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GÉOMÉTRIE INFINITÉSIMALE ET TOPOLOG1E1

PAR

H. Hopf (Zurich).

Le titre de cette conférence ne désigne qu'imparfaitement son

contenu. Car de tous les domaines variés où la géométrie
infinitésimale se rencontre avec la topologie, un seul sera considéré
ici: le problème des rapports entre les propriétés infinitésimales
d'une surfaee, d'une part, et la structure topologique de la surface
entière, d'autre part, ainsi que le problème analogue pour les

variétés à plusieurs dimensions. Il s'agit là de surfaces (ou de

variétés) sans singularités, sur lesquelles une géométrie se trouve
définie d'une manière intrinsèque, au sens de Riemann; les

paramètres et les coefficients de la forme fondamentale sont
supposés admettre un prolongement analytique régulier de

proche en proche. Un tel être géométrique a deux catégories de

propriétés: en premier lieu des propriétés topologiques se

rapportant à la structure globale, par exemple la propriété
d'être ouvert ou fermé, d'avoir tel genre, etc.; en second lieu
des propriétés infinitésimales déterminées par la forme
fondamentale de Riemann, en rapport avec la courbure, l'allure des

lignes géodésiques, etc. On demande: « quels liens y a-t-il entre
les propriétés de ces deux catégories » En fait, il y a bien une
interdépendance et des liens. On peut envisager une question
principale, que nous appellerons« le problème du prolongement »:

étant donné un petit morceau découpé dans une surface, tirer
des propriétés infinitésimales de ce morceau des conclusions

1 Conférence faite à la séance de la Société mathématique suisse tenue à Fribourg le
3 mai 1931, traduite par O. de Rham, Dr ès se. (Lausanne).
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aussi complètes que possible sur la structure topologique de la
surface entière d'où provient ce morceau.

Avant d'entreprendre ces recherches, comme avant toute étude
de géométrie globale, il faut éclaircir le point suivant: « qu'est-ce
qu'une surface entière » En effet, un domaine partiel d'une
surface avec une géométrie infinitésimale sans singularités est

encore une telle surface, mais ces domaines partiels doivent être
naturellement exclus. Il s'est trouvé commode d'adopter la
définition suivante: « une surface est dite complète, si, sur tout
rayon géodésique, on peut reporter à partir de son origine une
longueur quelconque », et de mettre ces surfaces « complètes »

à la base de nos recherches ; on démontre qu'une surface est

complète si elle admet le théorème de Bolzano-Weierstrass et
dans ce cas seulement, c'est-à-dire si, sur elle, tout ensemble
fermé et borné est compact ; cette notion de « complet » se

confond d'ailleurs avec celle de Fréchet-Hausdorff. Voici
une propriété importante des surfaces complètes: entre deux
points, il y a toujours un chemin (géodésique) de longueur
minimale (I) L Dans la suite, toutes les surfaces seront
supposées complètes.

Notre position du problème remonte à Felix Klein; il posa
et résolut la plus simple de ces questions; il étudia en effet les

surfaces ci courbure constante, qu'il dénomma « formes spatiales »

euclidiennes et non-euclidiennes. Les principaux résultats de ce

« problème spatial de Clifford-Klein » consistent en les trois
théorèmes suivants :

A. Il n'existe essentiellement qu'une surface simplement connexe

ayant une courbure constante donnée; (sphère, plan euclidien,
plan hyperbolique).

B. Parmi toutes les surfaces orientables fermées de genre p, seules

les formes spatiales de genre p — 0 peuvent avoir une courbure

positive, seules celles de genre p — 1 peuvent avoir une courbure

nulle et seules celles de genre p > 1 peuvent avoir une courbure

négative; en d'autres termes: la courbure d'une forme spatiale
a le même signe que la caractéristique eulérienne 2 — 2p de la

surface.

1 Les chiffres romains renvoient à l'index bibliographique, à la Ou du rapport.
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G. Une forme spatiale à courbure positive est toujours fermée

(homéomorphe en effet à la sphère ou au plan project if) (II, III,
IV).

Nous demanderons maintenant dans quelle mesure ces

théorèmes, qui constituent évidemment une importante contribution
à notre programme de recherches, peuvent être étendus au
cas des surfaces à courbure non constante.

Commençons par le théorème C. Est-ce que toute surface à

courbure positive doit être fermée Non, car, par exemple, parla

rotation d'une parabole autour de son axe, on obtient une
surface (complète) ouverte, à courbure partout positive. Pourtant

le théorème C peut être généralisé; nous n'avons qu'à
supposer la courbure partout supérieure à une constante positive;
un raisonnement de Bonnet (V), modifié en utilisant le fait que
la surface est complète, nous apprend qu'elle est fermée (I).

On peut même dire plus: comme dans le cas de courbure
positive constante, la surface doit être encore homéomorphe à

la sphère ou au plan projectif. Cela résulte immédiatement du
théorème connu de la curvatura intégra d'une surface fermée,
qui, en se bornant aux surfaces orientables, s'énonce ainsi:
V intégrale de la courbure de Gauss, étendue à une surface fermée
de genre p, vaut 4 tt (i — p). Ce théorème étend aux surfaces à

courbure non constante l'affirmation contenue dans le théorème
B; au lieu de la courbure auparavant constante, c'est la valeur
moyenne de la courbure qui intervient maintenant; elle a le
même signe que la caractéristique de la surface (VI).

Ces deux théorèmes — tant celui qui remonte à Bonnet que
celui de la curvatura intégra — fournissent d'importants
renseignements sur la structure de la surface, en admettant qu'on
connaisse ses propriétés infinitésimales en chaque point; mais
le « problème du prolongement », formulé au début, exige qu'on
tire de tels renseignements de la connaissance des propriétés
infinitésimales dans le voisinage d\m seul point. Dans cette
direction, de très importants et réjouissants progrès ont été
réalisés tout récemment par M. Rinow; je vais en rendre compte
maintenant (VII).

Si un morceau » ou « élément » de surface peut être prolongé,
d'une manière ou d'une autre, en une surface complète F, il peut
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aussi être prolongé en une surface simplement connexe, à savoir
la surface universelle de recouvrement de F ; les connaissances
acquises à l'occasion du problème spatial de Clifford-Klein
suggèrent l'idée de rechercher en premier lieu ces prolongements
simplement connexes d'un élément. Le « théorème d'unicité »

démontré par M. Rinow, dans lequel on peut voir une généralisation

du théorème A formulé ci-dessus, s'énonce ainsi: Un élément
de surface ne peut être prolongé qu'en au plus une surface simplement

connexe. D'ailleurs, une surface simplement connexe est
ou bien fermée et homéomorphe à la sphère, ou bien ouverte et

homéomorphe au plan; il en résulte qu'un morceau de surface,

pourvu seulement qu'il soit prolongeable en une surface complète
ou, dans les termes employés ci-dessus, provienne d'une surface

complète, porte a priori en lui-même la propriété d'être ouverte
ou fermée dont jouit la surface universelle de recouvrement de

ses prolongements complets. Cela implique par exemple le fait
suivant: un morceau d'une surface fermée de genre 0 ne peut
jamais être isométrique à un morceau d'une surface ouverte ou
d'une surface fermée de genre supérieur. Avec cela, Je théorème
B est en partie généralisé au cas des surfaces fermées
(orientables); la question surgit de savoir si la généralisation de B

peut être poussée jusqu'à l'énoncé suivant: un morceau d'une

surface fermée orientable de genre 1 n'est jamais isométrique à un

morceau d'une surface fermée de genre p > 1. En ce qui concerne
la possibilité de démontrer ce théorème, qui devrait conduire —

par analogie avec les méthodes éprouvées sur le problème des

formes spatiales — à l'étude du groupe d'isométrie d'une surface

simplement connexe, je suis assez optimiste 1. Ces théorèmes
constituent évidemment une puissante contribution à la solution
de notre problème.

Si nous nous bornons aux prolongements simplement connexes
d'un élément, le théorème d'unicité de M. Binow conduit
nécessairement à la remarque et à la question suivantes. En

élément E étant donné, il y a trois possibilités qui s'excluent
mutuellement: 1° E ne peut pas être prolongé en une surface

complète; 2° E peut être prolongé en une surface du type topo-

1 Depuis lors, le théorème a été démontré par M. Rinow, en collaboration avec
l'auteur (XI). [Note additionnelle.)
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logique du plan; 3° E peut être prolongé en une surface du type
topologique de la sphère. Comment peut-on reconnaître, sur
Vélément E, lequel des trois cas se présente Nous admettrons
ici que nous sommes en état de surmonter toutes les difficultés
analytiques qui peuvent intervenir dans l'étude de la métrique
de E. Bien que nous soyons encore fort éloignés d'une solution
quelque peu complète de ce problème, les contributions fournies
ici aussi par M. Rinow sont cependant assez intéressantes:

Concevons l'élément E comme le voisinage d'un point a d'une
surface, sur laquelle nous introduisons des coordonnées polaires
géodésiques r et f; l'élément linéaire prend alors la forme
ds2 dr2 + G (r, 9) d?2, où G remplit quelques conditions
simples connues. Tout d'abord, il est aisé de voir que, si l'élément
appartient à une surface complète, G ne peut avoir aucune
singularité (réelle); par suite, pour ne pas nous trouver avec
certitude dès l'abord dans le cas 1°, nous supposerons que G est

régulière pour tous r et 9 réels. Ensuite, il convient de répartir
en deux classes les fonctions régulières G en question: a) pour
tout r>0, on a G^O; b) G possède des zéros (réels) avec
r > 0. La signification géométrique des zéros de G est connue:
ce sont les points conjugués de a. Il est maintenant très facile
de prouver que, dans Vhypothèse a), se présente toujours h cas 2°,

jamais l'un des cas 1° ou 3°. Notre question reste difficile et
intéressante, lorsque l'hypothèse b) est réalisée; voici le fait
connu le plus important: chacun des cas 1°, 2°, 3° peut se

présenter; en particulier, il peut donc arriver, même si G est régulière
dans tout le domaine réel, que l'élément E ne puisse pas être
prolongé en une surface complète; cela me semble indiquer que
notre problème géométrique du prolongement n'est pas réductible

sans autre à un prolongement purement analytique. Sur la
question de savoir à quoi l'on peut reconnaître lequel des trois
cas se présente, on n'a jusqu'ici que ce résultat incomplet: si
à tout 9 correspond un r positif, tel que G s'annule, alors le cas 2°

ne se présente certainement pas. Je considère qu'un problème
important et intéressant consiste à poursuivre ces recherches de
M. Rinow.

Il reste encore à examiner dans quelle mesure les théorèmes
discutés jusqu'ici peuvent être étendus aux variétés à plusieurs
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dimensions; pour la physique aussi, il y aurait peut-être intérêt
à savoir ce qu'on peut dire sur la structure topologique d'une
variété à trois ou quatre dimensions lorsqu'on connaît ses

propriétés métriques locales.

Il faut dire tout d'abord, au sujet des t formes spatiales »

euclidiennes et non euclidiennes, c'est-à-dire des espaces à

courbure constante, que les théorèmes A et C formulés ci-dessus
sont encore valables pour plus de deux dimensions, avec une
petite modification du théorème C: pour un nombre impair de

dimensions, outre les espaces sphérique et projectif, d'autres
variétés peuvent encore se présenter comme formes spatiales
à courbure positive; mais ces variétés sont aussi toutes fermées,
ce qui est l'essentiel pour le théorème C (III). Par contre, le
théorème B n'a été jusqu'ici étendu au cas de plusieurs dimensions

que d'une manière incomplète; à la base des essais d'une
telle extension, on posera cette question: peut-on faire d'une
même variété fermée à n dimensions, en introduisant deux métriques

différentes, deux formes spatiales à courbures de signes différents

On ne sait jusqu'à présent que ceci: si n est pair, la

réponse est négative (VIII); par contre, lorsque le nombre n des

dimensions est impair, on ne sait pas s'il peut arriver qu'une
même variété puisse se présenter à la fois comme forme spatiale
euclidienne et comme forme spatiale hyperbolique. C'est là un
problème intéressant, qui mène à l'étude des groupes de dépla
cements non euclidiens h Pour n pair, il subsiste d'ailleurs encore
dans le cas n > 2 un lien important entre le signe de la courbure

et celui de la caractéristique eulérienne de la variété

(VIII).
On n'a pas encore recherché si le théorème de Bonnet,

sur la propriété qu'ont les surfaces à courbure positive d'être
fermées, peut être généralisé au cas de plusieurs dimensions2, et

1 MM. Seifert et Threlfall à Dresde m'ont communiqué récemment qu'on doit
répondre par la négative à la question ci-dessus, pour toutes les valeurs de n. Leur
démonstration est très courte: elle utilise des propriétés simples des mouvements
hyperboliques, et ramène la question à un théorème important de M. Bieberbach
sur les groupes de mouvements euclidiens Maih. Annalen, 70) fNote additionnelle.]

2 Dans la discussion, M. Gonsetii a rendu attentif à l'existence, dans cette direction,
de quelques nouveaux théorèmes de M. Cartan; les expaces CP, dont il s'agit, occupent
une place intermédiaire entre les espaces à courbure constante et ceux dont la courbure
est quelconque (IX).



GÉOMÉTRIE INFINITÉSIMALE ET TOPOLOGIE 239

Fextension du théorème de la curvatura intégra n'a réussi que
dans deux cas très particuliers. Je viens justement de vous

exposer l'un d'eux: c'est le cas où la courbure est constante; la
curvatura intégra est alors essentiellement le volume de la forme

spatiale, et c'est sur la considération de ce volume que repose le

théorème sur les signes de la courbure et de la caractéristique,
auquel on vient de faire allusion, théorème qui entraîne
l'extension de B aux nombres pairs de dimensions (VIII). L'autre
cas particulier où le théorème de la curvatura intégra peut être
étendu aux variétés à n dimensions se présente lorsque les

variétés sont des hypersurfaces situées dans l'espace euclidien ci

n + 1 dimensions ; pour n pair, on a alors ce théorème: la curvatura
intégra est égale au produit de la demi-caractéristique de la variété

par l'étendue superficielle de la sphère unité à n dimensions —
tout comme pour n ------ 2; la courbure de l'hvpersurface doit être
définie ici suivant Gauss, au moyen de la représentation sphérique

par les normales. Si n est impair, cette affirmation n'est en général
pas exacte, circonstance qui soulève tout naturellement de
nouvelles questions (X). Qu'adviendra-t-il de la curvatura intégra
d'une variété à plusieurs dimensions qui ne rentre dans aucun
des deux cas examinés Ce me semble être un problème
particulièrement important et intéressant, d'ailleurs difficile aussi;
si l'on songe aux démonstrations habituelles pour deux dimensions,

cela devrait revenir à une généralisation de la célèbre
formule de Gauss-Bonnet 1.

Enfin, on n'a pas encore cherché si les théorèmes de M. Rinow
peuvent être étendus à plusieurs dimensions; pour le théorème
d'unicité en particulier, cela ne doit pourtant guère présenter
de difficultés.
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SUR LES FAMILLES CROISSANTES

DE

SOUS-ENSEMBLES D'UN ENSEMBLE DÉNOMBRABLE

PAR

W. Sierpinski (Varsovie).

Une famille F d'ensembles est dite croissante, si de deux
ensembles de la famille F un est toujours une partie aliquote
de l'autre. Une telle famille peut être ordonnée d'après la grandeur

des ensembles qui la constituent, c'est-à-dire de deux
ensembles de la famille F celui est regardé comme précédent

qui est la partie aliquote de l'autre. A toute famille croissante

d'ensembles correspond ainsi un type d'ordre L

i En ce qui concerne les types d'ordre, voir par exemple mon livre Leçons sur les

nombres trans finis, chap. VII. Paris, Gauthier-Villars, 1928.
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