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I'extension du théoréme de la curvatura integra n’a réussi que
dans deux cas trés particuliers. Je viens justement de vous
exposer I'un d’eux: c'est le cas ol la courbure est constante; la
curyatura tntegra est alors essentiellement le colume de la forme
spatiale, et c¢’est sur la considération de ce volume que repose le
théoréme sur les signes de la courbure et de la caractéristique,
auquel on vient de faire allusion, théoreme qui entraine I’ex-
tension de B aux nombres pairs de dimensions (VIII). L autre
cas particulier ou le théoréeme de la curvatura integra peut étre
étendu aux variétés a n dimensions se présente lorsque Ies
variétés sont des hypersurfaces situées dans Uespace euclidien a
n + 1 dimenstons ; pour n pair, on a alors ce théoréme: la curvatura
integra est égale au produit de la demi-caractéristique de la variété
par Uétendue superficielle de la sphére unité ¢ n dimensions —
tout comme pour n = 2; la courbure de I’hypersurface doit étre
définie ici suivant Gauvss, au moyen de lareprésentation sphérique
par les normales. Si n est impair, cette affirmation n’est en général
pas exacte, circonstance qui souléve tout naturellement de nou-
velles questions (X). Qu’adviendra-t-il de la curvatura integra
d’une variété a plusieurs dimensions qui ne rentre dans aucun
des deux cas examinés ? (e me semble étre un probléme particu-
litrement important et intéressant, d’ailleurs difficile aussi;
s1 I'on songe aux démonstrations habituelles pour deux dimen-
sions, cela devrait revenir & une généralisation de la célébre
formule de Gauss-BoxneT L

Enfin, on n’a pas encore cherché si les théoremes de M. Rinow
peuvent étre étendus a plusieurs dimensions; pour le théoréme
d’unicité en particulier, cela ne doit pourtant guére présenter
de difficultés.
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SUR LES FAMILLES CROISSANTES
DE

SOUS-ENSEMBLES D'’UN ENSEMBLE DENOMBRABLE

PAR

W. Sierpifski (Varsovie).

Une famille F d’ensembles est dite croissante, si de deux
ensembles de la famille F un est toujours une partie aliquote
de ’autre. Une telle famille peut étre ordonnée d’apreés la gran-
deur des ensembles qui la constituent, c’est-a-dire de deux
ensembles de la famille F celui est regardé comme précédent
qui est la partie aliquote de I'autre. A toute famille croissante
d’ensembles correspond ainsi un type d’ordre !.

1 En ce qui concerne les types d’ordre, voir par exemple mon livre Legons sur les
nombres transfinis, chap. VII. Paris, Gauthier-Villars, 1928.
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