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FRONTS D'ONDES ET CORPUSCULES

(A Propos du Problème d'Agrégation de 1929)

PAR

A. Buhl (Toulouse).

Le remarquable problème de Calcul différentiel et intégral,
proposé à l'Agrégation en 1929 et dont M. Henri Milloux a

donné ici-même (t. 29, 1930, p. 293) une solution élégante et

détaillée, traite de questions que ni l'énoncé ni la solution en

litige n'ont épuisées.
Il me semble intéressant de revenir sur ce problème en le rattachant

à des considérations de Physique théorique. Les surfaces
dont il s'agit donnent aisément des fronts d'ondes transportant
de certaines invariances intégrales, ces fronts pouvant d'ailleurs
s'émietter de manière à donner lieu à une propagation corpusculaire.

Au fond, il n'y a là rien que de très naturel. Les deux propagations

sont de la nature même des Principes du Calcul intégral et
c'est justement ce qui permet l'existence d'une Physique
théorique pouvant être bâtie comme l'Analyse elle-même.

Pour l'examen de cas beaucoup plus généraux, on pourra se

reporter à des Notes concernant la Géométrie ondulatoire et
publiées aux Comptes rendus des 6, 27 octobre, 29 décembre 1930,
9 février et 27 avril 1931 ainsi qu'à un Mémoire des Annales
de la Faculté des Sciences de Toulouse (1932).

1. — Surfaces S telles que Vangle V, de la normale en M et du

rayon vecteur OM, soit une fonction donnée de OM p. —• Pour
ces surfaces S, on est immédiatement conduit à écrire

cl x -f* 8 ?/ "J*» y z ^COS Y L_LÄ_J—!_ F 0
n Vt '
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si a, /S, y sont cosinus directeurs pour la normale en M. Cette

équation prend, de manière tout aussi immédiate, la forme en

x, y, z, p, q

*
V

px qy
— P F (p) P2 — X2 + y2 + z2 (1)Vl + P2 + q2

W

Une première remarque s'impose au sujet de l'équation (1).
On sait qu'en général une équation en x1 y, z, p, q ne permet guère
d'en espérer une intégrale générale explicite; il faut déjà s'estimer
heureux quand on peut atteindre l'intégrale complète ou intégrale
dépendant de deux constantes arbitraires. Or l'équation (1)
est très privilégiée; sans même s'inquiéter du système différentiel
caractéristique, on peut aller jusqu'à l'intégrale générale. Ceci
arrive même, de la manière la plus simple, en commençant par
rechercher les surfaces S qui sont de révolution autour de Oz.

Soit z z (r) l'équation de ces dernières surfaces, r étant la
projection de p sur 0xy. Avec cette expression de z, l'équation
(1) devient

z — rz o2doi

\/1 + z'2 \/do2 + p2dto2
pF (p)

si o) est l'angle de p et de r. Finalement on a l'équation différentielle

F dp N

—7 L d") 2

Vl '— F2 P

Cette équation (2) n'est autre que

cotang V —,

On aurait donc pu l'écrire immédiatement. Bref, la famille de

courbes (2) est engendrée par une courbe quelconque du plan
méridien zOr quand cette courbe, dans ce plan, tourne autour
de 0. Et si une courbe (2) tourne, dans l'espace, non autour de

Oz mais autour d'un autre axe de son plan passant par 0, il est

clair, d'après la définition des surfaces S, qu'on a encore une de

ces surfaces. Plus généralement, si le plan d'une courbe plane C

quelconque roule sur un cône quelconque F, de sommet 0, la
surface de Monge ainsi engendrée sera une surface S. Et cette
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surface S sera l'intégrale générale de (1) puisqu'elle dépendra du

cône T qui, étant quelconque, correspondra à l'introduction,
dans la question, d'une fonction arbitraire d'une variable.

D'après les propriétés générales des surfaces de Monge et le

théorème de Joachimsthal, ces résultats pouvaient être prévus
sans aucun calcul, mais les formules (1) et (2) sont utiles quant
aux développements qui vont suivre.

Remarquons aussi que les surfaces S dépendant, dans leur
ensemble, de deux fonctions arbitraires d'une variable, fonctions
qui correspondent à la courbe C et au cône T, ces surfaces S

correspondent aussi à une équation de Monge-Ampère qui se

déduit de (1) sous la forme

(2/ + qz) ={x + pz) iL (3)
a/i + P2 + q2 Vi + p2 + q2

Cette équation (3) admet alors (1) pour intégrale intermédiaire.
Nous laissons au lecteur le soin d'effectuer les dérivations
partielles indiquées en (3) mais l'intérêt n'est pas là. Il vaut mieux

remarquer que x + pz et y -f qz sont les coordonnées £ et m du
point où la normale en M perce le plan Oxy. Ceci permet de

considérer l'opérateur
_ __ _

î) a
— r{

ö x "
î>2/

et d'écrire que les surfaces S sont telles que l'on ait

S (p cos V) 0

C'est là une forme condensée de l'équation (3), forme certainement

plus intéressante qu'une forme développée.

2. —Equations homogénéisées. — Soit, par exemple, l'équation
ordinaire d'une surface

y z) 0 (4)

On peut toujours mettre cette équation sous la forme

f(x, y, z) «r 1 (5)

avec / fonction homogène d'ordre 1 et nous dirons alors que
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l'équation (4) est homogénéisée en (5). La transformation se

conçoit immédiatement; il suffit d'écrire (4)

a y

de résoudre par rapport à et de faire r 1.

Imaginons maintenant que l'on veuille étudier les surfaces S

en les supposant toujours représentées par des équations (5). On

aura
fx fy

-P=T, -q=yJz lz

et l'équation (1), après application du théorème d'Euler sur les

fonctions homogènes, deviendra

,w+ [ä) + C4):0/
(6)

Il est évident que, sur les surfaces / i, l'équation (6) a aussi
bien lieu lorsqu'on fait f — 1 dans le second membre mais, quant
à la recherche ou à l'étude de la fonction /, il faut obligatoirement
prendre ce second membre sous la forme indiquée en (6), de

manière à ce que les deux membres de l'équation aient même
ordre d'homogénéité (zéro).

D'ailleurs, si l'on cherche pour (6) une solution /, homogène
d'ordre un, on est conduit à poser, par exemple,

/ =5 Z<f(u, v) u| V —

d'où
fx — ' fy ' fz f+

et l'équation (6) devient une équation aux dérivées partielles de

f contenant 9 et les variables n, ç. On a remplacé l'équation (1)

par une équation du même type. Mais ce n'est pas cette équation
en w, e, 9, <pu, <pv qui est intéressante. L'intérêt est dans (6),

équation de Jacobi homogénéisée qui lie la question géométrique
d'abord envisagée à la Mécanique classique et à la Mécanique
ondulatoire.
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3. — Invariances intégrales. —- Soit un cône infiniment délié de

sommet 0, cône qui découpe de sur une surface S et dv1 sur la

sphère de centre 0 et de rayon a.

On peut toujours s'arranger à avoir

(p) dv ~ b (a) da1

avec © fonction donnée à l'avance. En effet, de cette équation
et de

COS Y da d (J-l
'

p"2 iE '

on conclut

cos Y F(p) • (')
al4 (a)

Quand F est déterminé de cette manière, on a

à (p) drs <|> (à) ct-lIß
pour toutes les cloisons S découpées, sur la famille S, par un
cône quelconque de sommet 0. L'aire oq est découpée par le
même cône sur la sphère de centre 0 et de rayon a.

4. — Rôle des spirales sinusoïdes. — Une des hypothèses les

plus simples que l'on puisse faire sur la fonction ^ est de poser

Up) - pn"2 •

Alors, d'après (7) et (2), on a immédiatement la famille de

spirales sinusoïdes
pn an sin n (<o — G) (8)

Il est particulièrement aisé d'attribuer à ces courbes une équation

cartésienne homogénéisée ou d'en faire des méridiens de
surfaces de révolution ayant une équation réductible au même
type de façon explicite. Et l'équation (6) devient, d'après (7),

ß'ßH)'ßß
Cette équation homogénéisée est destinée à déterminer des
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surfaces, d'équation / 1, sur lesquelles on aura évidemment

g)'-($'+($"-;£*
5. — Considérations physiques. — L'équation de Jacobi

+ U(x, y z) E (10)
1

2 m S),+ a,+ (s
où, pour l'introduction du temps,

Y s — Et (il)
est manifestement identifiable avec (9). On a

ïm(E — U)
a
n+2

et, E représentant l'énergie totale qui est constante,

bU a2n"i^ (ra + 1)^T3- (12>
p

Soit n 4" 1 positif. Alors, à une /orce centrale attractive et

inversement proportionnelle à la puissance (2n + 3) de la distance,
correspondent les surfaces de Monge S engendrées par les spirales
sinusoïdes

pn an sin n (to •— G) (8)

dont le plan roule sur un cône quelconque T ayant son sommet au
pôle 0 de la spirale. Sur les surfaces S, un autre cône quelconque ï\,
de sommet 0, à directrice fermée, intercepte des cloisons pour
lesquelles

J fpn~2d* an"Y (13)

S

si a est le rayon d'une sphère de centre 0 sur laquelle I\ intercepte
l'aire

Cependant que, conformément à la théorie jacobienne, on fait
intervenir les deux équations (10) et (11) pour que le mouvement
du point matériel, de masse m, ait lieu, on peut associer à (10) la
même équation (10) homogénéisée pour obtenir ici des surfaces S

indéterminées de par l'indétermination du cône T et susceptibles,
de par cette indétermination, de donner des cloisons ayant, dans
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tous les cônes I\, divers modes de propagation, modes qui cependant

conservent tous, pour une cloison en propagation, une

intégrale (13) attachée à cette cloison.

Soit, par exemple, 2n + 3 2, ce qui, d'après (12), donne le

cas de l'attraction newtonienne. Les spirales sinusoïdes (8)

auront l'équation
,G —- «

p sin- —-— — a

Ce sont des paraboles dont le foyer est en 0 et dont le paramètre
est 2a; lorsque C varie, elles tournent dans leur plan, autour de 0,
restant tangentes au cercle de centre 0 et de rayon a. Sur les

surfaces de Monge S issues de ces paraboles, tout cône T-, découpe
un ensemble de cloisons pour chacune desquelles on a

5 5

2 d<3 a
2

g1

Comme second exemple, supposons que nous voulions simplement

que ce soient des aires qui se propagent. Alors, d'après (13),
il faut prendre n — 2 et, d'après (12), ce mode de propagation
correspond à une attraction en raison inverse de la septième
puissance de la distance. Les courbes (8) sont des lemniscates de

Bernoulli.
Revenons aux généralités. Au lieu d'imaginer une propagation

à invariance intégrale dans un seul cône L3, on peut imaginer un
faisceau d'un très grand nombre de cônes I\, chaque cône étant
aussi délié qu'on voudra. Les cloisons en propagation n'ont
nullement besoin, pour conserver leurs propriétés intégrales,
d'être raccordées quand on passe d'un cône au cône voisin. La
propagation devient corpusculaire.

Une équation (10) peut provenir aussi de l'équation de la
théorie ondulatoire

w+w+m'-m-
équation qui exprime que V se propage sur des fronts d'onde en

y conservant une valeur V0. L'identification de (10) et de (14),
en tenant compte de (11), donne

E
u — _

y 2 m (E— U)
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et c'est là le premier lien de la Mécanique ondulatoire avec la
Mécanique classique. Pour plus de développements sur ce points,
on peut se reporter à l'ouvrage, de M. Eugène Bloch, Eancienne
et la nouvelle Théorie des Quanta, 1930, p. 267.

Mais, que l'on parte de (10) ou de (14), il est certain que la
substitution (11) donne une équation semblant ne plus contenir
le temps. Cependant, à une telle équation homogénéisée,
correspondent des surfaces variables / 1, transportant des

intégrales invariantes et encore assimilables à des fronts d'onde,
parce qu / est d'une constitution arbitraire permettant d'y
ntroduire ie temps et ce, d'ailleurs, d'une infinité de manières.

6. — Espaces à canaux. — Dans cet article, nous n'avons pas
voulu nous écarter de l'énoncé o n problème proposé à

l'Agrégation. Mais nous pouvons apercevoir maintenant, l'existence
générale de certains espaces à canaux (à canaux incurvés de

façon quelconque) dans lesquels se propagent transversalement
des cloisons pouvant transporter des invariances intégrales
quelconques. Comme nous l'avons dit, au début, ces transports
peuvent être effectués soit par des cloisons continues, qui
prennent alors la physionomie de fronts d'ondes, soit par des

cloisons se fragmentant de canal à canal contigu. La propagation
peut alors devenir corpusculaire et présenter des modalités dont
on ne peut, au premier abord, limiter la complexité ou les

indéterminations. Le continu cède le pas à un discontinu dont
l'analyse est beaucoup plus vaste; c'est là que les conceptions
d'un René Baire peuvent être reprises sous couleur indéniablement

physique et voisiner avec celles d'un Louis de Broglie.
Pour plus de détails, on pourra se reporter, outre les références

déjà données, à deux fascicules publiés, l'un dans le Mémorial
des Sciences mathématiques sous le titre Gravifiques, Groupes,
Mécaniques, l'autre, dans le Mémorial des Sciences physiques,
sous le titre Structure analytique et Théories physiques. Mais ces

exposés eux-mêmes ne constituent que de minimes travaux
d'approche quant à un sujet fondamental de Physique théorique
dont les développements pourront être indéfiniment poursuivis.
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