Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 31 (1932)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LA POLAIRE GÉNÉRALISÉE, ET SUR LA COURBE MOYENNE

DE DEUX CERCLES

Autor: Harmegnies, R.

Kapitel: II. Courbe moyenne de deux cercles. **DOI:** https://doi.org/10.5169/seals-24612

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Remarquons enfin que les cordes $\alpha\beta'$ et $\alpha'\beta$ se coupent au pied O' de la polaire de O, sur l'axe considéré. Il en résulte immédiatement que, si (M_2) est une ellipse, ces cordes sont réelles ou imaginaires suivant que O' est extérieur ou intérieur à l'ellipse enveloppe de $\alpha\beta'$, c'est-à-dire suivant que O est intérieur ou extérieur au segment qui joint les foyers; si (M_2) et une hyperbole, c'est l'inverse qui est vrai. Si (M_2) est une parabole, les cordes $\alpha\beta'$ et α' 3 sont réelles quand O est porté par le segment qui joint F au point à l'infini de la parabole, à l'intérieur de celle-ci.

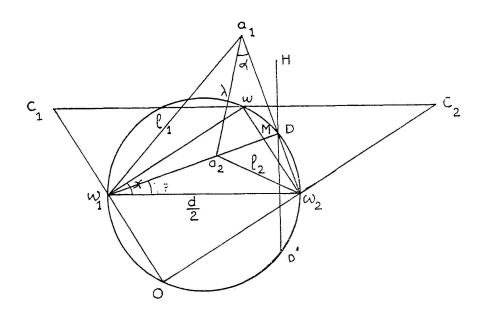
II. COURBE MOYENNE DE DEUX CERCLES.

1. — M. d'Ocagne a montré (loc. cit., nº 13) que l'inverse d'une conique (ou, ce qui revient au même, une podaire de conique) peut être définie, de deux manières, comme la courbe moyenne, par rapport à son point double, de deux cercles réels dont l'un passe par ce point double. Proposons-nous de chercher la courbe moyenne de deux cercles quelconques par rapport à un point quelconque O, non situé sur ces cercles.

Nous désignerons par C_1 et C_2 les centres des deux cercles, par A_1 et B_1 , A_2 et B_2 , les points où les deux cercles sont coupés par une sécante issue de O. Une telle sécante donne quatre points du lieu. D'autre part, O est évidemment point double, les tangentes en O étant les deux droites (en général distinctes) qui passent par les points communs à l'un des cercles et au symétrique de l'autre par rapport à O; une difficulté pourrait s'élever relativement aux droites isotropes issues de O, mais nous verrons plus bas que ces droites donnent en général des points de la courbe distincts de O; le cas d'exception se traiterait par passage à la limite. La courbe est donc du sixième degré. Elle a deux autres points doubles correspondant aux sécantes issues de O qui déterminent des cordes égales sur les deux cercles.

Les seuls points à l'infini possibles sont les points cycliques I et J. Cherchons à déterminer les tangentes en ces points. Une sécante issue de O, et voisine de OI, coupe les cercles en A_1 et A_2 (à distance finie, si O n'est pas le centre de l'un des cercles) et en

 B_1 , B_2 , voisins de I; elle coupe la droite de l'infini en X. Les quatre points correspondants de la courbe sont les conjugués harmoniques de X par rapport aux couples A_1A_2 , A_1B_2 , B_1A_2 , B_1B_2 . Le premier est à distance finie, c'est le milieu de A_1A_2 ; les deux suivants, que nous désignerons par M_1 et M_2 , sont très voisins de X; ils tendent vers I. Le dernier point, conjugué de X par rapport à B_1 et B_2 , sera désigné par M_3 ; il est sur la droite conjuguée harmonique de IX (ou IJ) par rapport à IB_1 et IB_2 . A la limite, IB_1 et IB_2 tendent vers les asymptotes IC_1 et IC_2 des deux cercles: la limite de IM_3 passe donc au milieu ω de C_1 C_2 ; si O n'est pas le milieu de C_1 C_2 , le point M_3 tend donc vers I et la



limite de IM_3 est $I \infty$. On trouve de même, en J, une tangente $J \infty$, de sorte que le point ω est foyer singulier de la courbe.

Cherchons enfin les limites de IM_1 et IM_2 . On voit, comme ci-dessus, qu'elles passent respectivement par les milieux de $\mathrm{A}_1\mathrm{C}_2$ et $\mathrm{A}_2\mathrm{C}_1$. Si OJ coupe les cercles en A_1' et A_2' à distance finie, on trouve de même en J deux tangentes passant respectivement par les milieux de $\mathrm{A}_1'\mathrm{C}_2$ et $\mathrm{A}_2'\mathrm{C}_1$; il en résulte sans difficulté que les milieux ω_1 et ω_2 de OC_1 et OC_2 sont foyers singuliers de la courbe. Les seuls foyers singuliers réels sont évidemment ω , ω_1 et ω_2 .

Il résulte de ce qui précède que I et J sont des points triples à tangentes distinctes (avec les restrictions faites, et en supposant encore que les deux cercles ne soient pas concentriques). En définitive, étant donnés deux cercles de centres distincts C_1 et C_2 , et un point O qui n'est pas situé sur ces cercles, ni au centre de l'un d'eux, ni au milieu de C_1C_2 , la courbe moyenne des deux cercles par rapport au pôle O est une sextique tricirculaire, ayant un point double en O et deux autres points doubles à distance finie; les trois foyers singuliers réels sont les milieux des côtés du triangle O C_1 C_2 .

Si O est au centre de l'un des cercles, la courbe est une conchoïde de cercle et on trouve, en chaque point cyclique, une tangente ordinaire et une tangente de rebroussement; il en est de même si les deux cercles sont concentriques, O n'étant pas au centre.

Si O est au milieu de C₁ C₂, la courbe comprend les deux droites isotropes issues de ce point, et il reste une quartique bicirculaire; un calcul facile vérifie ce résultat et montre que la quartique est un ovale de Cassini quand les deux rayons et la distance des centres satisfont à l'équation

$$\frac{d^2}{4} = R^2 + R'^2$$
.

Si O est au milieu de C_1 C_2 , et en même temps sur l'un des cercles, le quartique dégénère en deux cercles.

2. — On sait ¹ que la courbe du trois-barres est une sextique tricirculaire ayant trois points doubles à distance finie.

La question se pose tout naturellement de savoir si la courbe moyenne de deux cercles peut-être engendrée par un trois-barres.

Rappelons encoie (loc. cit,) que, si un point M est invariablement lié à la bielle $a_1 a_2$ d'un trois-barres $\omega_1 a_1 a_2 \omega_2$ et si l'on construit le triangle $\omega_1 \omega \omega_2$ directement semblable à $a_1 M a_2$, les points ω , ω_1 et ω_2 sont les foyers singuliers réels de la courbe décrite par M. Enfin, les trois points doubles sont sur le cercle $\omega \omega_1 \omega_2$.

Si nous voulons que la courbe moyenne de deux cercles puisse être décrite au moyen d'un trois-barres, une première condition sera donc que les milieux des côtés du triangle O C₁ C₂, foyers singuliers réels de la courbe, soient sur un même cercle

¹ Voir M. d'Ocagne. Cours de Géométrie de l'Ecole Polytechnique.

R. Bricard. Leçons de Cinématique.

avec O. Cela entraîne que l'angle C_1 OC₂ soit droit; il en est alors de même de l'angle $\omega_1 \omega_2$.

Considérons maintenant un trois-barres, et un point M lié à la bielle a_1 a_2 de manière que l'angle a_1 Ma_2 soit droit; exprimons que la courbe décrite par M passe par le point O tel que les triangles M a_1 a_2 et O ω_2 ω_1 soient directement semblables; soit O a_1 a_2 la position correspondante du triangle M a_1 a_2 . La similitude des triangles O a_1a_2 et O $\omega_2\omega_1$ entraîne celle des triangles O $a_1\omega_2$ et O $a_2\omega_1$; l'angle de cette dernière similitude étant droit, il en résulte que ω_1 a_2 et ω_2 a_1 sont rectangulaires. Le quadrilatère ω_1 a_1 a_2 ω_2 a donc ses diagonales rectangulaires, et l'on sait que cette propriété se conserve quand le quadrilatère se déforme.

En définitive pour que la courbe moyenne de deux cercles puisse être engendrée par un trois-barres, il est nécessaire que l'angle C_1 OC_2 soit droit; pour que la courbe engendrée par un point M lié à la bielle d'un trois-barres $\omega_1 \, a_1 \, a_2 \, \omega_2$ puisse être la courbe moyenne de deux cercles, il est nécessaire que le trois-barres ait ses diagonales rectangulaires et que l'angle $a_1 \, M \, a_2$ soit droit.

Nous allons voir que, dans les deux cas, on peut dire « il est nécessaire et suffisant ».

3. — Les points doubles différents de O, pour la courbe moyenne de deux cercles, sont les projections du milieu ω de C_1 C_2 sur les droites issues de O qui déterminent dans les deux cercles des cordes égales; ils sont donc situés sur le cercle de diamètre $O\omega$. Dans le cas où l'angle C_1OC_2 est droit, les deux droites précédentes ont évidemment pour bissectrices OC_1 et OC_2 ; les deux points doubles sont alors symétriques par rapport au diamètre $\omega_1 \omega_2$ du cercle $O\omega\omega_1\omega_2$; de plus, ils sont sur l'axe radical des cercles (C_1) et (C_2) .

Appelons I le point de rencontre des diagonales d'un troisbarres $\omega_1 a_1 a_2 \omega_2$ à diagonales rectangulaires et soit a_1 M a_2 un triangle rectangle en M. Deux points doubles de la courbe décrite par M correspondent aux positions où M coïncide avec I, puisque M est alors sur le cercle $\omega_1 \omega \omega_2$. Il est facile de voir que ces deux points doubles sont symétriques par rapport à $\omega_1 \omega_2$; soit, en effet, $\omega_1 a_1' a_2' \omega_2$ la position symétrique de $\omega_1 a_1 a_2 \omega_2$ par rapport à $\omega_1 \omega_2$,

et soit a_1'' le symétrique de a_1' par rapport à I'; le triangle I' $a_1''a_2'$ est semblable à I a_1a_2 ; I' est donc point double comme I.

Inversement, donnons nous les points O, ω , ω_1 , ω_2 aux sommets d'un rectangle, et les points doubles D et D' symétriques par rapport à $\omega_1 \omega_2$. Si deux cercles de centres C_1 et C_2 ont pour axe radical la droite DD', leur courbe moyenne relative à O admet pour points doubles O, D et D'. De même, si l'on prend a_1 sur ω_2 D et a_2 sur ω_1 D, tels que les triangles D $a_1 a_2$ et $\omega \omega_1 \omega_2$ soient directement semblables, le point M lié à a_1 a_2 qui coïncide avec D, décrit une courbe qui admet pour points doubles O, D et D', quand on déforme le trois barres $\omega_1 a_1 a_2 \omega_2$.

Les deux courbes ainsi définies ont en commun deux points triples aux points cycliques avec les mêmes foyers singuliers, donc les mêmes tangentes, et trois points doubles; chacun des points triples compte pour 12 points d'intersection, et chacun des points doubles pour quatre; on a donc 36 intersections, et si les deux courbes ont un autre point commun, elles coïncident.

Nous prendrons pour axes des x et des y les droites $\omega_1\omega_2$ et DD' et nous exprimerons que les deux courbes passent par le point H (0, h) de DD'. Nous poserons

Si la courbe décrite par le point M, lié au trois-barres, passe en H, il existe un triangle $H \alpha_1 \alpha_2$ directement égal à $D a_1 a_2$, et tel que $\omega_2 \alpha_2 = \omega_2 a_2$, $\omega_1 \alpha_1 = \omega_1 a_1$. Les coordonnées de α_1 et α_2 sont respectivement

$$\alpha_1 \left\{ \begin{array}{l} \lambda \, \cos \alpha \, \cos x \\ h \, + \, \lambda \, \cos \alpha \, \sin x \end{array} \right. \qquad \alpha_2 \left\{ \begin{array}{l} - \, \lambda \, \sin \alpha \, \sin x \end{array} \right. ,$$

Nous aurons donc

$$l_1^2 = \overline{\omega_1 a_1}^2 = \frac{d^2}{4} \cos^2 \varphi + \lambda^2 \cos^2 \alpha$$

$$= \left(\lambda \cos \alpha \cos x + \frac{d}{2} \cos^2 \varphi\right)^2 + (h + \lambda \cos \alpha \sin x)^2.$$

$$l_2^2 = \overline{\omega_2 a_2}^2 = \frac{d^2}{4} \sin^2 \varphi + \lambda^2 \sin^2 \alpha$$

$$= \left(\lambda \sin \alpha \sin x + \frac{d}{2} \sin^2 \varphi\right)^2 + (h + \lambda \sin \alpha \cos x)^2.$$
(1)

Ces équations donnent

$$\frac{d^2}{4} \sin^2 \varphi \, \cos^2 \varphi - h^2 \, = \, \lambda d \, \cos \alpha \, \cos x \, \cos^2 \varphi \, + \, 2 \, \lambda h \, \cos \alpha \, \sin x \, ,$$

$$\frac{d^2}{4}\sin^2\varphi\,\cos^2\varphi\,--\,h^2\,=\,\lambda\,d\,\sin\alpha\,\sin x\,\sin^2\varphi\,+\,2\,\lambda\,h\,\sin\alpha\,\cos x\ ,$$

et l'élimination de x donne facilement

$$16 \lambda^2 \sin^2 \alpha \cos^2 \alpha = 4 h^2 - 4 dh \sin \alpha \cos \alpha + d^2 (\cos^2 \alpha \cos^4 \varphi + \sin^2 \alpha \sin^4 \varphi)$$
.

D'autre part, nous avons

$$rac{\widetilde{\mathrm{C_1\,H}^2}}{\mathrm{H}^2} = rac{d^2}{4} \left(\cos^2 \varphi \, + \, \sin^2 lpha
ight)^2 \, + \, \left(h - rac{d}{2} \sin lpha \, \cos lpha
ight)^2$$

et, par suite

$$16\lambda^{2} \sin^{2} \alpha \cos^{2} \alpha - 4\overline{C_{1}}\overline{H}^{2} = -d^{2} \sin^{2} \alpha \cos^{2} \alpha + d^{2}(\cos^{2} \alpha \cos^{4} \varphi + \sin^{2} \alpha \sin^{4} \varphi) - d^{2}(\cos^{2} \varphi + \sin^{2} \alpha)^{2}$$

d'où l'on tire facilement

$$4\lambda^2 \sin^2 \alpha \cos^2 \alpha = \overline{C_1 H^2} - d^2 \sin^2 \alpha \cos^2 \varphi$$
.

La première équation (1) donne alors, en posant $C_1H = R_1$

$$l_1 = \frac{R_1}{2 \sin \alpha}$$

et l'on obtient de même, en posant C₂ H = R₂

$$l_2 = \frac{R_2}{2\cos\alpha} .$$

Enfin, les équations (1) donnent

$$l_1^2 + l_2^2 = \frac{d^2}{4} + \lambda^2$$
.

Ces relations permettent de passer de la génération de la courbe comme courbe moyenne de deux cercles, à la génération par un trois-barres, et inversement. Elles résolvent complètement la question posée.