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SUR LES FAMILLES CROISSANTES
DE

SOUS-ENSEMBLES D'’UN ENSEMBLE DENOMBRABLE

PAR

W. Sierpifski (Varsovie).

Une famille F d’ensembles est dite croissante, si de deux
ensembles de la famille F un est toujours une partie aliquote
de ’autre. Une telle famille peut étre ordonnée d’apreés la gran-
deur des ensembles qui la constituent, c’est-a-dire de deux
ensembles de la famille F celui est regardé comme précédent
qui est la partie aliquote de I'autre. A toute famille croissante
d’ensembles correspond ainsi un type d’ordre !.

1 En ce qui concerne les types d’ordre, voir par exemple mon livre Legons sur les
nombres transfinis, chap. VII. Paris, Gauthier-Villars, 1928.
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Soit D un ensemble dénombrable donné, par exemple l’en-
semble de tous les nombres naturels. Dans cette note nous
traiterons la question suivante:

o étant un type d’ordre donné, quelle est la condition nécessaire
et suffisante pour qu’il existe une famille croissante du type ¢ de
sous-ensembles de D ?

Nous prouverons que cetle condition est que ¢ soit un type
d’ordre d’un ensemble de nombres réels ordonné d’aprés leur
grandeur.

La condition est nécessaire. En effet, soit F une famille crois-
sante de sous-ensembles de D. Soit E un sous-ensemble donné de
D, par exemple l’ensemble de nombres naturels (différents)
ny, Ny, Ng, ... Posons ‘

:2 ny 2 Ng 2 n3

— ce sera évidemment un nombre réel positif < 1.

Il est évident que si H est un autre sous-ensemble de D et si
E < H, on a f(E) < f(H). La famille F est ainsi semblable &
I’ensemble de tous les nombres réels f(E) correspondant aux
ensembles E de F.

La condition est suffisante. En effet, soit X un ensemble donné
de nombres réels. Soit

Py, g, I'gy oe

une suite infinie formée de tous les nombres rationnels (diffé-
rents). x étant un nombre réel donné, désignons par E (z) 'en-
semble de tous les indices =, tels que

Fp << X .

On voit sans peine que si x < y, E(z) est une partie aliquote
de E(y) (puisque, si x < y, I'inégalité r, < x entraine r, < v,
et, d’autre part, il existe un nombre rationnel r,, tel que
x<r, <y, dou résulte que k appartient a I’ensemble E(y)
sans appartenir & E (z)). La famille F de tous les ensembles E ()
correspondant aux nombres = de I’ensemble X est donc une
famille de sous-ensembles de D qui est semblable & I’ensemble X
ordonné d’aprés la grandeur de nombres qui le constituent.

[Enseignement mathém., 30 année, 1931. 16
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Notre assertion est ainsi démontrée.
Voici maintenant un probléme connexe a celui que nous
venons de résoudre:

¢ étant un type d’ordre donné, quelle est la condition nécessaire
et suffisante pour qu’il existe une famille croissante du type ¢
formée d’ensembles dénombrables ?

On peut démontrer sans peine que celte condition est que ©

i

sott un type d’'un sous-ensemble d’un ensemble ordonné du type
(1 4+ 2)& (ou  désigne, comme on sait, le type d’ordre d’en-
semble de tous les nombres réels et £ le plus petit nombre
transfini de la troisiéme classe).

Voici un exemple d’un tel ensemble. Soit U I’ensemble de tous les sym-
boles de la forme
o+ x,

ou o est un nombre ordinal < Q et x un nombre réel, tel que 0 =Zx < 1.
Ordonnons I’ensemble U d’aprés la convention que

a+z<f+y

sia< B,oubiensia=y2<y.

Le type d’ordre de I’ensemble U est (1 -+ 4) Q.

L’ensemble ordonné U jouit de la propriété remarquable suivante: quels
que soient les éléments u et ¢ > u de U, I'ensemble de tous les éléments
t de U, tels que u < t < ¢ est du type A (c’est donc une propriété com-
mune avec ’ensemble de tous les nombres réels, et, plus généralement, avec
les ensembles des types A, 1 + A et A + 1: cette propriété n’est donc pas
caractéristique pour ces trois types).
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