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FRONTS D’ONDES ET CORPUSCULES

(A Proros DU ProBLEME D’AGREGATION DE 1929)
PAR

A. Bunr (Toulouse).

Le remarquable probleme de Calcul différentiel et intégral,
proposé & 1’Agrégation en 1929 et dont M. Henri Milloux a
donné ici-méme (t. 29, 1930, p. 293) une solution élégante et
détaillée, traite de questions que ni I’énoncé ni la solution en
litige n’ont épuisées.

I1 me semble intéressant de revenir sur ce probléme en le ratta-
chant & des considérations de Physique théorique. Les surfaces
dont il s’agit donnent aisément des fronts d’ondes transportant
de certaines invariances intégrales, ces fronts pouvant d’ailleurs
s’émietter de maniere a donner lieu & une propagation corpus-
culaire.

Au fond, 1l n’y a la rien que de trés naturel. Les deux propaga-
tions sont de la nature méme des Principes du Calcul intégral et
c’est justement ce qui permet l'existence d’une Physique
théorique pouvant étre batie comme I’Analyse elle-méme.

Pour I'examen de cas beaucoup plus généraux, on pourra se
reporter & des Notes concernant la Géométrie ondulatoire et
publiées aux Comptes rendus des 6, 27 octobre, 29 décembre 1930,
9 février et 27 avril 1931 ainsi qu’a un Mémoire des Annalzs
de la Faculté des Sciences de Toulouse (1932).

1. — Surfaces S telles que Pangle V, de la normale en M et du
rayon vecteur OM, soit une fonction donnée de OM = p. — Pour
ces surfaces S, on est immédiatement conduit & écrire

D i
cosV:ax+"y+Y”:F(P)
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si @, B, 7 sont cosinus directeurs pour la normale en M. Cette
équation prend, de maniére tout aussi immeédiate, la forme en

Ly, Y, 2, Py 4

;piv;qi/)_ = oI (p) , o = 2 + y* + 3% . (1)
V14 + ¢

Une premiere remarque s’impose au sujet de ’équation (1).
On sait qu’en général une équation en z, y, z, p, ¢ ne permet guére
d’en espérer une intégrale générale explicite; il favt déja s’estimer
heureux quand on peut atteindre I'intégrale compléte ou intégrale
dépendant de deux constantes arbitraires. Or ’équation (1)
est trés privilégiée; sans méme s’inquiéter du systéme différentiel
caractéristique, on peut aller jusqu’a 'intégrale générale. Ceeci
arrive méme, de la maniére la plus simple, en commencant par
rechercher les surfaces S qui sont de révolution autour de Oz.
Soit z = z (r) I’équation de ces derniéres surfaces, r étant la
projection de g sur Ozxy. Avec cette expression de z, I’équation
(1) devient,

S 4 2
.z rz c d(t) _ oF(p)

VI+z® At gdwt

si o est 'angle de ¢ et de r. Finalement on a I’équation différen-
tielle

,___»E_A;_ é‘z = dw . (2)

V1I—TF2 ¢

Cette équation (2) n’est autre que

¥

cotang V = - .

On aurait donc pu I’écrire immédiatement. Bref, la famille de
courbes (2) est engendrée par une courbe quelconque du plan
méridien zOr quand cette courbe, dans ce plan, tourne autour
de O. Et si une courbe (2) tourne, dans 'espace, non autour de
Oz mais autour d’un autre axe de son plan passant par O, il est
clair, d’aprés la définition des surfaces S5, qu’on a encore une de
ces surfaces. Plus généralement, si le plan d’une courbe plane C
quelconque roule sur un cone quelconque I', de sommet O, la
surface de Monge ainsi engendrée sera une surface S. Et cette
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surface S sera l'intégrale générale de (1) puisqu’elle dépendra du
cone T' qui, étant quelconque, correspondra a lintroduction,
dans la question, d’une fonction arbitraire d’une variable.

D’aprés les propriétés générales des surfaces de Monge et le
théoreme de Joachimsthal, ces résultats pouvaient étre prévus
sans aucun calcul, mais les formules (1) et (2) sont utiles quant
aux développements qui vont suivre.

Remarquons aussi que les surfaces S dépendant, dans leur
ensemble, de deux fonctions arbitraires d’une variable, fonctions
qui correspondent & la courbe C et au cone T, ces surfaces S
correspondent aussi & une équation de Monge-Ampere qui se
déduit de (1) sous la forme

d z— px—qy 0O Z-—pxr—4qy
+ qz) — = {& 4 pf] o= =t . {8
o 0T AL+ P+ 0y A1+ p° + ¢

Cette équation (3) admet alors (1) pour intégrale intermédiaire.
Nous laissons au lacteur le soin d’effectuer les dérivations par-
tielles indiquées en (3) mais l'intérét n’est pas la. Il vaut mieux
remarquer que z -+ pz et y - ¢z sont les coordonnées ¢ et # du
point ou la normale en M perce le plan Oxy. Ceci permet de
considérer 'opérateur

et d’écrire que les surfaces S sont telles que I’on ait

Z(ecosV) =0 .

(G’est 14 une forme condensée de ’équation (3), forme certaine-
ment plus intéressante qu’une forme développée.

2. — Equations homogénéisées. — Soit, par exemple, I’équation
ordinaire d’une surface
P, y,s =0. (4)

On peut toujours mettre cette équation sous la forme

f(x>y>z)=1 <5)

avec [ fonction homogene d’ordre 1 et nous dirons alors que
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Péquation (4) est homogénéisée en (5). La transformation se
concoit immédiatement; il suffit d’écrire (4)

(I)<£a g) E>:Ov
T T T

de résoudre par rapport a t et de faire = = 1.

Imaginons maintenant que on veuille étudier les surfaces S
en les supposant toujours représentées par des équations (5). On
aura

fx fy
P = E ) — 4 = f_z
et I'équation (1), apres application du théoreme d’Euler sur les
fonctions homogenes, deviendra

Gof« GOy e G =5[] o

Il est évident que, sur les surfaces f = 1, I’équation (6) a aussi
bien lieu lorsqu’on fait f = 1 dans le second membre mais, quant
a la recherche ou a I’étude de la fonction f, il faut obligatoirement
prendre ce second membre sous la forme indiquée en (6), de
maniére a ce que les deux membres de I'équation aient méme
ordre d’homogénéité (zéro).

D’ailleurs, si ’on cherche pour (6) une solution f, homogeéne
d’ordre un, on est conduit & poser, par exemple,

Y Z
f=ze(u, 9, w= 0= -
d’on
fx = —9(ue, + 99,) fy = 9%, fr =9+ 905y

et I’équation (6) devient une équation aux dérivées partielles de
¢ contenant ¢ et les variables u, ¢. On a remplacé I’équation (1)
par une équation du méme type. Mais ce n’est pas cette équation
en u, ¢, 9, ¢,, ¢, qui est intéressante. L’'intérét est dans (6),
équation de Jacobl homogénéisée qui lie la question géométrique
d’abord envisagée a la Mécanique classique et & la Mécanique
ondulatoire.




FRONTS D’ONDES ET CORPUSCULES 27

3. — Invariances intégrales. — Soit un cone infiniment délié de
sommet O, cone qui découpe do sur une surface S et do, sur la
sphere de centre O et de rayon a.

On peut toujours s’arranger & avoir

V(e ds = §(a)doy

avec @ fonction donnée & I'avance. En effet, de cette équation

i

et de
cos Vds  doy

— ’
lo2 az

on conclut
cosV = F(g) =

Quand I est déterminé de cette maniére, on a

jjl@m=¢wq
S

pour toutes les cloisons S découpées, sur la famille S, par un
cone quelconque de sommet O. L’aire ¢, est découpée par le
méme cone sur la sphére de centre O et de rayon a.

4. — Role des spirales sinusoides. — Une des hypotheéses les
plus simples que l'on puisse faire sur la fonction ¢ est de poser

Ylo) = " .
Alors, d’apreés (7) et (2), on a immédiatement la famille de
spirales sinusoides
" = d*sinn(ov—C) . (8)

Il est particuliérement aisé d’attribuer & ces courbes une équa-
tion cartésienne homogénéisée ou d’en faire des méridiens de
surfaces de révolution ayant une équation réductible au méme
type de facon explicite. Et I’équation (6) devient, d’apres (7)

() Gl =™

3 v/

?

Cette équation homogénéisée est destinée a déterminer des




28 A. BUHL

surfaces, d’équation f = 1, sur lesquelles on aura évidemment
2f\2 | /Of\2, [of\* _  &*"
(52) + (o) + (55) = o
5. — Considérations physiques. — 1.’équation de Jacobi

1 oV\2 dV\?2 dV\?
ﬂ[(ﬁ)‘i—(ﬁ)%‘<“&>:I+U(x,y,z)=E, (10)

ou, pour 'introduction du temps,
V =8 —Et, (11)

est manifestement identifiable avec (9). On a

et, E représentant 1'énergie totale qui est constante,

oU a*"
Pr T

S (12)

Soit n -+ 1 positif. Alors, @ une force centrale attractive el
inversement proportionnelle a la puissance (2n + 3) de la distance,
correspondent les surfaces de Monge S engendreées par les spirales
sinusoides
‘ " = " sin n(w — C) (8)

\

dont le plan roule sur un cone quelconque I' ayant son sommet au
pole O de la spirale. Sur les surfaces S, un autre cone quelconque I'y,
de sommet O, i directrice fermée, intercepte des cloisons pour

lesquelles
[ frmtan = e ¥
S e

st a est le rayon d’une sphére de centre O sur laquelle Ty intercepte
Paire a;.

Cependant que, conformément & la théorie jacobienne, on fait
intervenir les deux équations (10) et (11) pour que le mouvement
du point matériel, de masse m, ait lieu, on peut associer a (10) la
méme équation (10) homogénéisée pour obtenir ici des surfaces S
indéterminées de par I'indétermination du cone I' et susceptibles,
de par cette indétermination, de donner des cloisons ayant, dans
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tous les cones I';, divers modes de propagation, modes qui cepen-
dant conservent tous, pour une cloison en propagation, une
intégrale (13) attachée & cette cloison.

Soit, par exemple, 2n + 3 = 2, ce qui, d’apres (12), donne le
cas de Dattraction newtonienne. Les spirales sinusoides (8)

auront 1’équation
., G—

o sin® —

= a .

Ce sont des paraboles dont le foyer est en O et dont le parametre
est 2a; lorsque C varie, elles tournent dans leur plan, autour de O,
restant tangentes au cercle de centre O et de rayon a. Sur les
surfaces de Monge S issues de ces paraboles, tout cone I', découpe
un ensemble de cloisons pour chacune desquelles on a

Comme second exemple, supposons que nous voulions simple-
ment que ce solent des aires qui se propagent. Alors, d’apres (13),
il faut prendre n == 2 et, d’apres (12), ce mode de propagation
correspond & une attraction en raison inverse de la septieme
puissance de la distance. Les courbes (8) sont des lemniscates de
Bernoulli. |

Revenons aux généralités. Au lieu d’imaginer une propagation
& invariance intégrale dans un seul cone I';, on peut imaginer un
faisceau d’un trés grand nombre de cones I';, chaque cone étant
aussi délié qu’on voudra. Les cloisons en propagation n’ont
nullement besoin, pour conserver leurs propriétés intégrales,
d’étre raccordées quand on passe d'un cone au cone voisin. La
propagation devient corpusculaire.

Une équation (10) peut provenir aussi de I’équation de la
théorie ondulatoire

dV\Z  /oVVE  /oV\E 1 /o V2
52) + () + (55) = =(%) e

équation qui exprime que V se propage sur des fronts d’onde en
y conservant une valeur V,. L’identification de (10) et de (14),
en tenant compte de (11), donne

E

YT Vam@E —U)
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et c’est 14 le premier lien de la Mécanique ondulatoire avec la
Mécanique classique. Pour plus de développements sur ce points,
on peut se reporter & 'ouvrage, de M. Eugéne Bloch, L’ancienne
et la nouvelle Théorie des Quanta, 1930, p. 267.

Mais, que I’on parte de (10) ou de (14), il est certain que la
substitution (11) donne une équation semblant ne plus contenir
le temps. Cependant, & une telle équation homogénéisée, corres-
pondent des surfaces variables f = 1, transportant des inté-
grales invariantes et encore assimilables & des fronts d’onde,
parce qu [ est d’une constitution arbitraire permettant d’y
ntroduire e temps et ce, d’ailleurs, d’une infinité de maniéres.

6. — Espaces a canaux. — Dans cet article, nous n’avons pas
voulu nous écarter de I’énoncé « n probléme proposé a I’Agré-
gation. Mais nous pouvons apercevoir maintenant, 1’existence
générale de certains espaces a canauxr (4 canaux incurvés de
facon quelconque) dans lesquels se propagent transversalement
des cloisons pouvant transporter des invariances intégrales
quelconques. Gomme nous I'avons dit, au début, ces transports
peuvent étre effectués soit par des cloisons continues, qui
prennent alors la physionomie de fronts d’ondes, soit par des
cloisons se fragmentant de canal a canal contigu. La propagation
peut alors devenir corpusculaire et présenter des modalités dont
on ne peut, au premier abord, limiter la complexité ou les
indéterminations. Le continu cede le pas & un discontinu dont
I’analyse est beaucoup plus vaste; c’est la que les conceptions
d’un René Baire peuvent étre reprises sous couleur indéniable-
ment physique et voisiner avec celles d’un Louis de Broglie.

Pour plus de détails, on pourra se reporter, outre les références
déja données, a deux fascicules publiés, 'un dans le Mémorial
des Sciences mathématiques sous le titre Gravifiques, Groupes,
Mécaniques, I'autre, dans le Mémorial des Sciences physiques,
sous le titre Structure analytique et Théories physiques. Mais ces
exposés eux-mémes ne constituent que de minimes travaux
d’approche quant a un sujet fondamental de Physique théorique
dont les développements pourront étre indéfiniment poursuivis.
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