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SUR LA LOI DE NEWTON

La différence des sommes (3) et (4) sera donc, pour

77

m > 2p et >

moindre que
m

m-k

d'où on tire qu'elle tend uniformément vers zéro.

SUR UNE LOI CORRECTIVE DE LA LOI DE NEWTON

POUR LA DÉTERMINATION DU DÉPLACEMENT

DU PÉRIHÉLIE ET DE LA DÉVIATION DES RAYONS

LUMINEUX 1

1. — Dans cet article nous nous posons le problème suivant:
en prenant comme point de départ la seconde loi du mouvement
de Newton (la variation de la quantité de mouvement est égale,
en grandeur et en direction à la force appliquée au point matériel)
déterminer le mouvement d'un point matériel de masse variable
m, attiré suivant la loi de Newton par un centre fixe de masse M
(par exemple le Soleil), en supposant que la masse variable m
ne dépend que de la distance r du point au centre et que, pendant
toute la durée du mouvement, l'intégrale de la force vive existe.
La demi-force vive ou l'énergie cinétique du point est donnée par
la formule me2 — mQc2 (valable pour les petites et pour les grandes

PAR

M. I. Tzénoff (Sofia).

1 A propos de l'article de M. O. Maneff, « Considération substantielle de la Gravitation
», imprimé dans les Annales de l'Université de Sofia, 1930-31.
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vitesses), c désignant la vitesse de la lumière et m0 ayant la
signification habituelle en Mécanique classique. En partant des

équations différentielles du mouvement nous nous proposons de

déduire quelle doit être la loi corrective de la loi de Newton (à
masse constante), la force corrective étant toujours une force
centrale. Nous calculerons ensuite le déplacement du périhélie
d'une planète et la déviation d'un rayon lumineux passant au
voisinage du Soleil.

2. — Désignons par x\ y' z' les dérivées par rapport à t des

coordonnées x, y, z du point m. La valeur algébrique de la force F,
agissant sur le point m, est

k et M étant constants. En posant /cM y, nous avons

I, [jl m
F

Les équations différentielles du mouvement sont:

d(mx') _ p.m x d(my') u. m y d{mz') y m z

dt r2 r ' dt F r
' dt r

Des deux premières équations, on tire

x^(my,)~-y^t(mx') 0

ou bien,

—yx') — my'x* + mx y' ~ 0
dt

Par conséquent, nous obtenons les trois intégrales premières

m(xy' — yx') G m (yz — zy') — A m{zx' — xz) c» B

d'où l'on déduit que le mouvement s'effectue dans le plan
Ax + By + Cz 0 passant par le centre fixe M.

En prenant ce plan pour le plan xoy, nous avons les équations:
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d'où l'on déduit l'intégrale première du mouvement:

m{xy'—• yx) const. ou bien mr~~dt ~ const' ' ^
r et ^ désignant les coordonnées polaires du point m.

Les équations (1) contiennent les trois inconnues x, y, m. Pour
déterminer m nous nous servirons de notre hypothèse que l'intégrale

de la force vive existe pour notre masse variable, c'est-à-dire

que la somme de son énergie cinétique (me2 — m0c2) et du potentiel

V — U (U étant la fonction de forces) demeure constante.
Gomme la force est centrale, nous avons

d\r — dXJ - Vdr m-dr
r*

d'où l'on déduit:
„ n^mdr
V j 5 — q- const.

Alors l'intégrale de la force vive sera

f*\y mdr
me + / 5— const. ;J ri

en dérivant par rapport à r, on obtient

c2 dm
x

[j. m n
~dT

ou bien
dm \i.dr
m c2r2 ' '

En intégrant nous obtenons m Né%r (A constante d'inté
gration).

Pour les mouvements planétaires

A c2r0A mne

en supposant que pour rr0, mm0alors
(5)

m m() e
c'\r
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Pour un rayon lumineux, en supposant que, pour r ~ oo

m w0, on obtient

r'7 (6)
m in0 e

Après la détermination de l'inconnue m, les deux équations (1)
donnent x et y. Nous avons déjà trouvé l'intégrale première (2);
nous montrerons qu'il existe encore une intégrale première
simple. En effet, en multipliant les équations (1) par x\ //', et
additionnant, on obtient

E dm + Dwdç « -—- —F c{r tr
ou bien, en tenant compte de (4),

c>dv [J.
^

TU! '

c-

d'où l'on déduit l'intégrale cherchée:

ec~r y/J — Çconst, — I)

Pour les mouvements planétaires

ü r° sj j - ~

en supposant que, pour r — r0, c c0; par conséquent

e*r i - pj ** D2 eFlro ^1 - -2) (T)

Pour un rayon lumineux
D - 0

(puisque pour r ~ ce, v c); par conséquent, l'équation (7')
donne

v *= c (8)

ce qui montre qu'avec nos hypothèses la vitesse du rayon lumineux

demeure constante dans le champ de gravitation considéré.
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Nous montrerons maintenant que les équations (7'), resp. (8),

ne sont autre chose que l'intégrale de la force vive (3).

En effet, pour une planète on a

("[}.mdr /» A dr 7^(r~L")
<>

Y - j 1

-p— ;j.m0 J ec 7 r°7 « — c2mQec xr r°7 — cm ;

pour un rayon lumineux, on a

V -— c2rti0ec*r — c2m

L'équation (7), pour les mouvements planétaires, donne

on en déduit, d'après (5), que

Dans les calculs nous remplacerons m par la seconde ou par la

première valeur ci-dessus, suivant qu'il s'agit de l'énergie
cinétique (qui dépend de la vitesse) ou de la fonction potentielle (qui
dépend de la position, c'est-à-dire de r).

Cela posé, l'équation (3) devient, pour une planète,

puisque, pour r r0, v ç0. On voit immédiatement que cette
équation se ramène à l'équation (7).

Pour un rayon lumineux, comme v — c, on a pour l'énergie
cinétique

inv~ — mQc2 ;

L'Enseignement mathém., 31e année; 1932.
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comme le potentiel est égal à — c2m, l'équation (3) donne

?nç2 — me2 s=s const. « 0

puisque, pour r oo, e c, m m0. On en déduit que v c,
ce qui est l'équation (8).

En résumé, le mouvement des planètes est déterminé par les
deux intégrales premières du mouvement:

ecr 1 — D2 ou bien ec2? (c2— v1) — c2 D2
C

(9)

e^rr r,MB̂
dt

la trajectoire du rayon lumineux par:

c c-

I Fr2 di) r,
(10)

' ec r r2
7

B
dt

Bref, dans les mouvements d'une masse variable sous l'action
de la force centrale considérée, on a toujours deux intégrales
premières, comme dans le cas d'une masse constante mais l'intégrale

des aires n'existe pas — elle est remplacée par l'équation

e^rr2^^ B (2')
dt

La solution des équations (9) et (10) nous donnera le déplacement

du périhélie et la déviation du rayon lumineux, dans

l'hypothèse que la masse du mobile est variable; par conséquent
les résultats obtenus ne doivent pas être comparés avec ceux
obtenus en supposant la masse constante.

Nous chercherons maintenant les transformations que l'on
devrait effectuer sur les équations (9) et (10), pour pouvoir
considérer la masse comme constante et pour rendre possible la
comparaison de nos équations avec les équations connues,
établies dans l'hypothèse d'une masse constante. De la solution
de cette question dépendra la détermination de la loi corrective
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de la loi de Newton, en supposant toujours que la force est une

force centrale.
On sait que sous l'action d'une force centrale, un point de

masse constante décrit une trajectoire plane suivant la loi des

aires :

Pour que notre équation (2') eût cette forme simple, on pourrait
effectuer l'une des deux transformations simples:

ou bien
: dA

dt
do.

dt
(11)

La première transformation est une homothétie qui a pour
effet d'allonger un peu le rayon-vecteur; mais comme la masse

varie avec la distance, l'équation é*rr2~ — B ne deviendra
d- 6

pas B mais prendra la forme

puisque à la distance p la masse sera m0ec

Au contraire, en faisant la transformation (11), c'est-à-dire en
laissant fixe la longueur du rayon-vecteur et ne changeant que sa

direction, on obtiendra r2— B, puisque la masse ne change

pas dans cette transformation. Autrement dit, les transformations

possibles sont celles pour lesquelles le rayon r ne change pas.
En faisant dans les équations (9) et (10) la transformation (11),

on obtiendra deux équations dont la seconde coïncidera avec la
loi des aires pour une masse constante, tandis que la première
nous permettra de déduire la loi de force corrective cherchée.
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Pour les mouvements planétaires nous obtenons, en partant
des équations (9):

r1 — ~B

dt

et remplaçant ec2ro' par a' les équations:

| e&r [cs _ r'* — r"-e °2r a.'2]
D2< (12)

;,2a' « B

ou bien

J r'2 _j_ r20>2 _ c2 _j_ r"a'2 Ç l __ g C~rJ _ c2 02e C-?

f rV - B

Pour trouver la loi corrective cherchée, nous allons introduire
les coordonnées rectangulaires #, y. On a

x — r cos a ?/ r sin a

«s r cos a — r sin a a' y' r' sin a + f cos <*<*'

a?" (/'" — ra'2) cos a — jra" -j- 2r'a') sin a y" —

ou bien

[r" — ra/2) —
r

(13)

2/" ('•" - '2) 7 '

puisque r«" + 2r'«' =* 0 étant la dérivée de r2a' qui est B.
En dérivant la première équation (12) et remplaçant r«" par

—2r'«.' on obtient

i_ r' _ ry + _i_ r'a + c2r — 0

1 Nous désignerons, pour abréger, les dérivées par rapport à t par des accents.
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d'où l'on déduit:

ra'2 Vi
2 [x

c*r

En portant cette valeur dans les équations (13) on obtient

ra'2 1
r£ c'r*

F lir '2 h—5 — ——ô F \ 1 @

J*" CT"

Se)],

')]?
2

c^r

Par conséquent, nous obtenons pour la valeur algébrique de la
force

F
fi. rjL r *

r»2 s>2 ]?2 + ra" \ 1

La
c2r

En développant la fonction exponentielle et en négligeant les

termes en c~4, on a

^ + <*' ^1
y- c*r2 clr j

ou bien, puisque r2a'2 c2 — r'2

2^2 _ 3/2
F - -/(l +

C'est la loi de force centrale, données en Electrodynamique par
Gauss. J. Bertrand (Leçons sur la théorie mathématique de

VElectricité, Paris, 1890, p. 183) et Tisserand (Comptes rendus,
t. 110, 1890, p. 313) ont trouvé que la loi de Gauss donne pour

c'est-à-dire les deux tiers de lal'avance du périhélie ^ ^
valeur trouvée par Einstein.

Pour un rayon lumineux, les équations (10) donnent

r'* + ,.20's _ /
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En effectuant la transformation (11), nous aurons

r'2 + v2a2e c'r c2 r2 a' B

ou bien

\ r'2 + r2 a'2 c2 -f F2 a'2 \ j — e c'r

l r2a' B
(14')

En suivant une marche analogue à celle suivie plus haut, on
obtient

" l-1- /9 c2r I

r — rx - §m y a ~e — ra - \ 1 — e

Par conséquent

F — 7) e
cJ

r \1 — e
V- — r

r2

ou bien approximativement (en négligeant les termes en c"4,

3:jl
K - - ^ (p. -

Pour déterminer la grandeur de la déviation, nous éliminerons
a' entre les équations (14); on obtient

dû/ B- r2 ^ _
1 2 iW r2 + c2 7*

les termes négligés contenant c'4 en facteur.
On arrive donc à la même équation que donne la Relativité 1

et qui donne 1"74 pour la déviation du rayon lumineux.

3. — Nous allons maintenant abandonner l'hypothèse que le

centre attirant S (le Soleil) est immobile ; nous arrivons donc au
problème des deux corps. En désignant par «, ß, y et xly yl7 z1

1 Ciiazy, La théorie de la Relativité et la Mécanique céleste, t. I. p. 238.
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les coordonnées des points S et P resp., par M et m leurs masses
4-

X ^ ' m ± 1

variables, la grandeur de la force attractive est et les

équations du mouvement du Soleil et de la planète sont resp.:

d (M a') xx — a ,sx1 x Mm „ W/
dt r>

d{mxx)
__

a — X-

ou bien

a / im
/. M m o— • • • l! V

dt T

à' a'dM X-, — a /0.h — — y.m - --a— • • (S)
dt M dt r'
àx' xx dm v| a — xi n\
éù m dt r3

Pour déterminer le mouvement relatif du point P par rapport
à S, nous transporterons les axes en S sans changer leurs
directions; les coordonnées de P par rapport à ces axes seront:

x x1 — a, y — y1 — ßi z — y. Les équations
précédentes donnent, après soustraction,

dx xJ dm ad d M x
Ä + + "l)

,•>

d'où l'on déduit

d{mx) t fdm m dM\ x (M -P m) mx
' -r a l ~jZ \T ~37 Tfdt \ dt -M dt J r'r

On sait que le Soleil attire les planètes, les comètes, en général
tous les corps; de même les planètes attirent le Soleil, les autres
planètes, leur satellites, etc. A chaque corps est attaché un
certain coefficient d'attraction; soit p, le coefficient du Soleil,
À celui d'une planète. En désignant par r la distance entre le
Soleil S et la planète P, la grandeur de l'attraction de la planète

par le Soleil est égale à ~ celle du Soleil par la planète •

En vertu du principe de l'égalité de l'action et de la réaction

nous avons ^ ^ ou bien - -£ const. On en déduitr- r m a

que — » ce qui simplifie les équations (15):

d(mxf) /. M -f m) m x hdt~~r* y " • • (15 1
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Ces équations montrent que le mouvement relatif de P par
rapport à S coïncide avec le mouvement du point P attiré suivant
la loi de Newton par un centre fixe de masse M + m:

P ^
(M 4- m) m

r2

Comme — — const — •> on a, en posantm mQ ' 1

- 0 + s;)

y lb2
m0r2

Pour déterminer la loi suivant laquelle varie la masse, nous
suivrons une marche analogue à celle suivie plus haut.

On a

d(mc2) c2dm —{Jl-m
m0 r2

ou bien
dm jjj dr
m2 JÏIqC2 r2

d'où l'on déduit

expression qui ne diffère de

m mQec^r r°J

que par des termes contenant c 4 en facteur. On voit donc,

qu'avec le même degré d'approximation, on peut se servir de la

formule (5) en remplaçant seulement k par k (1 + r~).

Des équations (15 ') on déduit

y. (M 4- m) m 7 m m2 dr
ç2dm + mvdv ^ ^ dr —F m0 r-
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Gomme dm
__—_
di

Qn grient successivement
m2 m0 c2 r2

1
7 [J--, p2\ 7

vdç [J-! dr
~ vdv 1—- 1 — — dr ; r, ^ 5 • 77 77 •

m m{) r2 \ c2] ^
v- r2

^ 71 /
_____

' \
c2 c2 V r rj

en intégrant, on a

d'où l'on déduit

Toujours avec le même degré d'approximation, cette intégrale
devient

et par conséquent coincide avec (7) pourvu qu'on remplace p par
pl7 c'est-à-dire k par k (1 + 77ivl0

En faisant les mêmes calculs on obtiendra pour l'avance du
périhélie l'expression

^ !Ji ^ 4"Ho*
c2 a l — e2) c2 a I — e2) c2a( I — e2)

dont le second terme est insignifiant en comparaison avec le
premier. (Même remarque pour la déviation du rayon lumineux.)
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