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SUR LES EQUATIONS FONCTIONNELLES DU GOSINUS
ET DU SINUS ORDINAIRES ET HYPERBOLIQUES

PAR

N. Cioranesco (Bucarest).

1. — Les fonctions qui admettent un théoreme d’addition
algébrique ou « les fonctions W », sont celles qui satisfont & une
équation fonctionnelle de la forme:

Flf (). fly). flz+y)] =0 (1)

F (X, Y, Z) étant un polynome par rapport aux trois variables.
Leur 6tude a été faite depuis Weierstrass par de nombreux
mathématiciens, et notamment dans le cas des fonctions réelles
on doit récemment & M. P. MoNTEL! une mise au point tres
importante de la question.
Les fonctions qui satisfont a une équation de la forme (1),
peuvent satisfaire aussi a des équations de la forme:

Glf(@), fly), fleat+y) flz—y]=0 (2)

G (X, Y, Z, T) étant un polynome. Quoique le polynome G
ait une variable de plus, il peut se faire que I’équation (2) soit plus
simple que I’équation (1) que vérifie la méme fonction f ().
Par exemple, I’équation de Poisson:

fla+y) +flea—y) —2f@@)fly =0

est plus simple que 'équation de la forme (1) que vérifie le
cosinus ordinaire. Nous allons considérer ici deux cas particuliers

1 Paul MonNTEL, Sur les fonctions d’une variable réelle qui admettent un théoréme
d’addition algébrique (Annales scient. de I’Ecole normale, t. XLVIII, 1931, p. 65).
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des équations de la forme (2), 'un dans lequel le polynome G
est irréductible et 'autre avec un polynome décomposable. Ces
deux équations permettent de retrouver d’une maniére treés
simple les propriétés caractéristiques des fonctions circulaires.

2. — Considérons I’équation fonctionnelle:
f@+y fle—y =F@ + Py —1 (3)

ou, comme dans tout ce qui va suivre, les fonctions et les va-
riables sont supposées réelles. Si ’on change le role de x et y on
voit que f (z) est une fonction paire. D’autre part, on voit que si
fo (z) est une solution, 4 f, (ax) est aussi solution quelle que soit
la constante ¢, méme si a est purement imaginaire, car f, (ix)
est aussi une fonction réelle, a cause de la parité de j (v).

Si ’on fait dans (3) z = y = 0 on trouve f (0) = = 1. Consi-
dérons la solution pour laquelle f (0) = 1 (on cherche les solutions
uniformes de (3)). Nous allons faire sur f (x) successivement les
hypotheses:

a) qu’il existe un nombre ® = 0 tel que f(f—;j—\ = 0

/

b) que f (z) n’a pas de zéros.

2
Yy = u on aura:

a) f<—~) = (. Faisons alors dans I’équation (3) z = u +

ff<u - %—) ) 1 =0
et par conséquent:

Flot o)+ Pl §)—1=0.

En faisant la différence, on déduit:

flu+ @) — fu) =0

done:
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Pour voir quel est le signe qui convient, faisons dans I’équa-

tion z = y = E; Cela nous donne: |
f@) f(0) = —1

et en faisant dans la relation précédente u = 0, on voit que I'on

a:
fla +® = —f@) . (4)

Il résulte de cette relation que la fonction f(x) admet la
période 2 :
fl +20) = fl2) . (5)

On en déduit & présent facilement que la fonction f(z) est
bornée supérieurement en module par le nombre un. En eftet,
supposons que pour £ = a on ait: ] f(a) { > 1. Alors, en faisant
dans Péquation (3) x = a, on obtient:

fl@+a)flea—=z) >0

: . ™ .
et cela quel que soit z, en particulier pour z = —. Mais, s1 dans
C)

-

la relation (4), on remplace x par a — —Z;l on a:

(er5) === 3)

et par conséquent l'inégalité précédente n’est pas possible. Il
résulte que I'on doit avoir nécessairement ‘ f (x) | = 1. La seule
hypothese de ’existence d’un zéro pour la solution de I’équation
(3) nous a permis de montrer que f (x) est périodique et bornée
dans tout son domaine d’existence.

I1 est permis alors de poser pour une valeur quelconque « de «x:
f(#) = cos 9. S1 'on fait dans (3) z =y = «, on trouve:
f(22) = cos 29.

Supposons que l'on ait déja trouvé: f[(m — 1) o]
= ¢os (m — 1) 9; [ (ma) = cos m@; on en déduit alors de I’équa-
tion elle-méme: f[(m + 1) ] = cos (m + 1) 9. Donc, quel que
soit I’entier n, on a: f(na) = cos ng. De méme, si 'on fait

dans 3) x = y = Z on obtient:

o 0 o 0
— ) = cos — t énére — ) =
f(g) - et en général f(gm) — cos .
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En combinant ces deux résultats, on voit que quels que soient
les entiers n et p on a:

Si 'on suppose que l'on cherche les solutions continues de
Iéquation (3), on en déduit:

f(x) = cos ar, B o= e -~
@ 0]

en tenant compte des propriétés déja trouvées de f (x). La solu-
tion la plus générale de I’équation (3), dans les hypotheses précé-
dentes, est par conséquent:

b) Supposons a présent que f(r) ne s’annule pour aucune
valeur de z. Par conséquent, il existe un nombre positif v tel que:
] f(x) ] = u. Supposons v le plus grand des nombres satisfaisant
a cette condition. Mais en faisant * = y dans (3) on a: f (22)
— 2 f2(x) — 1 et par conséquent: |f (2z)|=2p2 —1.

Il en résulte, en laissant de coté les cas qui ne présentent pas
d’intérét, que 1’on doit avoir:

2pf -— 1 = u

et par conséquent » =1 (car » > 0). L’hypothese de I'absence
de zéro pour la solution f (x), entraine avec soi l'inégalité:
(@) | = 1.

Il est alors loisible de poser, pour une valeur quelconque =
de z, f (#) = chw. De I’équation (3) on déduit alors comme plus

haut: f(na) = chnw et f(;%) = gt pr. On en déduit que les solu-

tions continues de I’équation (3) sont dans ce cas: [ (z) = =& chax,
a étant une constante arbitraire. Remarquons qu’on aurait pu
obtenir cette solution, en vertu de ’observation faite au début,
de la solution précédente, en changeant x en ur.
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3. — La seconde équation fonctionnelle que nous allons
considérer est:
ol +y) ole—y = ¢ @) —¥ ) (6)

et 'on voit que le polynome: ZT = X2 — Y2 n’est pas irréduc-
tible. Si Pon change z et y on voit que ¢ (— u) = — @ (u), ¢ est
une fonctione impaire, et par conséquent ¢ (0) = 0.

On voit que si ¢, (z) est une solution, Cp, (ax) en est une aussl,
quelles que soient les constantes a et C.

Comme précédemment, nous allons faire sur ¢ () deux
hypothéses: |

a) Supposons qu’il existe un nombre @ == 0 tel que ¢ (@) = 0.
Faisons alors dans I’équation (6) z = u + @,y = u. On obtient:

#(u+ ®) — ot u) = 0,

ou
olu + @) = == o(u) . (7)

Pour décider quel est le signe qu’il faut prendre, faisons dans

Iéquation (6) 2 = », y = ?. On a ainsi

(%)= —+(3)

et s1 dans la relation (7) on fait u = %, on voit que ’on a:
of{u + @) = — o(u) - (8)

Il en résulte comme plus haut, que la fonction ¢ (x) admet la
période 2m. On a 2 (u + 2®) = ¢ (u).

Supposons que ’on cherche les solutions continues de I’équa-
tion (6). D’ailleurs il suffit de supposer que ¢ (x) est continue
autour de I’origine pour en déduire qu’elle est continue partout.
Supposons que @ est le plus petit en module des zéros de ¢ (x)
et que précisément @ > 0, car — @ est aussi zéro de ¢, car ¢ ()
est fonction impaire. De ces faits, il en résulte que ¢ (x) garde un
signe constant dans (0, ).

Supposons, pour fixer les idées, ¢ (x) = 0 dans (0, @) car

i

— ¢ (x) est aussi solution. Il résulte de % (0) = ¢ (®) = 0 et de
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la continuité de ¢ (z), que dans (0, ®), ¢ (z) a au moins une
valeur maxima. Soit 0 < & < @ la valeur de z pour laquelle
¢ () = maximum maximorum si ¢ (x) en a plusieurs. Mais de
la relation (8) on déduit:

¢ (@ — 1) = ¢ (x) - ()

ce qui montre qu’en des points symétriques par rapport a e

¢ () prend des valeurs égales. Par conséquent, il en résulte que

i

A w ;. i A N
5= — et que ¢ (@ —<) est aussi une valeur extréme. Si

/
£

Iy

=

i

» () . A A
®—G, 9 (—2—> elle aussi, ne peut étre qu'une valeur extréme

de ¢(x). Montrons qu’on ne peut avoir que:

o
:(__> = ¢(§) = ¢ (® — %) = Max. maximorum .

En effet, s’il en était autrement, on déduirait de I’équation (6):

[ o ) ((ij 2/L-)(5 ; ,
ol — | — — = € — ————‘_72‘ (1(;)
ACREIME y) g ) 10,

quel que soit y. En particulier pour ¥ = £ on déduirait alors:

@ [ ) < o
ot — Sl — — z J .
\g T ‘KQ ' '

ce qui ne peut pas avoir lieu, car par hypothese dans (0, @), ¢ (x)

Y

garde un signe constant (5 = ?)
Par conséquent, ¢ (%) est une valeur extréme pour ¢ (z) et I’'on

peut écrire: ¢(2) = 9 (%) pour tout 0 = x = ». Comme C9 ()
est aussi solution de I’équation (6), on peut choisir C de maniére
que y(%) = 1. Soit ¢, (x) la solution ainsi particularisée. La

relation (10) s’écrit dans ce cas:

@ @ , . -
%o —2—‘{“5’3 olg — % =1 — (z) . ()
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" Mais, si dans la formule (9) on remplace x par + —, on a:

w 0]
Po ('2— X :1:> = Yo <'§" - .CC) = Y () (12)

en désignant par ¢, (z) la valeur commune. Alors (11) peut
s’écrire:

2(z) + {2 z) =1 . (117)
)
Si dans I’équation fonctionnelle (6) on remplace x par x + T
et y par z on obtient:

L2a) = $ (@) — ¢(a) . (13)

o | @®
Soit & présent 0 < a < 5 une valeur quelconque de z. On

peut poser: ¢, (¢) = sin 6. On déduit alors de la relation (117):
by (¢) = cos 6§ car le signe de 4’0 ) se déduit de (12), et I'on a

¢ (z) = 0 dans (0, w) et 0 = 4 = = Alaide des formules pré-
cédentes, on aura:
bo(2a) = cos20 ; 9o (22) = sin 20 .
Mais I’équation fonctionnelle (6) nous permet de déduire:

(nx) — ©°(x)

¢l(n —1)z]

elln + 1)a] =

St I’on fait dans cette relation x = «, on trouve, en supposant
que l'on ait déja trouvé: ¢ (me) = sin mg (m = 1, 2, ... n),
¢f(n 4+ 1) o] = sin (n + 1) 6. Par conséquent, quel que soit
I’entier n on a: »(n«) = sin nh. De méme, des relations (11') et
(13) on trouve:

o (2N /Lty /L fcost 0/ 0
70 2)_“ 2"_—~— —T—~bln§, ¥ E :COS_QA

et ains1 de suite:

Par conséquent, pour tout nombre r = 5% ona: ¢,(ro) =sinrg.
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A cause de la continuité de ¢ (x) et du fait que les nombres r
peuvent approcher tout nombre autant que I’on veut, on déduit
f

a.

. . T . ;o
que: ¢,(z) = sin - x = sin — et la solution générale dans ce

cas est: ¢(z) = C sin% x.

b) La seconde hypothése qu’il faudrait faire, est que ¢(x) n’a
pas d’autres zéros en dehors de = 0. Pour ne pas allonger trop
ces considérations, remarquons qu’on peut obtenir cette seconde
solution en remplacant x par iz dans la précédente et C par G,,
ce qui nous conduit & une solution réelle, car ¢(x) est impaire.
Cette solution est: ¢ () = C shax qui en effet n’a d’autre
zero réel que z = 0.

Enfin, remarquons que I’équation (6) admet une solution sous
une troisiéme forme, & cause du fait que 'équation ZT = X2 — Y?2
n’est pas irréductible. Cette solution est la solution commune
aux équations fonctionnelles:

se +y) =c@@) +oly) ; ¢ —y) = o(z) —2(y)

dont le produit nous donne I’équation (6). Par conséquent, cette
troisieme solution est: ¢ (z) = Az et celle-c1 peut étre considérée
comme la solution singuliere de I’équation (6).

I1 est possible que les équations qui font I’objet de ces considé-
rations élémentaires, aient déja fait 'objet d’autres études. Je
remarque & cette occasion qu’il serait utile d’avoir un répertoire
bibliographique des diverses équations fonctionnelles étudiées,
en restreignant au besoin la notion d’équation fonctionnelle qui
est employée parfois dans un sens trop large.

J’ai voulu montrer ici comment, & ’aide des équations précé-
dentes et en supposant I'existence d’un zéro pour la solution, on
peut obtenir les propriétés élémentaires des fonctions cos x et
sin z.
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