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On a donc la formule

t — cos f)

COtg V - -0 sm 0

qu'on peut encore écrire

sin V sin (V + 0)
Q)

Nous allons interpréter cette formule. Sait Q le point où la

tangente en M à la courbe rencontre Ox. Dans le triangle OMQ

nous avons
OQ, _ OM

sin V sin (V + 6)

et en tenant compte de la formule (3), nous avons

OQ ^-OM (4)

Cette formule montre que les courbes représentées par l'équation

(1) ont la propriété que la distance du point 0, au point ou
la tangente en M rencontre Vaxe Ox, est proportionnelle au rayon
vecteur OM.

Pour les paraboles de foyer 0 et d'axe Ox, on a OQ OM.
Les courbes représentées par l'équation (1) généralisent donc
cette propriété de la parabole.

On démontre aisément que cette propriété est caractéristique
pour les courbes représentées par l'équation (1).

II.

Cherchons maintenant le mouvement d'un point M dont la
projection de la vitesse sur la perpendiculaire au rayon vecteur OM
est égale à une constante k, et dont le mouvement se fait suivant la
loi des aires par rapport au point P.

5. — En prenant la droite OP comme axe des x, et en désignant
par c l'abscisse de P par rapport à l'origine 0, les équations qui
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déterminent le mouvement sont

r^L- h (xc) — G' dt~ k ' (X C,dt Vdt L '

C étant la constante des aires.

L'équation différentielle de la trajectoire est

(x — c)dy — ydx G

rdB k

Mais

xdy — ydx r2dB dy dr sin B + r cos B dB

En remplaçant ces expressions dans l'équation différentielle,
on trouve que r en fonction de 0, est donné par l'équation
différentielle de Bernoulli

dr X + c cos I r2
T7 ~f~ •—7— r — —•—7 6 j (5)
dB c sin B c sm B

Q
où l'on a posé À — —

En posant

_
1

1 r '

on a l'équation différentielle linéaire du premier ordre

dp X + c cos B 1

dB c sinB ' c sin B

Une intégrale particulière de cette équation sans second

membre est

7 0

p2 sin B tgc y

De même, si on suppose A2 ^ c2, on a pour l'équation
différentielle avec second membre, l'intégrale particulière

X — c cos B

Pi X2 — c2
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de sorte que l'intégrale générale de l'équation différentielle (5)
est

1 X — c cos 0
A 0 7 0

/c.
7 y _ e, + A tgc - (6)

A étant une constante arbitraire.
Dans le cas A c, c'est-à-dire dans le cas G Ac, on trouve

sans peine que l'intégrale générale de l'équation différentielle (5)
est

t A o
0 1 1 Ö

T A ô\
7 ASm2- + ^-7sm--Lg(tg-J (7)

où A est une constante arbitraire.
Dans le cas A — c, on trouve aussi que l'intégrale générale

de l'équation différentielle (5) est

1
A 2

6 1 1 o
Ô

T A e\
7 Acos2-~---coS--Lg^tg¥j (8,

avec la constante arbitraire A.

6. — Calculons maintenant l'accélération du point M. Remarquons

d'abord que
dr dr dO k dr
dt dQ ' dt r dO '

dret en remplaçant ^ par son expression tirée de l'équation
différentielle (5), on obtient

5F TsfiTë ^ ~ (x + c cos e)J • W

Si on dérive les formules

x r cos 0 y r sin 0

par rapport au temps, on déduit que les composantes de la vitesse
sont

dx k /c /(•

~~(r — à cotg 0 ~ — (r — X)dt c
1 y b sin 0 ' dt c

1 j '
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En dérivant de nouveau ces formules par rapport au temps, et

db k dr
en remplaçant — par — et par la formule (9), on obtient les

composantes de l'accélération

d2x k2 ^/cos 0 1/cos 0 1 \
(r — \ — c cos 9)^— 7JA2 c sin20

d2y k2 „~Hr -0—.—r (r—• a •— c cos 0)
dt2 c2 si il b v 7

Remarquons que

cos b 1

r
r sin b — y

de sorte qu'on peut écrire les formules précédentes sous la forme

d'2 x k2 x — c
(r — a — c cos 6) —-—

ou encore

dt2 c2 sin2 b

d'2y k2 y—ri 9 * y r\ (r — k —• c cos 0) —
dt2 c2 sin2 0 v ' r

J 1 — ~:~^C°^0N) PM (10)
c sin26 y v '

Si l'on remplace r par la formule (6) on a

X + C cos b C2 sin2 b b
1 —

> 2 — ^ — A (X + c cos b) sin b tgc —

et par suite

Î -ïtË^P * CD

Remarquons que la formule (10) est générale, tandis que la
formule (11) n'est valable que si l ^ ± c. Pour avoir des

formules analogues pour J, dans le cas X ± c, il suffit de remplacer
\dans la formule (10), — par la formule (7) ou (8).

7. — Etudions un cas particulier. Supposons dans la formule
(6) que la constante d'intégration A est nulle. La trajectoire se

réduit alors à la conique

1 X — c cos b

r ~ X2 — c2 '
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et la formule (11) montre que le point M décrit cette conique avec

une accélération qui passe par le centre P de la conique et qui
est proportionnelle à la distance PM.

On sait que si un point M décrit une conique avec une accélération

passant par le centre de la conique et proportionnelle à la
distance du point M au centre, la vitesse angulaire du point M

autour d'un foyer de la conique est inversement proportionnelle
à la distance du point au foyer.

Dans ce paragraphe nous avons étudié la réciproque de cette

propriété et on voit combien les résultats obtenus sont généraux.
Les courbes décrites par un mobile M suivant la loi des aires

et dont la vitesse angulaire autour d'un point 0 est inversement
proportionnelle à la distance OM, sont représentées en général par
l'équation (6). Seulement dans le cas A — 0, cette trajectoire
est une conique et l'accélération est proportionnelle à la distance
du point M au centre de la conique.

A ce point de vue, on peut regarder les courbes représentées par
Véquation (6) comme généralisant les coniques à centre.

8. — Nous allons maintenant établir une propriété géométrique

des courbes représentées par l'équation (6), qui montrera
qu'on peut regarder ces courbes comme généralisant les coniques
à centre, aussi à un autre point de vue.

On sait que si M est un point d'une conique à centre, 0 son
foyer et T le point de rencontre de la tangente en M à la conique
avec son grand axe, on a

OT ----- (12)
a ± r x

où r est le rayon vecteur OM, 2c la distance focale et 2a le grand
axe.

Démontrons que les courbes représentées par l'équation (6)
et aussi par les équations (7) et (8) jouissent d'une propriété
analogue.

Désignons par V l'angle que fait la tangente en M à la courbe
représentée par l'équation (6) et par Q son point de rencontre
avec Ox. On a

1 dr
cotg V 7 Te-

L'Enseignement mathém., 31° année, 1932
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De l'équation différentielle (5) nous déduisons que

1 dr r — à c cos b

r db c sin b

de sorte qu'on a
cos Y r — a — c cos b

sin Y c sin b

OU

(r — À) sin Y c sin (V + b)

Mais dans le triangle OMQ on a

OQ, _ OM _r_
sin V sin (V + b) sin (V + b)

et si nous remplaçons dans la formule précédente, sin V et
sin (V + e) par OQ et r, nous obtenons la relation

OQ -
tout à fait analogue à la relation (12).
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