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SUR LA POLAIRE GÉNÉRALISÉE

PAR

M. d'Ocagne (Membre de l'Institut, Paris).

Généralités.

t. — La généralisation, que nous avons ici en vue, de la polaire
d'un point par rapport à une conique résulte de la substitution
à cette conique d'un système de deux lignes quelconques (Mx) et

(M2). Si donc une droite issue du point 0 rencontre ces courbes

aux points M1 et M2, le point M de la polaire situé sur cette droite
est le conjugué harmonique de 0 par rapport à et M2, c'est-
à-dire le point M tel que (bien entendu, en tenant compte du

sens des vecteurs)
2

—
1 1

(1)
OM ~ ÖM~ + OM,

' 1 '

Il est clair que, si M', M^, M2 constituent une autre position
quelconque de ces trois points, les droites MM', M1M1, M2 M2,

qui joignent les points correspondants de deux divisions harmoniques

ayant en commun le point 0, sont concourantes. Lorsque
les droites OM et OM' sont infiniment voisines, on en déduit que
les tangentes en M, M1 et M2 aux courbes que décrivent ces points
sont concourantes.

Si les points M1 et M2 sont symétriques par rapport à 0, le

point M est rejeté à l'infini sur la droite joignant ces points.
Les directions asymptotiques de la courbe (M) sont donc données

par les droites joignant le point 0 aux points de rencontre d'une
des courbes (Mx) ou (M2) avec la symétrique de l'autre par
rapport à 0. La propriété des tangentes qui vient d'être énoncée
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montre, en outre, que l'asymptote répondant à une des directions
ainsi déterminées est constituée par la parallèle à cette direction,
menée par la rencontre des tangentes aux points et M2,

symétriques par rapport à 0, qui lui correspondent.
Il suit de là que, si les courbes (Mx) et (M2) sont algébriques,

d'ordres nx et //2, la courbe (M) admet, en général, n± n2 directions

asymptotiques et est, par suite, d'ordre nx n2. En particulier,

si l'une des lignes (MJ ou (M2) est droite, la polaire est de

même ordre que l'autre.

2. — Si l'on prend, par rapport au pôle 0, les inverses (M/),
(M/) et (M') des lignes (Mx) et (M2) et de la polaire (M), on a,
entre les vecteurs de ces trois dernières, la relation

2 OM' » OMi 4 OMg

qui montre que le point M' est le milieu de M/ M/, ce pourquoi
la courbe (M') peut être dite la moyenne de (M/) et (M/) pour le

point 0.
Remarquons que si (M") est l'homothétique de (M') par

rapport à 0, avec le rapport d'homothétie 2, auquel cas, il y a,
au point de vue de la nature géométrique, identité entre (M')
et (M"), on a

OM" OMi + OM2

ou, si (IVf est la symétrique de (JVT) par rapport à 0,

OM" OMi — OM2 M.MÎ

Lorsque la ligne (M^) est droite, cette égalité définit la eissoïdale
de la courbe (Mf) pour le point 0 et la droite (M/).

3. — Rendons-nous compte maintenant de la façon dont le

centre de courbure m répondant au point M de la polaire se

déduit des centres de courbure mx et rn2 répondant aux points
Mx et M2. Pour cela, à titre de lemme, nous allons établir le lien
qui existe entre le centre de courbure m et la tangente à la
courbe que décrit l'extrémité de la sous-tangente polaire de (M),
c'est-à-dire le point de rencontre T de la tangente en M et de la
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perpendiculaire élevée en 0 à OM 11 qui, d'autre part rencontre

la normale à la même courbe en N (fig. 1).

La normale à la courbe (T) coupant en N' la normale MN

à l'enveloppe de MT, une formule bien connue de Mannheim
donne pour le rapport des arcs infiniment petits d (M) et d (T)
décrits simultanément par les points M et T

d (M) _ Mm
d(T) ~ TN' '

Mais les droites rectangulaires OM et OT tournant ensemble du
même angle on a aussi, MN et TN" étant les normales polaires
correspondantes,

d(M) MN.dto d (T) TN ".dm

Il s'ensuit que
Mm _ TINT

MN ~ TN7' '

1 La courbe (T) constitue une adjointe infinitésimale de la courbe (M), au sens défini
dans mon mémoire du Bulletin de la Société mathématique de France (t. LU, p. 132 et
395). Le nouvel exemple ici traité serait à joindre à celui qui figure au n° 7 de ce mémoire.

L'Enseignement mathém., 31e année, 1932. 3
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Or, si la perpendiculaire éle

0m en K, on a

Mm
__

LK
MN ~ LT '

Donc
LK
LT

:

ée en T à TM coupe OM en L et

TN'
__ JLM

TN"~ LN"'

LM
LN7' '

ce qui montre que MK est parallèle à TN", autrement dit
perpendiculaire à la tangente TT' en T. Ainsi, les perpendiculaires
menées par chacun des points M et T à la tangente répondant à

Vautre se coupent sur la droite qui joint le point 0 au centre de

courbure m. De là le moyen, si l'on connaît le centre de courbure

m, d'en déduire la tangente TT7 et vice versa.
Ce lemme étant établi, remarquons que si « est l'angle que

OM fait avec l'axe 0#, on a

/ 1 \ d.OM ON.do>
__

ito
VOM; " oM2 ~ ÖM2 OT

*

Appliquant cette formule à la différentielle de (1), en appelant
0T1 et 0T2 les sous-tangentes polaires de (Tx) et (T2), on voit que

2 11ÖT 0T\ +
OTa ' (2)

c'est-à-dire que (T) est aussi la polaire de 0 par rapport à (Tx)
et (T2); par suite, les tangentes à ces trois courbes sont concourantes

et la question que nous nous étions posée est résolue.
En effet, la construction précédente permet de déduire des centres
de courbure m1 et m2 les tangentes en T1 et en T2 dont le point
de rencontre joint à T donne la tangente en T, et de cette

tangente on déduit le centre de courbure m.

Polaires par rapport a cercle et droite.

4. — Les cas où les courbes (Mj) et (M2) sont un cercle et une
droite — où, par suite, d'après la fin du n° 1, la polaire (M) est
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droite (M2) la perpendiculaire

0P2 prolongeons-
la d'une longueur égale

P2P0 (fig. 2). Soit M0 le

point où la droite OM

rencontre la parallèle à la
droite (M2) menée par P0.
Si nous abaissons de M
la perpendiculaire MH
sur P0M0, nous avons

MH MM0 20M2 — OM

ÖPo~ÖM;- 2 OM2

_ OM
~~ 2 0M2 '

ou, en tenant compte de (1),

MH OM
OP0 2 0M, '

qu'on peut écrire
MH

_
OP2

OM ~ OM, '

(3)

Ce rapport étant constant, la courbe (M) est une conique de

foyer 0 et de directrice P0M0, Ainsi, une conique quelconque est

polaire d'un de ses foyers par rapport à un cercle ayant ce foyer
pour centre et à une parallèle à la directrice correspondante située
à mi-distance de cette directrice au foyer.

Quant au rayon du cercle, il est facile de voir quelle est sa

valeur. En effet, si l'on mène par 0 la parallèle à la droite (M2),

une conique — offrent quelques particularités qui méritent d'être

signalées.

Suppposons en premier
lieu que le cercle (1VQ) ait
son centre au point 0
dont on prend la polaire.
Abaissant de 0 sur la
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c'est-à-dire la perpendiculaire à l'axe focal, le point
correspondant étant à l'infini, M' est le symétrique de 0 par rapport
à M ; autrement dit, le rayon du cercle est la moitié de Vordonnée
de la conique correspondant au foyer, ordonnée égale, comme il est

facile de le vérifier, au rayon de courbure répondant au sommet
de Vaxe focal.

Le couple des points M' et M^, se prête à une construction facile
de la conique point par point, puisque, ainsi qu'on l'a vu au
n° 1, les droites Mx IVT et MM' se coupent en un point S de (M2).

Remarquons en passant que la conique (M) sera une ellipse,
une parabole ou une hyperbole suivant que OP2 sera supérieur,
égal ou inférieur à OPl7 ce qui est bien conforme à ce qui a été

dit au n° 1 de la détermination des asymptotes puisqu'ici le

symétrique du cercle par rapport à 0, c'est ce cercle lui-même.
On voit en particulier ainsi qu'une parabole est la polaire de

son foyer par rapport au cercle ayant ce foyer pour centre, qui passe

par le sommet de la courbe, et la tangente en ce sommet.

5. — Passons au problème des tangentes. D'après la construction

générale indiquée au n° 1, la tangente en M est la droite
qui joint ce point au point de rencontre t de la tangente en M1 au
cercle (Mx) et de la droite (M2). Prolongeons cette tangente
jusqu'en son point de rencontre T avec la directrice M0P0 et
tirons OT. Nous avons

MT
__

MH
m MI

ou, compte tenu de (3),

MT 1 OM
Mt ~ " OMr ~ Mi M

OM

Cela prouve que les triangles OMT et êMxM sont semblables

et, par suite, que l'angle MOT est droit, d'où cette propriété
bien connue que le segment de la tangente compris entre son point
de contact et la directrice est vu du foyer sous un angle droit.

Ainsi, dans ce cas, le lieu (T) de l'extrémité de la sous-tan-

MH

MH — —1 ^2 2MH
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gente polaire est la directrice P0M0. L'application du théorème

démontré au n° 3, fait voir dès lors que, si la perpendiculaire
élevée en T à MT coupe MH au point K, la droite OK passe par
le centre de courbure m répondant au point M.

6. — Un autre cas particulier conduisant à des propriétés un
peu plus imprévues est celui où le cercle (Mx) passe par 0, la
droite (M2) restant quelconque.

Si, par 0, on mène la parallèle 0M°, à la droite (M2), qui
rencontre le cercle (Mx) en M°, le point IVf étant à l'infini, M0,

point de (M) situé sur cette droite, est le symétrique de 0 par
rapport à M°. La construction donnée au n° 1 montre alors que,
sur une autre droite 0M1 quelconque issue de 0, le point M se

trouve à la rencontre de cette droite avec celle qui joint le

point M0 au point S où la droite (M2) est coupée par la droite
AU Mi. En faisant tendre la droite OM vers la tangente 0y en
0 au cercle (M-J on voit d'ailleurs bien facilement que la conique
(M) est aussi tangente à Oy.

Si la droite symétrique de (M2) par rapport à 0 coupe le cercle
(Mx) en M| et M" (fig. 3), OMj et OM" sont les directions asympto-

tiques de la conique (M) et, ainsi qu'on l'a vu au n° 1, ces asymptotes

elles-mêmes sont les parallèles à ces directions menées par

p
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les points et T* où les tangentes en M/ et M'^ au cercle (Mx)
rencontrent la droite (M2). Le centre û de la conique (M) est
à l'intersection de ces deux asymptotes qui, en plus du point 0
et de la tangente Oy en ce point, déterminent complètement cette
conique (M).

7. — Ces asymptotes pouvant être imaginaires [lorsque la
symétrique de (M2) par rapport à 0 ne coupe pas le cercle (Mx)
en des points réels] proposons-nous de construire directement le
centre £2 et la direction des axes û X et û Y de la conique (M)
qui, avec le point 0 et la tangente 0z/, la détermineront dans tous
les cas.

Prenant pour axes de coordonnées le diamètre Ox et la
tangente Oy du cercle (Mx) et posant (bien entendu, en tenant
compte du signe), OPx yx, OP2 — y2, OQ2 ^2, P-, étant le

point diamétralement opposé à 0 dans le cercle, P2 et Q2 les

points de rencontre de la droite (M2) avec Ox et Oy, on a pour les

équations polaires des lignes (Mx) et (M2),

1 cos os sin 03

p — Yi cos "> et - -f- —r—
Ta 2

d'où, pour (M), l'équation

2 1 cos o) sin oj
+ :: H s—

p COS to y2

ou, en passant aux coordonnées rectangulaires,

(Ti + Ta)®2 + K^xy+ T2 — 2YiT2® 0 (4)
2

que l'on peut écrire

x2 + y2 — 2Yx£ + ^\x{~ + f") — 0

Le cercle
x2 + y2 •—• — 0

est celui, de centre Px, qui passe par 0. Les cordes communes à

ce cercle et à la conique (M) sont données par x 0 (tangente Oy)
OC 11

et la droite h =0, qui n'est autre que la parallèle à (M2)
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menée par 0. Ce cercle et la conique (M) ont donc trois points
communs confondus en 0 ; autrement dit ce cercle est osculateur

en 0 à la conique (M) pour laquelle, par suite, le point Px est le

centre de courbure répondant au point 0.
La parallèle à (M2) menée par 0, qui constitue dès lors la corde

commune à la conique et au cercle de courbure en 0, peut être

dite la corde de courbure en ce point.
Si y est l'abscisse du second point d'intersection de la conique

avec Orr, l'équation (4) peut s'écrire

— — 2œ 0 _ (4biS)
T s2 Ti

Le centre Q est à l'intersection des droites

4_f+l_2 0 et Y + ^ 0
Y oa y-L

La première est celle qui joint le milieu I de OP au
symétrique 0' de 0 par rapport à Q2 (fig. 3); la seconde, la perpendiculaire

menée de 0 à la droite qui joint le point Q2 au
symétrique L du centre Ix du cercle (Mx) par rapport au point 0.

Quant aux coefficients angulaires des axes de la conique dont (4)
est l'équation, ils sont donnés par les racines en de l'équation

Y2 3-2 + 2 ^2 3- — Ï2 0

qui se traduit par la construction suivante : si le çecteur Q J

est équipollent à Q2P2 (ses projections sur les directions de Ox
et Oy étant ÛH y2, H J — $2), le cercle de centre J passant
par 0 coupe JH aux points X et Y par où passent les axes ÛX
et QY de la conique.

8. — Inversement, si l'on se donne sur une conique de centre Q

un point 0 pour lequel Px est le centre de courbure, la construction

précédente, prise en sens contraire, fait connaître le système
cercle et droite par rapport auquel la conique est la polaire du
point 0, cercle et droite qui pourraient être dits polairement
associés au point 0 pour la conique considérée.

D'abord le cercle est celui qui a pour diamètre le rayon de
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courbure OPx. Pour la droite, ayant pris le symétrique V du
centre I± du cercle par rapport à 0, on mène par U au diamètre
Oû de la conique la perpendiculaire P2Q2 coupe en Q2 la
tangente en 0. On joint ensuite le centre Q au symétrique O7

de 0 par rapport à Q2; on obtient ainsi sur Ox le point I; le

symétrique P de 0 par rapport à I est alors le second point commun

à Orr et à la conique. Il suffit de prendre le conjugué harmonique

P2 de Px par rapport à 0 et P pour achever de déterminer
la droite P2Q2.

D'après ce qu'on vient de voir, cette droite est parallèle à la
corde de courbure en 0. La construction de sa direction au

moyen du vecteur DJ montre, en outre, qu'elle est parallèle
à la droite joignant le centre Q au milieu du segment de la tangente
compris entre les axes de la conique, ou encore qu'elle a1 par
rapport aux axes de la conique, une inclinaison égale et de sens
contraire à celle de la tangente en 0.

9. — Remarquons en passant que de là résulte une construction
simple d'une conique définie par un de ses points 0 et les centres

correspondants Pl5 P^, P^ des trois premières courbures. J'ai,
en effet, indiqué naguère un moyen de déduire de ces trois centres
le centre Q de la conique 1

; je le rappelle ici: d'abord si l'on
prolonge le rayon de seconde courbure P'PX du tiers de sa longueur
en PxUj, le centre û se trouve sur la droite 0UL (théorème
anciennement obtenu par Maclaurin); puis, si l'on projette de

même le rayon de troisième courbure p77p7 du tiers de sa longueur
en PjU^, et si par les projections iq et p± de et Px sur OLq,
on mène les parallèles respectivement à la tangente et à la
normale en 0, qui se coupent en V, le centre D se trouve aussi sur
la droite PjV. Une fois le centre û ainsi obtenu, on est ramené

au problème traité au n° 8, qui fournit une construction simple
de la conique cherchée.

10. — D'après ce qui a été vu au n° 2, l'inverse de la conique

par rapport au point 0 sera la moyenne, pour ce point, du cercle

(M/) et de la droite (M/) inverses, relativement à ce pôle 0, de

i Nouv. Ann. de Math., 3rae série, t. XVI, 1897, p. 258.
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la droite (M2) et du cercle (M-J, que l'on sait déduire de la conique,
comme on l'a vu au n° 8.

La remarque qui termine le n° 8 montre que cette courbe
inverse de (M) est une cissoïdale du cercle (M!). Lorsque la droite
(M2) est la perpendiculaire au diamètre OPx de ce cercle menée

par le symétrique P2 de P1 par rapport à 0, la symétrique de

cette droite par rapport à 0 est tangente au cercle (Mx) en Px;
la conique admet alors une direction asymptotique double
confondue avec OP^ c'est une parabole d'axe 0:r et de sommet 0.

Si l'on opère l'inversion par rapport à 0 avec une puissance
égale à OP^, l'inverse du cercle (Mx) est la tangente en P1 à ce

cercle, celle de la droite (M2) est le cercle décrit sur 0P2 comme
diamètre, dont le symétrique par rapport à 0 se confond avec le

cercle (MjJ. Donc, en vertu de ce qui a été vu au n° 2, l'inverse
de la parabole (M) est la cissoïdale du cercle (Mt) et de sa tangente
en P1 pour le pôle 0, c'est-à-dire une cissoïde de Dioclès. On
retrouve ainsi le théorème bien connu qui dit que Vinverse dlune
parabole par rapport à son sommet est une cissoïde de Dioclès.

11. — Envisageons maintenant dans sa pleine généralité la
question de la polaire d'un point 0 (que nous pourrons toujours
supposer pris comme origine de deux axes rectangulaires Ox et
Oy) par rapport au système d'un cercle et d'une droite.

Si oc et ß sont les coordonnées du centre du cercle, de rayon r,
par rapport auquel la puissance t2 de l'origine est donnée par

t2 a2 + f — r2 (5)

l'équation de ce cercle en coordonnées polaires est

p2 — 2 p (a cos co y fi sin f>) + t2 0

d'où
p a COS CO -f ß sin CO -j- v^a COS co + ß sin co) 2^72

ou, eu égard à (5)

p ä a cos co + ß sin co ± aA2 '— (a sin co — ß cos co)2
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D'autre part, si la droite donnée a y et à pour abscisse et

pour ordonnée à l'origine, son équation polaire est

1 cos w sin to

P T 8

Dès lors l'équation de la polaire de 0 par rapport au système
du cercle et de la droite sera

2 1 cos to sin to
-f — 1 s—

P a cos to 4-_ßasin to 4: \/r2 — (a sin to -—- ß cos to)2 T

d'où, si l'on pose

ax + $y u a y — ßx v if y. — 2 — w

l'équation en coordonnées cartésiennes

x1 + y2 + uw 4" w V/r2 (x2 + y2) — v2

ou, si l'on élève au carré et que l'on groupe tous les termes dans
le premier membre

(,x2 + y2)2 + w{x' -f y2) (2 m — r2w) + wl(u2 + r2) 0

Or, on vérifie immédiatement que

u2 -f ç2 (a2 + ß2) (x2 + y2)

Il vient donc finalement, après suppression du facteur x2 -f- y2

z2 + y2 + 2 uw + wH2 0

Y remplaçant u% w, par leurs valeurs et ordonnant, on a

finalement

1 + y + ~2)a;2 + 2^ + + ^jxy + (l +

— 4 (a + —\x — 4 (ß + y + 412 0 (6)

Telle est l'équation de la conique polaire cherchée.

12. — Inversement, nous donnant dans le plan une conique
quelconque, nous pouvons chercher à déterminer pour cette
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conique le cercle et la droite polairement associés au point 0.
Soit, par exemple, la conique d'équation

Aœ2 + 2B xy+ C y"-+ 2Dx + 2Ej/ + F 0 (7)

1 1
Pour l'identifier à (6), il faut, si l'on remplace - et par p. et v,

poser, X étant un coefficient de proportionnalité, nécessairement
différent de zéro,

A X(1 + 2 a p. + *2p.2) (8) D — 2 X (a -f fa) (11)

B X(av + ßp. + fp.v) (9) B — 2X(ß + fv) (12)

G X(1 + 2ßv + ff) (10) F — kit2 (13)

Tirant t% de (13) pour le porter dans les cinq autres équations
du système, on a

A À + 2Xa[* + (14) D=—2Àa —, (17)

B À (a v + ßp) + f,v (15) E — 2Xß — |v (18)

G X +. 2Xßv + |v2 (16)

Les valeurs de ^ a et de a ß que donnent (17) et (18) portées

dans (14), (15), (16) les transforment en

A X — Dp. — ïp.» (19)

B — v + Ep. + (20)

G X -— Ev — ~v2 (21)

Enfin, de (19) et (21) on déduit

A —G -D[X + Ev—|(a2—V2) (22)

Les équations (20) et (22) font connaître y et v. Nous allons
discuter ce système d'équations.

13. — Si, dans ces équations, on regarde p et v comme des
coordonnées x et ?/, on voit que tout revient à trouver les points
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communs aux hyperboles équilatères

^•xy 4" + Dy + 2B 0

et

^ (U — £2) — D# + Ey 4- C — A 0

qui ont leurs asymptotes, l'une, parallèles aux axes Ox et Oy,
l'autre, parallèles aux bissectrices de ces axes. Or, il se trouve
que ces deux hyperboles ont même centre, défini par les équations

Si donc, on transporte l'origine en ce centre commun, sans
changer la direction des axes Ox et Oy, les équations de ces

hyperboles prennent la forme

R et L ayant d'ailleurs des signes quelconques. L'équation aux
abscisses des points communs est

Si l'on y prend x2 pour inconnue, le produit des racines étant
négatif, une seule des racines est positive ; elle seule donne pour x
des valeurs réelles; donc, deux seulement des solutions en y et v

des équations (20) et (22) sont réelles, et, par suite, on ne trouee

que deux systèmes réels de droite et cercle polairement associés

au point 0, mais on en trouve toujours deux.

Une fois y et v ainsi déterminés, les équations (14), (15) et (16),
linéaires en A, A a, A /3? permettent le calcul de ces trois inconnues,
et conséquemment de oc et ß. D'autre part, la valeur de A portée
dans (13), donne t2: puis, ß et t2 étant connus, r se déduit de (5),
et le problème est complètement résolu.

En résumé, on voit qu'une conique donnée est doublement

polaire d'un point quelconque de son plan par rapport à un cercle

et une droite associés à ce point.

U + E 0
F
- x + D 0

xy — K

y- —« x' L

x4 + Lar — K2 0
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Donc aussi, d'après ce qui a été vu au n° 2, Vinverse d'une
conique par rapport à un point quelconque de son plan est doublement

moyenne, pour le point considéré, de deux cercles dont l'un
passe par ce point.

Il va sans dire que la particularisation des données peut introduire

de sensibles simplifications dans les calculs ci-dessus. Par
exemple, si la conique donnée passe par le point 0, on peut
prendre pour Ox et Oy la normale et la tangente en ce point, ce

qui revient à faire, dans (7), E F — 0. Les équations (20) et
(22) se réduisent alors à

2 B — D v A — C= — Df*

d'où, en ce cas, une solution unique, celle qui a été obtenue
géométriquement au n° 8.

14. — A titre d'application des formules qui viennent d'être
trouvées, déterminons pour une ellipse les systèmes de cercle
et droite associés pour son centre. Ici, les coefficients de l'équation

(7) sont

A ~ b2 B 0 G a2 D 0 E 0
3 F — a2b2

Les équations (20) et (22) deviennent donc, c étant la distance
focale -y/a2 — b2

a v 0 c2 — Cl-^- (v2 — y2)

On peut y satisfaire soit par y 0, soit par v 0; mais la
seconde des équations donne, pour p 0, des valeurs réelles
pour v, tandis que la seconde donne, pour v 0, des valeurs
imaginaires pour p. On a donc les deux solutions réelles prévues
avec pt 0; ces deux solutions sont d'ailleurs symétriques par
rapport à Ox; il suffit d'en examiner une, celle, par exemple,
pour laquelle p 0, et v ~ donc

T oo (23) et B ~ (24)2 c
K '



46 M. D'OCAGNE

Maintenant l'équation (14) se réduit à

X b2

ce qui transforme (13) en

a2 b2 4 b2t2

d'où

(25)

Quant aux équations (17) et (18), elles deviennent

a 0 (26)

et
0 — 2 62ß + abc

d'où

(27)

Les valeurs (25), (26) et (27) de £2, a et ß portées dans (5)
donnent alors

qui montre que le rayon du cercle cherché est la moitié du rayon
de courbure répondant au sommet du petit axe de l'ellipse.

Ces formules se traduisent d'ailleurs par une construction
d'une extrême simplicité.

Soient, comme d'habitude, A et A7 les sommets du grand axe,
B et B' ceux du petit, F et F7 les foyers. Marquons aussi les

milieux D et D7 des demi-axes OA et OA7.

La formule (23) montre que la droite (M^) est parallèle à AA7
et la formule (24) que cette droite (M2) coupe BB7 en un point P
tel que DP soit parallèle à FB. De même la formule (26) montre
que le cercle (M!) a son centre G sur BB7, au point où, d'après (27),
cet axe est coupé par la perpendiculaire menée de D7 à FB.

Enfin, il est clair que lorsque le point M vient coïncider avec
le sommet A, le point M2 étant alors à l'infini, le point Mx se

trouve au milieu de OA, c'est-à-dire au point D. Le cercle (Mx)
est donc celui qui, ayant son centre en C, passe par D et D7.
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Quant à l'inverse de l'ellipse par rapport à son centre, nous la

construirons très simplement en prenant pour la puissance
d2

d'inversion celle du point 0 par rapport au cercle (M^ qui est ^
d'après (25). Dans ces conditions le cercle (Mx) se transforme

en lui-même. Quant à la droite (M2) elle a pour transformé le

cercle décrit sur OP' pour diamètre si P' est le transformé de P;

or, comme, d'après les formules (24) et (27), on a précisément

OP OC -y-, il en résulte que P' est le symétrique de C par

rapport à 0.
La moyenne, pour le point 0 du cercle (Mx) et du cercle décrit

sur OP" comme diamètre est Vinverse cherchée. Ce théorème fournit
de cette inverse (quartique, comme on sait ayant un point double

isolé en 0 et en chacun des ombilics du plan) une construction
d'une remarquable simplicité.

Le même calcul appliqué à une hyperbole ayant une équation
b2x2— a2y2— a2b2 0, où a est le demi-axe transverse AA',
b la demi-longueur du segment de la tangente en A ou A',
compris entre les asymptotes, donne

_ bc _ _
b2

___
ab_ ^

a ~ — 2a > r ~ 2aY — 27 ' ° ~ '

où c représente la demi-distance focale, c'est-à-dire \éa2 + b2.

Si, sur l'axe non-transverse, on prend les points E et G

d'ordonnées c et ~ la parallèle et la perpendiculaire à EA, menées

par G coupant l'axe AA' en P et C, le système polairement associé

au centre 0 de Vhyperbole se compose de la perpendiculaire élevée

en P à AA' et du cercle de centre C tangent aux asymptotes.
Si l'on inverse la figure par rapport à 0 avec la puissance

b2
d'inversion la perpendiculaire en P à AA' a pour transformé
le cercle décrit sur le symétrique OC de OC par rapport à 0,
comme diamètre, et le cercle de centre C en lui-même. L'inverse
de l'hyperbole est la moyenne de ces deux cercles pour le point 0.

De là, une construction fort simple de la lemniscate de
Bernoulli de centre 0 et de longueur d'axe 2Z, considérée comme
inverse d'une hyperbole équilatère par rapport à son centre:
on prend sur Vaxe, de part et d^autre du centre 0, les segments
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OC OC' 21 2 et Von trace le cercle de centre C et de rayon 21

et le cercle ayant OC' pour diamètre; la lemniscate est la moyenne
de ces deux cercles pour le centre 0.

15. — Dans le cas de l'ellipse, comme dans celui de l'hyperbole,
le système droite et cercle polairement associé soit à un sommet
de l'axe focal, soit à un foyer, se compose d'une droite
perpendiculaire à l'axe focal et d'un cercle ayant son centre sur cet

axe, mais le système droite et cercle polairement associé au
centre comprend encore, dans le cas de l'hyperbole, une droite
et un cercle de même disposition, alors que, pour le centre
de l'ellipse, la droite est perpendiculaire à l'axe non focal, le
cercle ayant son centre sur cet axe (n° 4). Il y a là une anomalie

apparente qu'il n'est pas sans intérêt d'élucider par la discussion

que voici:
Pour une ellipse admettant Ox pour axe focal, et dont le

centre ait l'abscisse x0, c'est-à-dire pour l'ellipse d'équation

b2x2 + a2y2 — 2 b2xQx + b2 (x2 — a2) — 0

les équations (20) et (22) deviennent

0 2x0v — [x2 — a2) {JL v

— 4 c2 — tkb2x0[j. — b2 (x2 — a2) (u.2 — v2) (avec c2 a2 — bH)

On peut satisfaire à la première en prenant
2 xsoit v — 0 soit u. -—

En ce cas, la seconde donne

2 bx0 ± al/x2 — c2) 2 a|/c2 •— x2
soit [x -A-J —^ 7 soit v ± ^

b {x2o — a2) b (x2q — a2)

Si xQ > c c'est la première double solution qui est réelle;
donc pour tous les points extérieurs à l'intervalle limité par les

foyers, $ 0, c'est-à-dire c oo, la droite du système est
perpendiculaire à l'axe focal; c'est le cas pour les sommets; c'est aussi,
à la limite, le cas pour les foyers.
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Par contre, si x0 < c c'est la seconde double solution qui est

réelle; la droite est inclinée sur Ox et devient à la limite, pour
xQ 0 (cas du centre), parallèle à cet axe.

Dans le cas de l'hyperbole

b2x2 —» a2 y2 — 2 b2x0x b2 (x2 —• a2) ea *

les équations (20) et (22) deviennent

0 2 xQ v — (x2 — ci2) ;j-v

4 c- 4 b2xQ[i.~— b2 (x2 —- cf) (<j2 — v-) i avec c- <f -f è-J

Comme dans le cas précédent on peut satisfaire à la première
en prenant

SOit V — 0 Soit a — -

(I
'

o

Mais alors la seconde donne

2 bx0± a(/c2 — a-2) 2 (/ .c2 — r2
soit îX — — soi t v —

b (x2 - - (f) b (x2 — cf)
V

0 '

et l'on voit que la conclusion est le contraire de celle du cas de

l'ellipse; c'est avec x0 < c que la première double solution est

réelle, avec x0 > c que ce caractère appartient à la seconde.

Or, ici, avec le centre (x0 0), aussi bien qu'avec le sommet
(xQ a) et, à la limite, avec le foyer (x0 — c), on a a flaire à la

première hypothèse (xQ < c), et, par suite, on trouve $ - x,
c'est-à-dire une droite perpendiculaire à l'axe focal aussi bien

pour le centre que pour le sommet et le foyer.
Dans le cas de la parabole pour le sommet, c'est la droite

extérieure à la parabole dont la distance au sommet est égale
au paramètre p\ pour le foyer, c'est la tangente au sommet ;

pour ces deux points d'ailleurs le cercle du système est le

même; c'est celui qui est construit sur le rayon de courbure
au sommet (égal à p) comme diamètre.

L'Enseignement mathém., 31e année, 1932
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