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UNE DÉMONSTRATION SIMPLE DE LA FORMULE

D'INTERPOLATION DE S. BERNSTEIN

PAR

Alexandre Wundheiler (Varsovie).

La formule de M. Bernstein:
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donne un développement effectif de la fonction continue / (x)
en une suite uniformément convergente de polynômes. En
tenant compte du théorème bien connu de Weierstrass, il suffit
de démontrer cette formule pour les polynômes / (x), ce qui se

réduit à sa démonstration pour / (x) xv, vu sa dépendance
linéaire de f (x). Il s'agit alors de démontrer pour p entier
positif
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Nous partons, dans ce but, de l'identité assez proche de (2):
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Sa vérification est immédiate. En effet, le premier membre est
égal à
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76 A. WUNDHEILER

car cette somme est le développement du binôme

(x + 1 — x)m~p 1

Il s'agit maintenant de comparer la somme (3) avec

Cette comparaison est fondée sur la remarque bien simple

que, si k est suffisamment supérieur à p (k > j, les expressions

k(à — 1) (A — p + 1) ^ kv

m (m — 1) (m ~ p + 1)
°

mv

diffèrent d'aussi peu que l'on veut. Si, de plus, m est suffisamment
grand, chacun de ces termes mêmes, pour les autres valeurs de A*,

sera arbitrairement petit.
D'une manière précise, pour p ^ k ^ m on aura:

q ^ kp k (k - — 1) (k — p + 1) ^ k1' (k —• p)1
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Tandis que, pour k ^ 4" :
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si

On aura donc aussi:
kp î

mP -



SUR LA LOI DE NEWTON

La différence des sommes (3) et (4) sera donc, pour
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m > 2p et >

moindre que
m

m-k

d'où on tire qu'elle tend uniformément vers zéro.

SUR UNE LOI CORRECTIVE DE LA LOI DE NEWTON

POUR LA DÉTERMINATION DU DÉPLACEMENT

DU PÉRIHÉLIE ET DE LA DÉVIATION DES RAYONS

LUMINEUX 1

1. — Dans cet article nous nous posons le problème suivant:
en prenant comme point de départ la seconde loi du mouvement
de Newton (la variation de la quantité de mouvement est égale,
en grandeur et en direction à la force appliquée au point matériel)
déterminer le mouvement d'un point matériel de masse variable
m, attiré suivant la loi de Newton par un centre fixe de masse M
(par exemple le Soleil), en supposant que la masse variable m
ne dépend que de la distance r du point au centre et que, pendant
toute la durée du mouvement, l'intégrale de la force vive existe.
La demi-force vive ou l'énergie cinétique du point est donnée par
la formule me2 — mQc2 (valable pour les petites et pour les grandes

PAR

M. I. Tzénoff (Sofia).

1 A propos de l'article de M. O. Maneff, « Considération substantielle de la Gravitation
», imprimé dans les Annales de l'Université de Sofia, 1930-31.
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