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SUR LES FAMILLES CROISSANTES

DE

SOUS-ENSEMBLES D'UN ENSEMBLE DÉNOMBRABLE

PAR

W. Sierpinski (Varsovie).

Une famille F d'ensembles est dite croissante, si de deux
ensembles de la famille F un est toujours une partie aliquote
de l'autre. Une telle famille peut être ordonnée d'après la grandeur

des ensembles qui la constituent, c'est-à-dire de deux
ensembles de la famille F celui est regardé comme précédent

qui est la partie aliquote de l'autre. A toute famille croissante

d'ensembles correspond ainsi un type d'ordre L

i En ce qui concerne les types d'ordre, voir par exemple mon livre Leçons sur les

nombres trans finis, chap. VII. Paris, Gauthier-Villars, 1928.
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Soit D un ensemble dénombrable donné, par exemple
l'ensemble de tous les nombres naturels. Dans cette note nous
traiterons la question suivante:

9 étant un type (Tordre donné1 quelle est la condition nécessaire

et suffisante pour qu'il existe une famille croissante du type 9 de

so us-ensembles de D

Nous prouverons que cette condition est que 9 soit un type
d''ordre d'un ensemble de nombres réels ordonné d'après leur
grandeur.

La condition est nécessaire. En effet, soit F une famille croissante

de sous-ensembles de D. Soit E un sous-ensemble donné de

D, par exemple l'ensemble de nombres naturels (différents)
7?1, 7Z2, 72g, Posons

— ce sera évidemment un nombre réel positif < 1.

Il est évident que si H est un autre sous-ensemble de D et si
E < H, on a /(E) < /(H). La famille F est ainsi semblable à

l'ensemble de tous les nombres réels /(E) correspondant aux
ensembles E de F.

La condition est suffisante. En effet, soit X un ensemble donné
de nombres réels. Soit

une suite infinie formée de tous les nombres rationnels
(différents). x étant un nombre réel donné, désignons par E(^)
l'ensemble de tous les indices 77, tels que

On voit sans peine que si x < y, E (x) est une partie aliquote
de E (y) (puisque, si x < y, l'inégalité rn < x entraîne rn < y,
et, d'autre part, il existe un nombre rationnel rfe, tel que
x < rk < Vi d'où résulte que k appartient à l'ensemble E (y)
sans appartenir à E (rc)). La famille F de tous les ensembles E(rc)
correspondant aux nombres x de l'ensemble X est donc une
famille de sous-ensembles de D qui est semblable à l'ensemble X
ordonné d'après la grandeur de nombres qui le constituent.

/ (E) — 4" — "4
V ' 2ni 2TCa

fi, rs,

rn < x
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Notre assertion est ainsi démontrée.
Voici maintenant un problème connexe à celui que nous

venons de résoudre:

<}> étant un type Pordre donné, quelle est la condition nécessaire
et suffisante pour qu'il existe une famille croissante du type y
formée Pensembles dénombrables

On peut démontrer sans peine que cette condition est que o

soit un type Pun sous-ensemble Pun ensemble ordonné du type
(1 ~f (où A désigne, comme on sait, le type d'ordre
d'ensemble de tous les nombres réels et 0 le plus petit nombre
transfini de la troisième classe).

Voici un exemple d'un tel ensemble. Soit U l'ensemble de tous les
symboles de la forme

a + x

où a est un nombre ordinal < Q et x un nombre réel, tel que 0 < 1.
Ordonnons l'ensemble U d'après la convention que

a + x < ß + y

si ce < ß, ou bien si a ß, x < y.
Le type d'ordre de l'ensemble U est (1 + X) Q.
L'ensemble ordonné U jouit de la propriété remarquable suivante: quels

que soient les éléments u et v > u de U, l'ensemble de tous les éléments
t de U, tels que u < t < v est du type A (c'est donc une propriété
commune avec l'ensemble de tous les nombres réels, et, plus généralement, avec
les ensembles des types A, 1 + A et A -f 1 : cette propriété n'est donc pas
caractéristique pour ces trois types).
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