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SUR LES ÉQUATIONS FONCTIONNELLES DU COSINUS

ET DU SINUS ORDINAIRES ET HYPERBOLIQUES

PAR

N. Cioranesco (Bucarest).

1. — Les fonctions qui admettent un théorème d'addition
algébrique ou « les fonctions W », sont celles qui satisfont à une
équation fonctionnelle de la forme :

K 17 M ' f(y) ' f(x + y)) ° I1)

F (X, Y, Z) étant un polynome par rapport aux trois variables.
Leur étude a été faite depuis Weierstrass par de nombreux

mathématiciens, et notamment dans le cas des fonctions réelles

on doit récemment à M. P. Montel 1 une mise au point très
importante de la question.

Les fonctions qui satisfont à une équation de la forme (1),
peuvent satisfaire aussi à des équations de la forme:

G [/(*), f(y), f(x + y). f (x - y)] 0 (2)

G (X, Y, Z, T) étant un polynome. Quoique le polynome G
ait une variable de plus, il peut se faire que l'équation (2) soit plus
simple que l'équation (1) que vérifie la même fonction / (x).
Par exemple, l'équation de Poisson:

f (x + y) -F / (x — y) — 2 f (x) f (y) 0

est plus simple que l'équation de la forme (1) que vérifie le
cosinus ordinaire. Nous allons considérer ici deux cas particuliers

1 Paul Montel, Sur les fonctions d'une variable réelle qui admettent un théorème
d'addition algébrique (Annales scient, de l'Ecole normale, t. XLVIII, 1931, p. 65).
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des équations de la forme (2), l'un dans lequel le polynome G
est irréductible et l'autre avec un polynome décomposable. Ces

deux équations permettent de retrouver d'une manière très
simple les propriétés caractéristiques des fonctions circulaires.

2. — Considérons l'équation fonctionnelle:

où, comme dans tout ce qui va suivre, les fonctions et les
variables sont supposées réelles. Si l'on change le rôle de x et y on
voit que f (x) est une fonction paire. D'autre part, on voit que si

f0 (x) est une solution, ± f0 (ax) est aussi solution quelle que soit
la constante a, même si a est purement imaginaire, car /0 (ix)
est aussi une fonction réelle, à cause de la parité de f (x).

Si l'on fait dans (3) x y — 0 on trouve / (0) — ±1.
Considérons la solution pour laquelle / (0) 1 (on cherche les solutions
uniformes de (3)). Nous allons faire sur f (x) successivement les

hypothèses :

a) qu'il existe un nombre os 0 tel que / (—) -- --- 0 ;

b) que f (x) n'a pas de zéros.

a) f y 0. Faisons alors dans l'équation (3) x u + —,

y u on aura:

f (x + y) f (x — y) f (x) + f {y) — 1

et par conséquent:

En faisant la différence, on déduit:

f (u + m) — f2 {u) 0

donc :

f(u 4- w) ± f(u)
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Pour voir quel est le signe qui convient, faisons dans 1 équation

x-î/' y* Gela nous donne :

/(ro) /(°) -1
et en faisant dans la relation précédente u 0, on voit que l'on

a:
j(x + m) --/(«} (4)

Il résulte de cette relation que la fonction f (x) admet la

période 2 m :

f{x + -2m) f(x) (5)

On en déduit à présent facilement que la fonction / (x) est

bornée supérieurement en module par le nombre un. En effet,

supposons que pour x — a on ait : | / (a) j 1. Alors, en faisant
dans l'équation (3) x a, on obtient:

/ (x + a) f (a — x) > 0

et cela quel que soit x, en particulier pour x —• Mais? si dans

la relation (4), on remplace x par a —y on a:

/ œ\ / m

\=-/(«-Y
et par conséquent l'inégalité précédente n'est pas possible. Il
résulte que l'on doit avoir nécessairement | / (x) | ^ 1. La seule

hypothèse de l'existence d'un zéro pour la solution de l'équation
(3) nous a permis de montrer que / (x) est périodique et bornée
dans tout son domaine d'existence.

Il est permis alors de poser pour une valeur quelconque a de x:
/ ~ cos 9. Si l'on fait dans (3) x y «, on trouve:
j (2a) cos 20.

Supposons que l'on ait déjà trouvé: f [{m — 1) a]
cos (m — 1) 0; / (ma) cos m9 \ on en déduit alors de l'équation

elle-même: / [(m + 1) a] cos (m + 1) g. Donc, quel que
soit l'entier n, on a: f (not) cos ng. De même, si l'on fait
dans (3) x y j on obtient:

f(f) cos ~ et en général f (Vj
0

COS '

2m
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En combinant ces deux résultats, on voit que quels que soient
les entiers n et p on a:

Si l'on suppose que l'on cherche les solutions continues de

l'équation (3), on en déduit:

4 1 ^
0

f (x) cos ax a - —
a U5

en tenant compte des propriétés déjà trouvées de f (x). La solution

la plus générale de l'équation (3), dans les hypothèses
précédentes, est par conséquent:

f [x) + cos — X

b) Supposons à présent que f (x) ne s'annule pour aucune
valeur de x. Par conséquent, il existe un nombre positif y tel que :

| f (x) | ^ y. Supposons y le plus grand des nombres satisfaisant
à cette condition. Mais en faisant x y dans (3) on a: /(2x)

2 f2(x) — 1 et par conséquent: [ f (2x) j 2y2 — 1.

Il en résulte, en laissant de côté les cas qui ne présentent pas
d'intérêt, que l'on doit avoir:

2 -j.2 — 1 ^ a

et par conséquent y ^ 1 (car y > 0). L'hypothèse de l'absence
de zéro pour la solution / (x), entraîne avec soi l'inégalité:
\f(x) 1 — 1-

Il est alors loisible de poser, pour une valeur quelconque ^

de x, f (oc) chtâ. De l'équation (3) on déduit alors comme plus

haut: f(noc) chnœ On en déduit que les

solutions continues de l'équation (3) sont dans ce cas: / (x) =t chax,

a étant une constante arbitraire. Remarquons qu'on aurait pu
obtenir cette solution, en vertu de l'observation faite au début,
de la solution précédente, en changeant x en ix.
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3. — La seconde équation fonctionnelle que nous allons

considérer est:

v(x F y) o (x — y) <?2 {%) — ?2 (y) fô)

et l'on voit que le polynôme: ZT X2 — Y2 n'est pas irréductible.

Si l'on change x et y on voit que 9 (— u) 9 (u)-> es^

une fonctione impaire, et par conséquent 9 (0) 0.

On voit que si 90 (x) est une solution, C90 (ax) en est une aussi,

quelles que soient les constantes a et C.

Comme précédemment, nous allons faire sur 9 (x) deux

hypothèses :

a) Supposons qu'il existe un nombre m ^ 0 tel que 9 (m) — 0.

Faisons alors dans l'équation (6) x u + m, y u. On obtient:

f" (U -f- m) —* f2 (u) 0,

OU

Cû(u + GS) ±: ç (u) (7)

Pour décider quel est le signe qu'il faut prendre, faisons dans

l'équation (6) x ea, y y. On a ainsi

et si dans la relation (7) on fait u y, on voit que l'on a:

<p (u + tü) — o (u) (8)

Il en résulte comme plus haut, que la fonction 9 (x) admet la
période 2m. On a. 9 (u + 2m) 9 (u).

Supposons que l'on cherche les solutions continues de l'équation

(6). D'ailleurs il suffit de supposer que 9 (x) est continue
autour de l'origine pour en déduire qu'elle est continue partout.
Supposons que m est le plus petit en module des zéros de 9 (x)
et que précisément m > 0, car — m est aussi zéro de 9, car 9 (x)
est fonction impaire. De ces faits, il en résulte que 9 (x) garde un
signe constant dans (0, m).

Supposons, pour fixer les idées, 9 (x) ^ 0 dans (0, m) car
— 9 (x) est aussi solution. Il résulte de 0 (0) 9 (m) 0 et de
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la continuité de 9 (x), que dans (0, o>), 9 (x) a au moins une
valeur maxima. Soit 0 < I < w la valeur de x pour laquelle
9 (£) maximum maximorum si 9 (x) en a plusieurs. Mais de
la relation (8) on déduit:

'f (CtT — x) c (x) (y)

ce qui montre qu'en des points symétriques par rapport à y,
9 (x) prend des valeurs égales. Par conséquent, il en résulte que

£ y et que 9 (a? — |) est aussi une valeur extrême. Si

us — ç, 9 [~^j elle aussi, ne peut être qu'une valeur extrême

de 9(*r). Montrons qu'on ne peut avoir que:

m \
—- \ ç (Ç) ç (05 — ;) Max. maximorum

En effet, s'il en était autrement, on déduirait de l'équation (6) :

?(f + y) ?(f -y)ï2(f) -?s(y) a°>

quel que soit y. En particulier pour y | on déduirait alors :

ce qui ne peut pas avoir lieu, car par hypothèse dans (0, ce), 9 (i)
garde un signe constant ^ ^ ~

Par conséquent, 9 es^ une valeur extrême pour 9 (x) et l'on

peut écrire: 9(t) ^ 9 pour tout 0 ^ x oa. Gomme C9(â?)

est aussi solution de l'équation (6), on peut choisir C de manière

que 1. Soit 90 (#) la solution ainsi particularisée. La

relation (10) s'écrit dans ce cas:

?o(Y + *WY-*) • (11)
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m
Mais, si dans la formule (9) on remplace x par ^+y,ona:

?0 (t + x)?0 (Ï-) (12'

en désignant par (x) la valeur commune. Alors (11) peut
s'écrire :

f0(x) + ¥0(x) 1
* C11')

U5

Si dans l'équation fonctionnelle (6) on remplace x par x + —

et y par x on obtient:

lo (2 x) +j(«) — *;(*) • (13)

Soit à présent 0 < a < ~ une valeur quelconque de x. On

peut poser: (p0 (a) sin 0. On déduit alors de la relation (11'):
tpo (a) cos 6 car le signe de p0 (a) se déduit de (12), et l'on a

9 (x) ^ 0 dans (0, w) et 0 o ^ -. A l'aide des formules

précédentes, on aura:

90 (2 a) COS 2 G ; cp0 (2 a) sin 2 0

Mais l'équation fonctionnelle (6) nous permet de déduire :

CD2 (nx) — CD2 (x)
r\in •!- i)x]

«f [(n •— 1) x\

Si l'on fait dans cette relation x <*, on trouve, en supposant
que l'on ait déjà trouvé: 90(/na) — m6 {m 1, 2, n),
y[(n -(- 1) a] sin (n + 1) 0. Par conséquent, quel que soit
l'entier n on a: ?(noc) sin nO. De même, des relations (11') et
(13) on trouve:

Ä f 4(a) â /l + COSO G l9/a\ 0

\ 2 / ~ V 2 V 2
Sm

2
; *\j) C0S-

et ainsi de suite:
a \ .Gsm —

TP J 2?

Par conséquent, pour tout nombre r — on a: ?0(r?) sin r#.
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A cause de la continuité de 9 (x) et du fait que les nombres r
peuvent approcher tout nombre autant que l'on veut, on déduit

que: y0(^) ~ ^ x sin-^ x et la solution générale dans ce

cas est: <p(x) ~ Csin — x.1 m
b) La seconde hypothèse qu'il faudrait faire, est que <p(x) n'a

pas d'autres zéros en dehors de x 0. Pour ne pas allonger trop
ces considérations, remarquons qu'on peut obtenir cette seconde
solution en remplaçant x par ix dans la précédente et G par CB
ce qui nous conduit à une solution réelle, car <p(x) est impaire.
Cette solution est: 9(1:) C shax qui en effet n'a d'autre
zéro réel que x 0.

Enfin, remarquons que l'équation (6) admet une solution sous
une troisième forme, à cause du fait que l'équation ZT X2 — Y2
n'est pas irréductible. Cette solution est la solution commune
aux équations fonctionnelles:

y A + y) © A) + © (2/) ; © [x — y) (x) — (y)

dont le produit nous donne l'équation (6). Par conséquent, cette
troisième solution est: o(x) Ax et celle-ci peut être considérée

comme la solution singulière de l'équation (6).
Il est possible que les équations qui font l'objet de ces considérations

élémentaires, aient déjà fait l'objet d'autres études. Je

remarque à cette occasion qu'il serait utile d'avoir un répertoire
bibliographique dea diverses équations fonctionnelles étudiées,
en restreignant au besoin la notion d'équation fonctionnelle qui
est employée parfois dans un sens trop large.

J'ai voulu montrer ici comment, à l'aide des équations
précédentes et en supposant l'existence d'un zéro pour la solution, on

peut obtenir les propriétés élémentaires des fonctions cos x et
sin x.
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