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Fextension du théorème de la curvatura intégra n'a réussi que
dans deux cas très particuliers. Je viens justement de vous

exposer l'un d'eux: c'est le cas où la courbure est constante; la
curvatura intégra est alors essentiellement le volume de la forme

spatiale, et c'est sur la considération de ce volume que repose le

théorème sur les signes de la courbure et de la caractéristique,
auquel on vient de faire allusion, théorème qui entraîne
l'extension de B aux nombres pairs de dimensions (VIII). L'autre
cas particulier où le théorème de la curvatura intégra peut être
étendu aux variétés à n dimensions se présente lorsque les

variétés sont des hypersurfaces situées dans l'espace euclidien ci

n + 1 dimensions ; pour n pair, on a alors ce théorème: la curvatura
intégra est égale au produit de la demi-caractéristique de la variété

par l'étendue superficielle de la sphère unité à n dimensions —
tout comme pour n ------ 2; la courbure de l'hvpersurface doit être
définie ici suivant Gauss, au moyen de la représentation sphérique

par les normales. Si n est impair, cette affirmation n'est en général
pas exacte, circonstance qui soulève tout naturellement de
nouvelles questions (X). Qu'adviendra-t-il de la curvatura intégra
d'une variété à plusieurs dimensions qui ne rentre dans aucun
des deux cas examinés Ce me semble être un problème
particulièrement important et intéressant, d'ailleurs difficile aussi;
si l'on songe aux démonstrations habituelles pour deux dimensions,

cela devrait revenir à une généralisation de la célèbre
formule de Gauss-Bonnet 1.

Enfin, on n'a pas encore cherché si les théorèmes de M. Rinow
peuvent être étendus à plusieurs dimensions; pour le théorème
d'unicité en particulier, cela ne doit pourtant guère présenter
de difficultés.
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SUR LES FAMILLES CROISSANTES

DE

SOUS-ENSEMBLES D'UN ENSEMBLE DÉNOMBRABLE

PAR

W. Sierpinski (Varsovie).

Une famille F d'ensembles est dite croissante, si de deux
ensembles de la famille F un est toujours une partie aliquote
de l'autre. Une telle famille peut être ordonnée d'après la grandeur

des ensembles qui la constituent, c'est-à-dire de deux
ensembles de la famille F celui est regardé comme précédent

qui est la partie aliquote de l'autre. A toute famille croissante

d'ensembles correspond ainsi un type d'ordre L

i En ce qui concerne les types d'ordre, voir par exemple mon livre Leçons sur les

nombres trans finis, chap. VII. Paris, Gauthier-Villars, 1928.
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