Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 30 (1931)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: SUR CERTAINS VOLUMES ALGEBRIQUES
Autor: Papillon, Pierre

Kapitel: 3. — Volumes a parois conoidales.

DOI: https://doi.org/10.5169/seals-23889

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-23889
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

220 PIERRE PAPILLON

De la une association possible de méridiennes fort différentes;

nous n’insisterons pas sur la détermination de ces méridiennes
assoclées.

3. — VOLUMES A PAROIS CONOIDALES.

§ 15. — Expression générale. — Substituons enfin au cylindre
un conoide droit et calculons 2V,

Soient, ’axe conoidal étant confondu avec z'z, p, M;, m les

points de z'z, de 2, et de ¢ sur une méme paralléle au plan 2Oy

.M,

<

O

1 ’
‘U‘m

a, B, 7 les cosinus directeurs de la normale en m & (s).

Il vient
TV, fo%(ilpi)(aanﬁy)dc ,

aved

Flo,z, ;v z) = 0.

Si on ordonne d’ailleurs F par rapport aux puissances
décroissantes de XY,

F

il

Ag(Xy Y, Z) + Ay + -

A; étant homogeéne et de degré 1 en XY, il vient

2
- 1 Aq—i Aq~2
P q ) q

§ 16. — Posons



VOLUMES ALGEBRIQUES 221

appliquons & l'intégrale double la formule de Stokes

/ [ [Nz + By ds = [ Pdz + Qdy
G C

S

/ avec

oP dQ °Q oP

b—z——f\y ﬁ——x\x é—x—-—ay
Introduisant la fonction K, homogéne et de degré — 2 par

rapport & xy, telle que
L K

0%

nous obtenons
P

Q

y[K + Qz, y)]
— z[K + Q(z, y)]

I

i

() étant une fonction arbitraire, homogéne et de degré — 2;
deés lors

L
TV, = 2-0/“{1\ +Ql(y dw — zdy)

Si donc ¢ appartient & une surface (s;) d’équation

Kz, y, 2 + Q, y =h.

VY .
_\i_hca,

la somme des volumes équivaut au volume cylindrique de
hauteur 2 et dont la base est la projection de o sur 20y.
Lorsqu’en particulier (S) est un cylindre & génératrices pa-
ralléles a z'z,
K = Az

et les surfaces (s;) ont pour équation
Az +Q = h,

car A ne renferme pas la variable z.

A toute surface algébrique (S) peut éire attachée une famille
de surfaces (s,) telles qu’un contour ¢ y tracé donne un conoide
pour lequel la somme des volumes limités aux différentes cloisons
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2. quw'il découpe sur (S) soit équivalente au volume d’un cylindre
droit de hauteur constante ayant pour base la projection de =
sur le plan directeur du conoide.

Ces surfaces ne dépendent que des trois premiers termes de
Péquation de (S), ordonnée suivant les puissances décroissantes

de XY:
Ag(XL Y, Z) + A (XL Y, Z) 4+ Ay =0

§ 17. — Surfaces (s,) attachées au cylindre circulaire
(X —@)? + Y?— R =0 |
Dans le cas actuel
Aq = xz? + y?, Aq_1 = — 2azx , Aq_2 = q® — R2,

et

4 a2 22 a! — R?2

Wy Pty

L

Péquation générale de (s,) s’écrit, tous calculs faits,
(2 + 9 — T [(R* + a)a? + (R® — a)y’] + Oz, y) = 0,

® étant homogene et de degré + 2.
En supposant nulle cette derniére fonction, s’obtient la surface
(S;) particuliére

(22 + y?)? *E}L—%[(Rz + a?)a® + (R*— ag)yz:] =0,

ou, en coordonnées cylindriques

h r?
T 242 cos 26 — R2

Or, la quartique bicirculaire
(x* + y*)? — (Az? + By®) = 0

est la podaire centrale de la conique

2

K

y*
L2 — 1 =0 :
B

>|
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(s;) est donc le lieu des podaires centrales des coniques

2 2

x

I + — 1 =0
z 9 9 3 9 9
sections du paraboloide
0. — & y
T OREL g2 T }ij—~ a®
o h

par les plans normaux & son axe.

1. R > a (axe conoidal intérieur au cylindre).

Le paraboloide est elliptique, les coniques de section sont des
ellipses.

Les deux formes des podaires sount reproduites dans les
figures 3 et 4.

Q oc

fqu(GLR4CL/3 fio. & (av3 =R)

2. R = a (axe conoidal génératrice du cylindre).

Il n’y a plus qu’une seule cloison 2; ce cas doit donc étre
écarté.

3. R < a (axe conoidal extérieur au cylindre).

Le paraboloide est hyperbolique, les coniques de section sont
des hyperboles; les podaires ont un point double au centre de
ces hyperboles.

Lorsque, dans le premier cas, a est nul — ’axe conoidal est celui
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du cylindre et les deux volumes conoidaux partiels sont équiva-
lents — la surface (s;) se réduit au paraboloide de révolution

RZ
x2+y2—2—?z~z::0;

une vérification partielle serait tres aisée.

§ 18. Surfaces (s,) attachées a la sphére.

(N —a)? + Y2 £ 72— R — 0 .
Ici
ha®x® 2z2+ aQ—R?

A= T
(@ + )’ 7+

et les surfaces (s;) ont pour équation, calculs effectués,

8lhata? — 2(a® + y¥) (@ — R ]z — 22°(2* + )
— 3h{z* + ¥ + Oz, y) = 0 ;
® étant homogene et de degré 2.

En supposant nulle cette fonction, on obtient la surface
particuliere (s;) d’équation

22% (22 + ¥ + 3h(2® + y¥)? — 62[(R® + a%)a® 4 (R — aYy?] = 0 .

Eerivons-la

2 : 2
(x* + y*)? — f[(f{? + & — %)x" -+ <R2—— a’® — %)y{l =0 ;

(s;) apparait comme le lieu des podaires centrales des coniques,
sections paralleles & xOy de la surface

22 2
+ Y

z 2 2_5._“) 2 ny 2_2"_2 -
Q;L—(R + a 3> 2h (R a 3>

Remarquons que ces coniques ont pour lieux de leurs sommets
les paraboles semi-cubiques

z 2 z?
s : — 922 (Re S ——
y = 0 = 2 (R 4 @Y — o
et
_ s 9% py_ o _ 28
z =0 y' = 2. (R — af) — o
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dans le cas des sections elliptiques (R < a), ceci peut servir de
définition a ces anti-podaires.

§ 19. — Reprenons 'assertion évidente qui permet d’associer
diverses surfaces (S): toute modification des A;, donc de (S),
qui n’altére point A n’altere point 2V,.

Nous donnerons deux exemples.

1. Cylindres associés au cylindre circulaire

(XN — )2+ Y2 — g2 =0 .

Nous avons trouvé

A1 o? . FP—a?

"\ = — — s a . o .
— (xz +_ y2)2 xl + yz

Substituons a la base circulaire ’ovale de Cassini
(XN — 0+ Y F (X —0)°—a®Y2 =0
ou le limacon de Pascal
(X =02+ v — 2(X — )T — 0 [(XN = 1)? + Y*] = 0 ;

il vient respectivement

A\ _ '16l3{1,‘2 9 2l2(3x2 _11_ yQ) :F b:'xz _ a2y2
— @y T z* + y?
et
\ — 16(a + )%2* . 2032 + y*) + 4afa + 20)2® — b2 (x® + y?)
R e '

Dans ces trois cas, -\ est donc de la forme

2 Az? + Bys
L@+ )

et les cylindres peuvent étre convenablement associés; la surface
, ’ L
(s,) attachée & cet ensemble

(@ + y)? — 27 (Aa* + ByY) = 0

L’Enseignement mathém., 30c année, 1931, 15
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est le lieu des podaires centrales des sections normales & l'axe
du paraboloide

2 9

BN

2. Surfaces de révolution associées a la sphére

(N— D24 Y2 L 22— g2 = 0 .

Nous avons trouvé

. 412 2 ‘z,z—}—lz——a?’
A= g — 2 5 3
(@* + ¥7) z’ + y

Substituons & la méridienne circulaire du plan Oy une conique
ou un ovale de Cassini d’axe paralléle a z'z; nous obtenons les
surfaces de révolution

al(X — )2 + Y| 4 bZ2—1 =0

et
(N =02+ Y2+ 22 F p[(N— )2+ Y] — a®Z = 0

dont ’axe est paralléle & I’axe conoidal. Il vient respectivement

= Pt galf A b — 1
T @+ oY) z + y?
et
A = 1612 22 B 02-22(3%2 + ) T b2 (x? + y) + 2Z2(xz + y?) |
CE@ e z* 4y

Dans les trois cas A est done de la forme

Ax? 4+ By? 4+ Cz%(2® + y?
(@* + y°)*

2.

 E

les surfaces peuvent étre convenablement associées; la surface
(s;) attachée a cet ensemble,.

C
@4y —2 D Y =2 ) =0

ou
@ + ) — 22 [(A + D)ar + (B + Dayy’] = 0
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est le lieu des podaires centrales des sections normales a ’axe
de la surface cubique

Ces coniques ont pour lieu des sommets les paraboles semi-
cubiques
y = 0 22 = 27 (A 4 Dg?)

(B + Dz?) ;

dans les cas des sections elliptiques ceci peut servir de définition
aux anti-podaires car les deux paraboles sont réelles.

§ 20. — Reprenons 'expression (7) et supposons ¢ tracée sur
la surface (s,) d’équation

ou

1l vient

les volumes V, ont pour moyenne arithmétique le volume conoidal
de méme nature que limite la cloison o.

Lorsqu’en particulier (S) est un cylindre dont les génératrices
sont paralléles a z'z, (s,) est un cylindre; le degré de sa directrice
plane est 2g.

§ 21. — Volume cylindro-conoidal. — Prenons pour équation
du cylindre circulaire (S)

F=(XN—a?+ Y2 —R =0,
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En cette hypothése

A, =2+ oy
Aq_1 = — 2ax
Aq_2 = a2 — R2 .

(s9) @ pour équation
(2 + y2)2 — [(Ra + a?)a? + (R — a‘-’)yﬂ] =0 ;

la directrice de ce cylindre est la podaire centrale de la conique

2 y?
R? + @2 + Rz — o2

~

fig:s (R ~a) iy 6 (R <ca)

ellipse ou hyperbole selon que R est supérieur ou inférieur a aq,
c’est-a-dire que l’axe conoidal est intérieur ou extérieur au
cylindre donné.

§ 22. — Volume sphéro-conoidal. — Dans le cas de la sphére
(X — a)? + Y2 4 Z2 — R2 = 0

on obtiendra pour (s,) la surface d’équation

(@ + ¥ (@ + gt + 2) — (R + a)ar — (Rt — @Yy = 0 .

Bl e A i i et L o i e

Fr
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Sous la forme
(22 + y2)2 — [(R3 4@t — )2 + (R2— a2 — zz)yz] — 0

nous la reconnaissons comme le lieu des podaires centrales des
sections, normales & 1’axe conoidal, de la surface
< + e —1=0.

2

R? 4 a? — 22 R — a2 — 2

Ces sections sont d’ailleurs des coniques a centre dont les
sommets décrivent les circonférences

y = 0 z? 4+ z R? + @

x = 0 y: + 22 = R? — a? ;

|

lorsque R est supérieur & a ces deux courbes sont réelles et la
propriété envisagée peut servir de définition aux anti-podaires.
§ 23. — Prenons encore les cyclides d’équation

(X2 4+ Y2 + Z2)2 — 4h(ANZ ++ BY: 4 CZ2)
— 4h(aX + bY + ¢Z) £ 1 = 0 |

I’axe conoidal étant toujours z'Oz.
Dans le cas actuel

\(1 — (x‘Z + y‘z): ,
Ny =0,
N = 272(2* 4 y?) — h(Ax? + By?) .

Iéquation de (s,) s’écrit

(@* 4+ ¥°)* + 2 (2° + y?) — 2h(A2? + By?) = 0
ou
(@2 + y?) (x® + y* + 2°) — 2h(A2® + By?) = 0 ;

¢’est la surface trouvée au § 21, sauf & poser

QAh:RZ—;—a,g,

‘..)Hh = R‘;’_,a'Z .
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Ce résultat lie donc, une fois de plus, sphéres et cyclides;
1l se présentait un résultat analogue dans ’étude des aires ou des
volumes cylindriques et coniques 1.

§ 24. — Considérons le cas des surfaces (S) d’équation
1&2 - ‘Al -+ 1’\0 = 0,

dont les sections normales & z'z sont rencontrées en deux points
par tout plan contenant z’z. Un conoide y détermine deux nappes,

et
. 1 ;
=V = “z‘ff(.’«i + o) (22 + By)ds

donne P’expression du noyau conoidal que limitent 2, et 2, dans
le seul cas ou les deux nappes se trouvent de part et d’autre de
Paxe z'z: axe conoidal intérieur au cylindre ou coupant la sphére,
dans les cas précédents.

Dans le cas contraire, le volume du méme noyau a pour
expression

P

(0 4 By) d

¢’est-a-dire

= 5 / /’IALII//_\V —4A :(m+(3y)d67 (6)

f

|

Si done @ est tracée sur la surface (s,) d’équation
4 2 4
A2 + ’1/\21\11\0 — A1 =

le volume du noyau équivaut a celui du conoide que limite 7.

§ 25. — Prenons 'exemple du cylindre circulaire

(N —a)? 4+ Y2 — K2 =0 .

1 A. BuHL, Annales de la Facullé de Toulouse, t. VII, 5™¢ mémoire, paézes 198-199.
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L’équation de la surface (s,) s’écrit, tous calculs faits 1,

0 ;

I

(z2 + y2)t — lGa?xﬁ[R‘é’x? + (R2 — a‘l)y‘z]

il s’agit d’un cylindre & directrice du huitiéme degré avec point
quadruple a l'origine.

1. R < a(axe conoidal extérieur au cylindre; noyau véritable)
(fig. 7).

ﬁca.'(

Les tangentes au point multiple sont les tangentes & la cir-
conférence directrice; d’autre part 'axe Ox est rencontré au
point d’abscisse 24/Re, intérieur & la circonférence précédente.

2. R > a (axe conoidal intérieur au cylindre) (fig. 8).

Les tangentes précédentes n’existent plus; le point sur Oz,
toujours intérieur a ladite circonférence, subsiste.

Dans les figures 7 et 8 les demi-courbes seules ont été dessinées.

§ 26. — Un résultat simple s’obtient encore en considérant un
cylindre dont la directrice est le limacon de Pascal

(X2 4+ Y2 — 2aX)? — b2(X2 + Y2) = 0 .

I’axe conoidal étant ici la ligne des points doubles z'z.

1 En coordonnées polaires

64 = 16a2 cos? § (R2-— a2 sin2 @) .
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Avec
Az = (xz - y2)2 ,
A1 = — bdax(2? + v?) ,
Ay = hatx — b (2* + 3?)

s’obtient Péquation ! de (s,):
(22 4+ y?)® — 64a2 22 = 0 .

Ce cylindre offre une directrice sextique tricirculaire, dont la
forme rappelle celle de la figure 2 et se trouve entiérement
comprise a l'intérieur du limagon générateur.

-
C

§ 27. — Enfin, dans le cas de la sphere

F;3.8

(N —a)? + Y2 4 Z2 — R = 0,
Péquation de (s,) est la suivante:
(22 + y2)* — '16a2m2[(R2 — )22 + (R? — a? — z‘-’)y2] — 0 .

Cette écriture fait prévoir la forme des sections paralléles a
20y, donc celle de la surface, lieu de ces sections.

Septembre 1930.

1 En coordonnées polaires
2=+ 16abcosh .
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