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GEOMETRIE INFINITESIMALE ET TOPOLOGIE?
PAR

H. Horr (Zurich).

Le titre de cette conférence ne désigne qu’imparfaitement son
contenu. Car de tous les domaines variés ou la géométrie infini-
tésimale se rencontre avec la topologie, un seul sera considéré
ici: le probléme des rapports entre les propriétés infinitéstmales
d’une surface, d’une part, et la structure topologique de la surface
entiére, d’autre part, ainsi que le probléme analogue pour les
variétés & plusieurs dimensions. Il §’agit 1a de surfaces (ou de
variétés) sans singularités, sur lesquelles une géomeétrie se trouve
définie d’une maniére intrinséque, au sens de RIEMANN; les
parametres et les coefficients de la forme fondamentale sont
supposés admettre un prolongement analytique régulier de
proche en proche. Un tel étre géométrique a deux catégories de
propriétés: en premier lieu des propriétés topologiques se
rapportant a la structure globale, par exemple la propriété
d’étre ouvert ou fermé, d’avoir tel genre, etc.; en second lieu
des propriétés infinitésimales déterminées par la forme fonda-
mentale de RIEMANN, en rapport avec la courbure, I’allure des
lignes géodésiques, etec. On demande: « quels liens y a-t-il entre
les propriétés de ces deux catégories ? » En fait, il y a bien une
interdépendance et des liens. On peut envisager une question
principale, que nous appellerons « le probléme du prolongement »:
étant donné un petit morceau découpé dans une surface, tirer
des propriétés infinitésimales de ce morceau des conclusions

1 Conférence faite a la séance de la Société mathématique suisse tenue a Fribourg le
3 mai 1931, traduite par G. pE Ruam, Dr ¢s se. (Lausanne).
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aussi complétes que possible sur la structure topologique de la
surface entiere d’ott provient ce morceau.

Avant d’entreprendre ces recherches, comme avant toute étude
de géométrie globale, il faut éclaircir le point suivant: « qu’est-ce
qu'une surface entiére ?» En effet, un domaine partiel d’une
surface avec une géométrie infinitésimale sans singularités est
encore une telle surface, mais ces domaines partiels doivent étre
naturellement exclus. Il s’est trouvé commode d’adopter la
définition suivante: « une surface est dite compléte, si, sur tout
rayon géodésique, on peut reporter a partir de son origine une
longueur quelconque », et de mettre ces surfaces «complétes»
a la base de nos recherches; on démontre qu’une surface est
compléte si elle admet le théoréme de BorLzano-WEIERSTRASS et
dans ce cas seulement, c’est-a-dire si, sur elle, tout ensemble
fermé et borné est compact; cette notion de «complet» se
confond d’ailleurs avec celle de FrEcHET-HAUSDORFF. Voicl
une propriété importante des surfaces complétes: entre deux
points, il y a toujours un chemin (géodésique) de longueur
minimale (I)!. Dans la suite, toutes les surfaces seront sup-
posées complétes.

Notre position du probleme remonte & Felix KrLein; 1l posa
et résolut la plus simple de ces questions; 1l étudia en effet les
surfaces a courbure constante, qu’'il dénomma « formes spatiales »
euclidiennes et non-euclidiennes. Les principaux résultats de ce
« probléeme spatial de CLiFForRD-KKLEIN» consistent en les trois
théorémes suivants:

A. [l n’existe essentiellement qu’une surface sumplement connexe
ayant une courbure constante donnée; (sphére, plan euclidien,
plan hyperbolique).

B. Parmz toutes les surfaces orientables fermées de genre p, seules
les formes spatiales de genre p = O peuvent avoir une courbure
positive, seules celles de genre p = 1 peuvent avoir une courbure
nulle et seules celles de genre p > 1 peuvent avoir une courbure
négative; en d’autres termes: la courbure d’une forme spatiale
a le méme signe que la caractéristique eulérienne 2 — 2p de la
surface.

1 Les chiffres romains renvoient & I'index bibliographique, 4 la fin du rapport.
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C. Une forme spatiale a courbure positive est toujours fermée
(homéomorphe en effet a la sphére ou au plan projectif) (II, III,
IV).

Nous demanderons maintenant dans quelle mesure ces théo-
rémes, qui constituent évidemment une importante contribution
a4 notre programme de recherches, peuvent étre étendus au
cas des surfaces a courbure non constante.

Commencons par le théoreme C. Est-ce que toute surface &
courbure positive doit étre fermée ! Non, car, par exemple, par
la rotation d'une parabole autour de son axe, on obtient une
surface (compléte) ouverte, & courbure partout positive. Pour-
tant le théoréeme C peut étre généralisé; nous n’avons qu’a
supposer la courbure partout supérieure a une constante positive;
un raisonnement de BonNET (V), modifié en utilisant le fait que
la surface est compléte, nous apprend qu’elle est fermée (1).

On peut méme dire plus: comme dans le cas de courbure
positive constante, la surface doit étre encore homéomorphe a
la sphere ou au plan projectif. Cela résulte immédiatement du
théoreme connu de la curvatura integra d’une surface fermée,
qui, en se bornant aux surfaces orientables, s’énonce ainsi:
Uintégrale de la courbure de Gauss, étendue a une surface fermée
de genre p, vaut 4 © (1-— p). Ce théoréeme étend aux surfaces a
courbure non constante l'affirmation contenue dans le théoréme
B; au lieu de la courbure auparavant constante, c’est la valeur
moyenne de la courbure qui intervient maintenant; elle a le
méme signe que la caractéristique de la surface (VI).

Ces deux théorémes — tant celut qui remonte a BONNET que
celui de la curvatura integra — fournissent d’importants ren-
seignements sur la structure de la surface, en admettant qu’on
connaisse ses propriétés infinitésimales en chaque point; mais
le « probléme du prolongement », formulé au début, exige qu’on
tire de tels renseignements de la connaissance des propriétés
infinitésimales dans le voisinage d’un seul point. Dans cette
direction, de trés importants et réjouissants progrés ont été
réalisés tout récemment par M. RiNxow; je vais en rendre compte
maintenant (VII).

Si un « morceau » ou « élément » de surface peut étre prolongé,
d’une maniére ou d’une autre, en une surface compléte F, il peut
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aussi étre prolongé en une surface simplement connexe, a savoir
la surface universelle de recouvrement de F: les connaissances
acquises a I'occasion du probléme spatial de CLiFrForD-KLEIN
suggerent 'idée de rechercher en premier lieu ces prolongements
simplement connexes d’un élément. Le «théoréme d’unicité »
démontré par M. Rinow, dans lequel on peut voir une généralisa-
tion du théoréme A formulé ci-dessus, s’énonce ainsi: Un élément
de surface ne peut étre prolongé qu’en au plus une surface simple-
ment connexe. D’ailleurs, une surface simplement connexe est
ou bien fermée et homéomorphe a la sphére, ou bien ouverte et
homéomorphe au plan; il en résulte qu'un morceau de surface,
pourvu seulement qu’il soit prolongeable en une surface complete
ou, dans les termes employés ci-dessus, provienne d’une surface
complete, porte a priori en lui-méme la propriété d’étre ouverte
ou fermée dont jouit la surface universelle de recouvrement de
ses prolongements complets. Cela implique par exemple le fait
suivant: un morceau d’'une surface fermée de genre 0 ne peut
jamats étre isométrique a un morceau d'une surface ouverte ouw
d’une surface fermée de genre supérieur. Avec cela, le théoreme
B est en partie généralisé au cas des surfaces fe.meées (orien-
tables); la question surgit de savoir si la généralisation de B
peut étre poussée jusqu’a l’énoncé suivant: un morceau d’une
sarface fermée orientable de genre 1 n’est jamais isométrique a un
morceau & une surface fermée de genre p > 1. En ce qui concerne
la possibilité de démontrer ce théoréme, qui devrait conduire —
par analogie avec les méthodes éprouvées sur le probléme des
formes spatiales — a I’étude du groupe d’isométrie d’une surface
simplement connexe, je suis assez optimiste!. Ces théorémes
constituent évidemment une puissante contribution a la solution
de notre probleme.

Si nous nous bornons aux prolongements simplement connexes
d’un élément, le théoréme d’unicité de M. Rixow conduit
nécessairement a la remarque et a la question suivantes. (In
élément E étant donné, il y a trois possibilités qui s’excluent
mutuellement: 1° E ne peut pas étre prolongé en une surface
compléte; 20 K peut étre prolongé en une surface du type topo-

1 Depuis lors, le théorcme a €¢t¢ démontré¢ par M. RiNow, en collaboration avec
I’auteur (XI). [Note additionnelle.]
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logique du plan; 3° E peut étre prolongé en une surface du type
topologique de la sphére. Comment peut-on reconnaitre, sur
Vélément E, lequel des trois cas se présente ? Nous admettrons
ici que nous sommes en état de surmonter toutes les difficultés
analytiques qui peuvent intervenir dans 1’étude de la métrique
de E. Bien que nous soyons encore fort éloignés d’une solution
quelque peu compléte de ce probléme, les contributions fournies
ici aussi par M. RiNow sont cependant assez intéressantes:

Concevons 1I’élément E comme le voisinage d’un point @ d’une
surface, sur laquelle nous introduisons des coordonnées polaires
géodésiques r et ¢; l’élément linéaire prend alors la forme
ds? = dr* + G (r, 9) d2, ou G remplt quelque.s conditions
simples connues. Tout d’abord, il est aisé de voir que, si I’élément
appartient a une surface complete, G ne peut avoir aucune
singularité (réelle); par suite, pour ne pas nous trouver avec
certitude des I'abord dans le cas 1°, nous supposerons que G est
réguliere pour tous r et ¢ réels. Ensuite, il convient de répartir
en deux classes les fonctions réguliéres G en question: a) pour
tout r > 0, on a G 0; b) G posséde des zéros (réels) avec
r > 0. La signification géométrique des zéros de G est connue:
ce sont les points conjugués de a. Il est maintenant tres facile
de prouver que, dans U'hypothése a), se présente toujours le cas 20,
jamais Uun des cas 1° ou 3°. Notre question reste difficile et
intéressante, lorsque I’hypothése b) est réalisée; voici le fait
connu le plus important: chacun des cas 1°, 20, 3° peut se pré-
senter ; en particulier, il peut donc arriver, méme si G est réguliére
dans tout le domaine réel, que U'élément K ne puisse pas étre pro-
longé en une surface compléte; cela me semble indiquer que
notre probléme géométrique du prolongement n’est pas réduc-
tible sans autre a un prolongement purement analytique. Sur la
question de savoir & quoi I’on peut reconnaitre lequel des trois
cas se présente, on n’a jusqu’ici que ce résultat incomplet: si
a tout ¢ correspond un r positif, tel que G s’annule, alors le cas 2°
ne se présente certatnement pas. Je considére qu’un probléme
important et intéressant consiste & poursuivre ces recherches de
M. Rinow.

Il reste encore & examiner dans quelle mesure les théorémes
discutés jusqu’ici peuvent étre étendus aux variétés a plusieurs
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dimensions; pour la physique aussi, il y aurait peut-étre intérét
& savoir ce qu'on peut dire sur la structure topologique d’une
variété a trois ou quatre dimensions lorsqu’on connait ses pro-
priétés métriques locales.

Il faut dire tout d’abord, au sujet des «formes spatiales »
euclidiennes et non euclidiennes, c’est-a-dire des espaces a
courbure constante, que les théorémes A et C formulés ci-dessus
sont encore valables pour plus de deux dimensions, avec une
petite modification du théoréme C: pour un nombre impair de
dimensions, outre les espaces sphérique et projectif, d’autres
varietés peuvent encore se présenter comme formes spatiales
a courbure positive; mais ces variétés sont aussi toutes fermées,
ce qui est l'essentiel pour le théoreme (. (1I1I). Par contre, le
théoréeme B n’a été jusqu’ici étendu au cas de plusieurs dimen-
sions que d’une maniére incompléte; a la base des essais d’une
telle extension, on posera cette question: peut-on faire d’une
méme variété fermée ¢ n dimensions, en introduisant deuxr meétri-
ques différentes, deux formes spatiales & courbures de signes diffé-
rents 2 On ne sait jusqu’a présent que ceci: st n est pair, la
réponse est négative (VIII); par contre, lorsque le nombre n des
dimensions est impair, on ne sait pas s’il peut arriver qu’une
méme variété puisse se présenter a la fois comme forme spatiale
euclidienne et comme forme spatiale hvperbolique. (est 1& un
probléeme intéressant, qui méne a I’étude des groupes de dépla-
cements non euclidiens *. Pour » pair, il subsiste d’ailleurs encore
dans le cas » > 2 un lien important entre le signe de la cour-
bure et celui de la caractéristique eulérienne de la variété
(VIII).

On n’a pas encore recherché si le théoréme de BonNET,
sur la propriété qu’ont les surfaces a courbure positive d’étre
fermées, peut étre généralisé au cas de plusieurs dimensions?, et

1 MM. SEIFERT et THRELFALL & Dresde m’ont communiqué récemment qu’on doit
répondre par la négative & la question ci-dessus, pour toutes les valeurs de n. Leur
démonstration est trés courte: elle utilise des propri¢tés simples des mouvements
hyperboliques, et rameéne la question & un théoréme important de M. BIEBERBACH
sur les groupes de mouvements euclidiens ( Math. Annalen, 70) [ Nole additionnelle.]

2 Dans la discussion, M. GoNSETH a rendu attentif & ’existence, dans cette direction,
de quelques nouveaux théorémes de M. CARTAN; les expaces é’, dont il s’agit, occupent
une place intermédiaire entre les espaces & courbure constante et ceux dont la courbure
est quelconque (IX).
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I'extension du théoréme de la curvatura integra n’a réussi que
dans deux cas trés particuliers. Je viens justement de vous
exposer I'un d’eux: c'est le cas ol la courbure est constante; la
curyatura tntegra est alors essentiellement le colume de la forme
spatiale, et c¢’est sur la considération de ce volume que repose le
théoréme sur les signes de la courbure et de la caractéristique,
auquel on vient de faire allusion, théoreme qui entraine I’ex-
tension de B aux nombres pairs de dimensions (VIII). L autre
cas particulier ou le théoréeme de la curvatura integra peut étre
étendu aux variétés a n dimensions se présente lorsque Ies
variétés sont des hypersurfaces situées dans Uespace euclidien a
n + 1 dimenstons ; pour n pair, on a alors ce théoréme: la curvatura
integra est égale au produit de la demi-caractéristique de la variété
par Uétendue superficielle de la sphére unité ¢ n dimensions —
tout comme pour n = 2; la courbure de I’hypersurface doit étre
définie ici suivant Gauvss, au moyen de lareprésentation sphérique
par les normales. Si n est impair, cette affirmation n’est en général
pas exacte, circonstance qui souléve tout naturellement de nou-
velles questions (X). Qu’adviendra-t-il de la curvatura integra
d’une variété a plusieurs dimensions qui ne rentre dans aucun
des deux cas examinés ? (e me semble étre un probléme particu-
litrement important et intéressant, d’ailleurs difficile aussi;
s1 I'on songe aux démonstrations habituelles pour deux dimen-
sions, cela devrait revenir & une généralisation de la célébre
formule de Gauss-BoxneT L

Enfin, on n’a pas encore cherché si les théoremes de M. Rinow
peuvent étre étendus a plusieurs dimensions; pour le théoréme
d’unicité en particulier, cela ne doit pourtant guére présenter
de difficultés.
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SUR LES FAMILLES CROISSANTES
DE

SOUS-ENSEMBLES D'’UN ENSEMBLE DENOMBRABLE

PAR

W. Sierpifski (Varsovie).

Une famille F d’ensembles est dite croissante, si de deux
ensembles de la famille F un est toujours une partie aliquote
de ’autre. Une telle famille peut étre ordonnée d’apreés la gran-
deur des ensembles qui la constituent, c’est-a-dire de deux
ensembles de la famille F celui est regardé comme précédent
qui est la partie aliquote de I'autre. A toute famille croissante
d’ensembles correspond ainsi un type d’ordre !.

1 En ce qui concerne les types d’ordre, voir par exemple mon livre Legons sur les
nombres transfinis, chap. VII. Paris, Gauthier-Villars, 1928.
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