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La différence des sommes (3) et (4) sera donc, pour

2p? P/2
m > 2p et > —%l \/ ,

<

moindre que
m

2 al (’Z) zk 1 — x,m_k = : ,

h=0

d’ou on tire qu’elle tend uniformément vers zéro.

SUR UNE LOI CORRECTIVE DE LA LOI DE NEWTON
POUR LA DETERMINATION DU DEPLACEMENT
DU PERIHELIE ET DE LA DEVIATION DES RAYONS
LUMINEUX 1

PAR

M. I. Tzinorr (Sofia).

1. — Dans cet article nous nous posons le probléme suivant:
en prenant comme point de départ la seconde loi du mouvement
de Newton (la variation de la quantité de mouvement est égale,
en grandeur et en direction a la force appliquée au point matériel)
déterminer le mouvement d’un point matériel de masse variable
m, attiré suivant la loi de Newton par un centre fixe de masse M
(par exemple le Soleil), en supposant que la masse variable m
ne dépend que de la distance r du point au centre et que, pendant
toute la durée du mouvement, I'intégrale de la force vive existe.
La demi-force vive ou I’énergie cinétique du point est donnée par
la formule mc® — mc? (valable pour les petites et pour les grandes

L A propos de ’article de M. G. MANEFF, « Considération substantielle de la Gravita-
tion », imprimé dans les Annales de I’ Université de Sofia, 1930-31.
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vitesses), ¢ désignant la vitesse de la lumiére et m, ayant la
signification habituelle en Mécanique classique. En partant des
equations différentielles du mouvement nous nous proposons de
déduire quelle doit étre la loi corrective de la loi de Newton (&
masse constante), la force corrective étant toujours une force
centrale. Nous calculerons ensuite le déplacement du périhélie
d’une planéte et la déviation d’un rayon lumineux passant au
voisinage du Soleil.

2. — Désignons par z’, y’ 2z’ les dérivées par rapport a ¢ des
coordonnées x, ¥, z du point m. La valeur algébrique de la force F,
agissant sur le point m, est

2Mm

F = — — =

9

s
k et M étant constants. En posant kM = g, nous avons

u.m

F o= —

Les équations différentielles du mouvement sont:

d(ma') pm x d(my') wm y  dimz’) pim z
dt re or dt o dt rEor

Des deux premiéres équations, on tire

d ’ d noo_
x o (my’) —y o (mat) =0,

ou bien,

;t m(zy’ —yx') — my'z" + ma'y’ = 0.

Par conséquent, nous obtenons les trois intégrales premieres
mxy —yz') = C, myz' —zy’) = A, m@Ex' —2zz') = B,

d’ott I'on déduit que le mouvement s’effectue dans le plan
Az + By + Cz = 0 passant par le centre fixe M.
En prenant ce plan pour le plan xoy, nous avons les équations:

k';

d , um x d ' m 'y
— = e 2 — ez = — - 1
dt e’} rror’ dt (my’) 2 p 1)

~
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d’ou 'on déduit 'intégrale premiére du mouvement:

m(zy’ — ya') = const, ou bien mri’ﬂ — const. , (2)
r et 4 désignant les coordonnées polaires du point m.

Les équations (1) contiennent les trois inconnues z, y, m. Pour
déterminer m nous nous servirons de notre hypotheése que l'inte-
grale de la force vive existe pour notre masse variable, ¢’est-a-dire
que la somme de son énergie cinétique (me? — myc?) et du poten-
tiel V.= — U (U étant la fonction de forces) demeure constante.

Comme la force est centrale, nous avons

d’ou 'on déduit:

Alors I'intégrale de la force vive sera

) u.mdr ,
me? - /o‘ — = const. ; ¥
o P

)
S

en dérivant par rapport a r, on obtient

cdm | pm 0
i T =0
ou bien
dm v.dr
Bt _ §
m cir? (%)

v

2,

En intégrant nous obtenons m = Ae¢
gration).
Pour les mouvements planétaires

(A constante d’inté-

*
ciry

b

A = mye

en supposant que pour r = r,, m = m,; alors

w (1 1
o (v (5)

m = mge
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Pour un rayon lumineux, en supposant que, pour r = %,
m = mg, on obtient

1k
v

ar (6)
nm o= mye
Aprés la détermination de I'inconnue m, les deux équations (1)
donnent z et y. Nous avons déja trouvé l'intégrale premieére (2);
nous montrerons qu’il existe encore une intégrale premiére
simple. En effet, en multipliant les équations (1) par x', y’, et
additionnant, on obtient

. , uwm
oidm -+ medy = — = dr

ou bien, en tenant compte de (4),

odg .
— =
: P e

9

e

d’ou 'on déduit intégrale cherchée:

e -
T 2
2 (% i
e’ 7\/1 — — = const, = 1) .
o

Pour les mouvements planétaires

en supposant que, pour r = r,, ¢ = ¢,; par conséquent

2 " 24 -

=i 2 ] [¢)
e (1 L 0_2> — D2 — oo (1 _ 4:) , (7')
c ¢,

Pour un rayon lumineux

D — 0,

(puisque pour r = a, ¢ = ¢); par conséquent, I’équation (7)
donne
¢ = ¢, (8)

ce qui montre qu’avec nos hypotheéses la vitesse du rayon lumi-
neux demeure constante dans le champ de gravitation considéré.
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Nous montrerons maintenant que les équations (7°), resp. (8),
ne sont autre chose que lintégrale de la force vive (3).

En effet, pour une planete on a

{ )d L 1)
- =) dr -
= Amye® N T = — mo;

d :L 1

rumdr » S =

V o= /‘ = um, J et N To ol
(2

.
]
2

1.2

pour un rayon lumineux, on a

2

< 7/27
V= — Zmye®” = — *m .

L’équation (7), pour les mouvements planétaires, donne

m I
‘?\-1.2_
=3
.
[ !
SHRS l
(8 ol
l
®
S |
[O\,}__
<
o
—
DT
[SAK--1 o

on en déduit, d’apres (), que
T T e
0
w (1 1) \/1 _ _7:2
e & R ¢
m = mye® " TV = my e
p*
e

Dans les calculs nous remplacerons m par la seconde ou par la
premiére valeur ci-dessus, suivant qu’il s’agit de Dénergie ciné-
tique (qui dépend de la vitesse) ou de la fonction potentielle (qui
dépend de la position, c’est-a-dire de r).

Cela posé, I’équation (3) devient, pour une planete,

puisque, pour r = r,, ¢ = ¢,. On voit immédiatement que cette

équation se ramene a ’équation (7).

Pour un rayon lumineux, comme ¢ = ¢, on a pour l’énergie

cinétique

me? — myc*

L’Enseignement mathém., 31¢ annéc; 1932.
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comme le potentiel est égal a — ¢2m, 'équation (3) donne

me® — me® = const, = 0 |

puisque, pour r = @, ¢ = ¢, m = m,. On en déduit que ¢v = ¢,
ce qui est ’équation (8).

En résumé, le mouvement des planétes est déterminé par les .
deux intégrales premiéres du mouvement:

2 * 2{).

—t 2 —_—

2 (Y ; . 2 9 .
\ e’ <’1 — -7> = D? ou bien e (¢ — ¢%) = ¢*D?
! c

e . =

ec%; Al
dt

la trajectoire du rayon lumineux par:

2

0 = ¢

L

w8

Bref, dans les mouvements d’une masse variable sous I'action
de la force centrale considérée, on a toujours deux intégrales
premieres, comme dans le cas d’une masse constante mais I'inté-
grale des aires n’existe pas — elle est remplacée par I’équation

s, dD :
ecrr‘;l?:B. (2°)

La solution des équations (9) et (10) nous donnera le déplace-
ment du périhélie et la déviation du rayon lumineux, dans
I’hypothése que la masse du mobile est variable; par conséquent
les résultats obtenus ne doivent pas étre comparés avec ceux
obtenus en supposant la masse constante.

Nous chercherons maintenant les transformations que 1’on
devrait effectuer sur les équations (9) et (10), pour pouvoir
considérer la masse comme constante et pour rendre possible la
comparaison de nos équations avec les équations connues,
établies dans I’hypothese d’une masse constante. De la solution
de cette question dépendra la détermination de la loi corrective
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de la loi de Newton, en supposant toujours que la force est une
force centrale.

On sait que sous 'action d'une force centrale, un point de
masse constante décrit une trajectoire plane suivant la loi des
aires:

, do
7 R't‘ = B .

Pour que notre équation (2') efit cette forme simple, on'pourrait

effectuer I'une des deux transformations simples:

e r=p
ou bien
Lrdb _ da (11)
dt dt

La premiére transformation est une homothétie qui a pour
effet d’allonger un peu le rayon-vecteur; mais comme la masse

. . , . “5 o A0 :
varie avec la distance, ’équation ¢ r? — = B ne deviendra

dt
dh .
pas p*—— = B, mais prendra la forme
&, db
o 2 @Y
R B

D

puisque & la distance ¢ la masse sera mye”s.
Au contraire, en faisant la transformation (11), c¢’est-a-dire en

laissant fixe la longueur du rayon-vecteur et ne changeant que sa

: ; ’ da .
direction, on obtiendra r— = B, puisque la masse ne change

pas dans cette transformation. Autrement dit, les transforma- -
tions possibles sont celles pour lesquelles le rayon r ne change pas.
En faisant dans les équations (9) et (10) la transformation (11),
on obtiendra deux équations dont la seconde coincidera avec la
loi des aires pour une masse constante, tandis que la premiére
nous permettra de déduire la loi de force corrective cherchée.
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Pour les mouvements planétaires nous obtenons, en partant
des équations (9):

[ 2y
ar| e [(dr\* L [d0N] s,
Se [c <dt> r<dt = D¢

ou bien

20 2 1,
2y )
’a/2 __+_ 7"2@,2 — c2 _I_ l')d.,z (l — e c 7") _ c?DEe cir (/12)

rte’ = B .

Pour trouver la loi corrective cherchée, nous allons introduire
les coordonnées rectangulaires x, y. On a

T = rcos a, y = rsina
’ 4 . ’ ’ 14 ” ’
' = rcosa —rsinaa ,y = r sSina - rcos ao
2" = (r — ra'? cos o — (ra” 4+ 2r'a’) sina, y" = ..
ou bien
z
P L (rll _ ra/)) had
r
(13)
yll _ (I‘” L 7‘01’2) g .
r

puisque ra” - 2r'a’ = 0 étant la dérivée de r®«’ qui est = B.
En dérivant la premiére équation (12) et remplacant ra” par

— 2r'a’, on obtient

I

2

U.
. ,.
r—r'r" " el e
c®r

1 Nous désignerons, pour abréger, les dérivées par rapport 4 { par des accents.
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d’ou 'on déduit:

< 2
1. W . ' T
" rg ] e o2\ 1 i
I == FA T = - 2—}—02”21“ e &

En portant cette valeur dans les équations (13) on obtient

: B 20 B
oo our'? e
2" = - | S =5 a1 — e
Pk ctr i
_ 2,
1 ' ’ Tt
= -2 b ra?\1l—e
Y | r? c?r? . -

Par conséquent, nous obtenons pour la valeur algébrique de la
force

S8

=

~

~ <

En développant la fonction exponentielle et en négligeant les
termes en ¢4, ... on a
. u. pr'? 2u.
P:—['T”_22+QIT]’

r- c°r c'r

ou bien, puisque r?a'? = ¢2 —p'2

2 9 ..7/2
P <1 ° Z",:TELJ _
c

(C’est la loide force centrale, données en Electrodynamique par
Gauss. J. BErRTRAND (Lecons sur la théorie mathématique de
UElectricité, Paris, 1890, p. 183) et Tisseranp (Comptes rendus,
t. 110, 1890, p. 313) ont trouvé que la loi de Gauss donne pour

, a1 1 dru e .
Pavance du périhélie — 0 o ) c’est-a-dire les deux tiers de la

valeur trouvée par Einstein.
Pour un rayon lumineux, les équations (10) donnent

oyl <L 126’2 — o2 ’

\
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En effectuant la transformation (11), nous aurons

2,

r'? 4 r?a’ze-cTr = @, rfa’ =B . o
ou bhien
y 24
57312 + ’.2112 — c'.’ + ]’2-7_’2 ('J — B (:27’> K (’14’)
(731' = B

En suivant une marche analogue a celle suivie plus haut, on
obtient

Par conséquent

‘ . 2 ., / 2,
F—— |2 L ,l1—¢¢ o
c” r

% 7

1)

ou bien approximativement (en négligeant les termes en ¢, ...)

Pour déterminer la grandeur de la déviation, nous éliminerons
o’ entre les équations (14); on obtient

N

t

dl i 20
o I 1 T B° 1 n 2u 1
as/ — B? 2 - B 2 pr o

les termes négligés contenant ¢ ¢ en facteur.
On arrive donc & la méme équation que donne la Relativité !
et qui donne 1”74 pour la déviation du rayon lumineux.

3. — Nous allons maintenant abandonner ’hypothése que le
centre attirant S (le Soleil) est immobile; nous arrivons donc au
probléme des deux corps. En désignant par «, 3, y et z, v, 2,

1 Cuazy, La théorie de la Relativité et la Mécanique céleste, t. I, p. 238.
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les coordonnées des points S et P resp., par M et m leurs masses
zMm
et les

cariables, la grandeur de la force attractive est

équations du mouvement du Soleil et de la planete sont resp.:

\/ ’ ——
d(L\Ia ) = zMm 3_3'1_“‘;_%% ¥ e (b)
dt ’n)
d (mx,’) — % 3
ALy NMm R
dt «Mm (1)
ou bien
da’ a’ dM X, — o
YT o )
dz’ dm _ z
@woyghdn o qITH p
dt m di re (7)

Pour déterminer le mouvement relatif du point P par rapport
a S, nous transporterons les axes en S sans changer leurs direc-
tions; les coordonnées de P par rapport & ces axes seront:
x =2z, —, y=1y,—B, z2=12 —7y. Les équations précé-
dentes donnent, aprés soustraction,

dz’ oz, dm o' dM

— = = g = — (M om)
d " om dt M dt 2 (M m)
d’ott Pon déduit
d(mz’) o dm  m dM\ 2N - m) ma |
di M G T T T T T e e (15)

On sait que le Soleil attire les planétes, les comeétes, en général
tous les corps; de méme les planétes attirent le Soleil, les autres
planetes, leur satellites, etc. A chaque corps est attaché un
certain coefficient d’attraction; soit u le coefficient du Soleil,
A celui d’une planéte. En désignant par r la distance entre le
Soleil S et la planéte P, la grandeur de I’attraction de la planéte

par le Soleil est égale a mf , celle du Soleil par la planéte S
1

En vertu du principe de l’egahte de 'action et de la réaction

' m. Mo M 1. .
nous avoms —= = —.- ou bien — = - = const. On en déduit
dM  dm lif , .
que —; = —- 1 ce qui simplifie les équations (15):
d(ma') (M 4+ m) m x

¥ r
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Ces équations montrent que le mouvement relatif de P
rapport & S coincide avec le mouvement du point P attiré sui

la loi de Newton par un centre fixe de masse M + m:

M M,
Comme — = const = - on a, en posant
m g

i, == %8 <J -k 1}\7_?)
0

2
S L

= &
meyr

par
vant

Pour déterminer la loi suivant laquelle varie la masse, nous

suivrons une marche analogue a celle suivie plus haut.

On a :
nym® dr

d{mc®) = cdm = =
( ) n ", g

ou bien
dm Uy

2 2
m Hiby &

d’ou on déduit

mo= -
vy (1 1
“a(i-))
expression qui ne différe de
n (i 1
m = myet \T 7o

quavec le méme degré d’approximation, on peut se s
formule (5) en remplacant seulement & par £ (1 1—:2!-“

Des équations (15") on déduit

2 —
o2dm medy = — ;
- re m,

ervir de la

).

que par des termes contenant ¢ * en facteur. On voit dong,

2(M 4+ m)m dr — —.hm e
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; ; dr . .
Comme dnf = — 1% on obtient successivement
m*= g €2 12
1 u p? ody 1 dr _
TR O PR P S S
m mgl c T A =Y _)
c* c\r Py

g o
Vi-s
= const. — \ ] e B

’

o ¢

Toujours avec le méme degré d’approximation, cette intégrale
devient

et par conséquent coincide avec (7) pourvu qu’on remplace p. par
L m ’
¢, c’est-a-dire £ par k& (1 + i )
. 0 &
En faisant les mémes calculs on obtiendra pour I’avance du
périhélie ’expression
S3TH hrnu, » by

2 TRy T8 L= 5 T Tz 2
cca(l —e*) ca(l —eY)  cta(l — &%)

dont le second terme est insignifiant en comparaison avec le
premier. (Méme remarque pour la déviation du rayon lumineux.)
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