le tome XXX
de cette revue (p. 248) je voudrais faire les remarques suivantes:
D'abord la dénomination «logique de Heyting » ne me paraît pas
heureuse, toutes les idées fondamentales de cette logique provenant
de M. Brouwer ; je préférerais « logique intuitionniste » ou bien « logique
non-aristotélienne», ce dernier terme pouvant d'ailleurs aussi désigner
les logiques purement formelles non conformes à la logique classique
que quelques savants polonais ont construit en ces dernières années.
Ensuite je signale aux lecteurs l'article intéressant de M. Kolmogorofî
(Math. Z. 35, p. 58), où l'auteur donne une interprétation remarquable

de mes formules comme constituant une logique des problèmes.
Cette interprétation est indépendante des idées intuitionnistes ;

cependant, pour le mathématicien intuitionniste c'est seulement cette
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