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220 PIERRE PAPILLON

De là une association possible de méridiennes fort différentes ;

nous n'insisterons pas sur la détermination de ces méridiennes
associées.

3. — Volumes a parois conoïdales.

§ 15. — Expression générale. — Substituons enfin au cylindre
un conoïde droit et calculons ^Vi.

Soient, l'axe conoïdal étant confondu avec z'z, fx, Mi? m les

points de z'z, de et de o* sur une même parallèle au plan xOy

oc, /S, y les cosinus directeurs de la normale en m à (s).

Il vient

2Vi jJ^(2Pi)(a+̂ h)d° •

\ avec

F(Pi«» PiV a) 0

Si l'on ordonne d'ailleurs F par rapport aux puissances
décroissantes de XY,

F Afl(Xr Y, Z) + Aq_i +

Ai étant homogène et de degré i en XY, il vient

(5)

§ 16. — Posons

A! A
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appliquons à l'intégrale double la formule de Stokes

Ç Ç A(zx 4- ßy) dv Ç Pdix + Qdy
^ <T C

\ avec

f ôP _ &Q _ _ ö_Q _ ôP
^

hz.
1

kx î>y

Introduisant la fonction K, homogène et de degré — 2 par
rapport à xy, telle que

A —ds

nous obtenons
P y[K + Q(X, y)}

Q — x[K + Q(a; 2/)]

il étant une fonction arbitraire, homogène et de degré —2;
dès lors

- Y. i-f fK + Q] (y dx — x dy)

Si donc g appartient à une surface (Sj) d'équation

K (x y z) -f* il (x y) h

ÏV. h,% ;

la somme des volumes équivaut au volume cylindrique de

hauteur h et dont la base est la projection de g sur xOy.
Lorsqu'en particulier (S) est un cylindre à génératrices

parallèles à z*z,
K A*

et les surfaces (s^ ont pour équation

Az -f il — h

car A ne renferme pas la variable z.

A toute surface algébrique (S) peut être attachée une famille
de surfaces (s^ telles qu'un contour g y tracé donne un conoïde

pour lequel la somme des volumes limités aux différentes cloisons



222 PIERRE PAPILLON

2i qu'il découpe sur (S) soit équivalente au volume d'un cylindre
droit de hauteur constante ayant pour base la projection de

sur le plan directeur du conoïde.
Ces surfaces ne dépendent que des trois premiers termes de

l'équation de (S), ordonnée suivant les puissances décroissantes
de XY:

Aa(x Y Z) + Aq_{ (X Y Z) + + A0 » 0

§ 17. — Surfaces (Sj) attachées au cylindre circulaire

(X — a)2 + Y2 — R2 0

Dans le cas actuel

\ x2 + y2 Aq_{ — 2ax Aq_2 a2 — H2
f

et
4fl2x2 a2 — H2

~ (r* + r)2 £2 + y2

l'équation générale de (Sj) s'écrit, tous calculs faits,

(x2 + y2)2 — ^ [(R2 + a2)x2 + (R2 — a2)y2~\ + A (x y) 0

0 étant homogène et de degré + 2.

En supposant nulle cette dernière fonction, s'obtient la surface

(/) particulière

(X2 + yY_[(R2 + a2)*2 + (R. _ 0

ou, en coordonnées cylindriques

hr2
* ~ 2 2 6 — R2

'

Or, la quartique bicirculaire

(*' + yT - (A*2 + '¥) 0

est la podaire centrale de la conique
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(s est donc le lieu des podaires centrales des coniques

ar.
_j y——-— 1 0

2j(R»+ #} 2^(Rs- a*)

sections du paraboloïde

— R2 + a2 -T H2 _ a2

h h

par les plans normaux à son axe.
1. R > a (axe conoïdal intérieur au cylindre).
Le paraboloïde est elliptique, les coniques de section sont des

ellipses.
Les deux formes des podaires sont reproduites dans les

figures 3 et 4.

2. R a (axe conoïdal génératrice du cylindre).
Il n'y a plus qu'une seule cloison 2; ce cas doit donc être

écarté.
3. R < a (axe conoïdal extérieur au cylindre).
Le paraboloïde est hyperbolique, les coniques de section sont

des hyperboles; les podaires ont un point double au centre de

ces hyperboles.
Lorsque, dans le premier cas, a est nul — l'axe conoïdal est celui
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du cylindre et les deux volumes conoïdaux partiels sont équivalents

— la surface (/) se réduit au paraboloïde de révolution

R2
X2 A y2 — 2 — z 0 :

une vérification partielle serait très aisée.

§ 18. Surfaces (Sj) attachées à la sphère.

(X — a)2 + Y2 + Z2 — R2 0

Ici
i 4 a2 x2

2
s2 + a2 — R2

— (x2 + y2)2 x1 + y2

et les surfaces (s-^ ont pour équation, calculs effectués,

3 [4 a2x2 — 2 [x2 + y2) [a2 — R2)]s — 2 z*(x2 + y2)

— 3 h(x2 + y2)2 + (-> (x y) 0 ;

0 étant homogène et de degré 2.

En supposant nulle cette fonction, on obtient la surface

particulière (s') d'équation

2z^(x2 + y2) + 3h(x2 -j- y2)2 — 6z£(R2 -f- a2)x2 + (R2 — a2)£/2] 0
•

Ecrivons-la
2 z

(X2 + y2)2 —
h

RS + a*~ -ïK + (R2 ~ 0

(/) apparaît comme le lieu des podaires centrales des coniques,
sections parallèles à xOy de la surface

y2
-j y

" 1=0.
2KR2 + a2-^) 2KR2-a2-^

Remarquons que ces coniques ont pour lieux de leurs sommets
les paraboles semi-cubiques

2 s2

y 0 «s - 2^.(11« + «»)
3fc

et
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dans le cas des sections elliptiques (R < a), ceci peut servir de

définition à ces anti-podaires.

§ 19. — Reprenons l'assertion évidente qui permet d'associer
diverses surfaces (S): toute modification des Ài7 donc de (S),

qui n'altère point A n'altère point 2 \Y.
Nous donnerons deux exemples.
1. Cylindres associés au cylindre circulaire

(X - I)2 + Y2 — a- 0

Nous avons trouvé

4/2x2
2

^ — 0/2

(x2 + y2)2
'

x2 + y2

Substituons à la base circulaire l'ovale de Cassini

[(X — iy + Y2]2 =F b2(X — ly — a2 Y2 0

ou le limaçon de Pascal

[(X - l)2+ Y2 -2 a(X — l)]2 - 62[(X — iy + Y2] 0 ;

il vient respectivement

^
16/-'x2

2
2/2 (Sx2 -y y2) b2 x2 — a2y2

~ (x2 + y2)2
*

* x* + y2

et

v —
16 (a _ 2

"b y2) + 4a(a + 21) x2 — b2 (x2 + y2)~ (x2 A y2)2
'

x1 + y2

Dans ces trois cas, A est donc de la forme

2
Aie2 + B?/s

(x2 + y2)2

et les cylindres peuvent être convenablement associés; la surface
(/) attachée à cet ensemble

(x2 + y2)2- 2UAx+ V) 0

L'Enseignement mathém., 30e année, 1931. i;>
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est le lieu des podaires centrales des sections normales à l'axe
du paraboloïde

2. Surfaces de révolution associées à la sphère

(X — l)2 + Y2 + z2 — o

Nous avons trouvé

412 x2 z2 + l2 — a2

(x2 + y1)2
'

x2 + y2

Substituons à la méridienne circulaire du plan #0?/ une conique
ou un ovale de Cassini d'axe parallèle à z'z\ nous obtenons les

surfaces de révolution

a [(x — iy + y2J + b7J — î o

et
[(X — ly + Y2 + z2]2 =F è2[(X — l)2 + Y2] — a2Z2 0

dont l'axe est parallèle à l'axe conoïdal. Il vient respectivement

^ rA2x2
_

al2 + bz2 — 1

~~ {x2 + y2y x2 + y2

et

—
16 Px2

__
o2*2(8*2 + y'2) T b2(x2 + y2) + 2 z2 (x2 + y2)

~' (x2 + y2)2
** + y2

Dans les trois cas A est donc de la forme

o
Ax2 + By2 + Cz2{x2 -f y2)

(x2 + y2)2

les surfaces peuvent être convenablement associées ; la surface

(/) attachée à cet ensemble,

(x2 + y-)2 — 2
j~ (Ax2 + i^r) — 2

—J- (x2 + y2) 0

OU

(X2 + y2)2 - 2^[(A + Vz*)x* + (B + Vz2)y2] 0
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est le lieu des podaires centrales des sections normales à l'axe
de la surface cubique

1 0.
T<a + '*) Ï'B + Dz2)

Ces coniques ont pour lieu des sommets les paraboles semi-

cubiques

y ~ 0 z2 2
pr-

(A -f- Ds2)

» *= 0 y 2-* (B + Ds2) ;

dans les cas des sections elliptiques ceci peut servir de définition
aux anti-podaires car les deux paraboles sont réelles.

§ 20. — Reprenons l'expression (7) et supposons c tracée sur
la surface (s0) d'équation

ou

il vient

V K
" V

1

qXq + 2AgAg_2 — A^_1 — 0

-vi yy ^ (aa; + ?y)da

les volumes ont pour moyenne arithmétique le volume conoïdal
de même nature que limite la cloison <j.

Lorsqu'en particulier (S) est un cylindre dont les génératrices
sont parallèles à z'z, (s0) est un cylindre; le degré de sa directrice
plane est 2q.

§ 21. — Volume cylindro-conoïdal. — Prenons pour équation
du cylindre circulaire (S)

V (X — aV + V2 - R2 o
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En cette hypothèse

Aq ~ x2 + y2

— 2 ax

Aq_2 a2 — R2

(s0) a pour équation

(x2 + y2)2 — [(R2 -f <P)x2 + (R2 — a2)?/2] 0 ;

la directrice de ce cylindre est la podaire centrale de la conique

*2
+ —yi i o •

R2 + a2 ^ R2 — a2

T

\\ \
0 Cl I X

Fi 5 P. ^ a

ellipse ou hyperbole selon que R est supérieur ou inférieur à a,
c'est-à-dire que l'axe conoïdal est intérieur ou extérieur au
cylindre donné.

§ 22. — Volume sphéro-conoïdal. — Dans le cas de la sphère

(X — a)2 + Y2 -f Z2 — R2 0

on obtiendra pour (sQ) la surface d'équation

{x2 + y2) (x2 + y2 + z2) — (R2 + a2)x2 — (R2 — a2)y2 ~ 0
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Sous la forme

(X2 4 y1)'1 — [(R2 4 a1 — z2) x2 4 (R2 — à2 — s2) y2] 0

nous la reconnaissons comme le lieu des podaires centrales des

sections, normales à Faxe conoïdal, de la surface

+ r)—11 _ __ 1 — o
R2 4- à2 — z'2 R2 — a2 — z2

Ces sections sont d'ailleurs des coniques à centre dont les

sommets décrivent les circonférences

y 0 x2 4 z'2 R2 4 a2

x 0 y'1 f s2 - - -• R2 — à2 ;

lorsque R est supérieur à a ces deux courbes sont réelles et la
propriété envisagée peut servir de définition aux anti-podaires.

§ 23. — Prenons encore les cyclides d'équation

(X2 4- Y2 4 Z2)2 — 4 h (A X2 4 BY2 4 CZ2)

- 4 k (aX 4 6Y 4 et) ± Z4 0

l'axe conoïdal étant toujours z'Cte.

Dans le cas actuel

Aq (a? 4 y2)'2

-Vi 0
'

Ag_o S 2 Z2 (4 4 y2) — 4 h(hx2 4 B^2) :

l'équation de (s0) s'écrit

(x2 4 y2)2 4 Z2 (x2 4 y2) — 2h(Ax2 4 By2) — 0

OU

(x2 4 y2) (x2 4 y2 4 z~) — -h(\x2 4 By2) 0 ;

c'est la surface trouvée au § 21, sauf à poser

2 A h R 2 4 a2

2 HÄ R2 — a2
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Ce résultat lie donc, une fois de plus, sphères et cyclides;

il se présentait un résultat analogue dans l'étude des aires ou des

volumes cylindriques et coniques 1.

§ 24. — Considérons le cas des surfaces (S) d'équation

A2 + Ax + A0 0

dont les sections normales à z'z sont rencontrées en deux points
par tout plan contenant z'z. Un conoïde y détermine deux nappes,
et

-vi ï S!(?i+pl)(a* +
v

donne l'expression du noyau conoïdal que limitent 11 et 22 dans
le seul cas où les deux nappes se trouvent de part et d'autre de

l'axe z'z: axe conoïdal intérieur au cylindre ou coupant la sphère,
dans les cas précédents.

Dans le cas contraire, le volume du même noyau a pour
expression

n jff | pi — ç-l\(«« +

c'est-à-dire

K — J J f — 4A0 Aa {ax + ßy) ds

Si donc o" est tracée sur la surface (s2) d'équation

A'+WA'A — A4 0
2 2 10 1

le volume du noyau équivaut à celui du conoïde que limite

§ 25. — Prenons l'exemple du cylindre circulaire

(X _ a)2 q. y2 _ i;2 o

1 A. Buhl, Annales de la Facullé de Toidoase, t. VII, 5me mémoire, pages 198-199.
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L'équation de la surface (s2) s'écrit, tous calculs faits1,

(x2 + y~Y — 16a2£2[R2#2 -f (R2 — a2)y2~\ 0 ;

il s'agit d'un cylindre à directrice du huitième degré avec point
quadruple à l'origine.

1. R < a (axe conoïdal extérieur au cylindre; noyau véritable)
(fig- 7)-

Les tangentes au point multiple sont les tangentes à la
circonférence directrice; d'autre part l'axe O# est rencontré au
point d'abscisse 2^/Ra, intérieur à la circonférence précédente.

2. R > a (axe conoïdal intérieur au cylindre) (fig. 8).
Les tangentes précédentes n'existent plus; le point sur 0:r,

toujours intérieur à ladite circonférence, subsiste.
Dans les figures 7 et 8 les demi-courbes seules ont été dessinées.

§ 26. — Un résultat simple s'obtient encore en considérant un
cylindre dont la directrice est le limaçon de Pascal

(X2 + Y2 _ 2aX)2 — b2 (X.2 + Y2) 0

l'axe conoïdal étant ici la ligne des points doubles z'z.

1 En coordonnées polaires

P4 16a2 cos2 Çj (R2 — a2 sin2 0)
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Avec
A2 (X2 + y2)2

Aj =E — 4 ax(x2 + y2)

A0 ka2x — è2(x2 + y2)

s'obtient l'équation 1 de (s2) :

(x2 + 2/2)3 — 64 a2 b2 x2 0

Ce cylindre offre une directrice sextique tricirculaire, dont la
forme rappelle celle de la figure 2 et se trouve entièrement
comprise à l'intérieur du limaçon générateur.

y

0 ta I

f'3

X

.0

§ 27. — Enfin, dans le cas de la sphère

(X — a)2 + Y2 + Z2 - m 0

l'équation de (s2) est la suivante:

(,x2 + y2)4— 16a2£2[(R2 — z2)x2 + (R2 — a2 — z2)y2^ 0

Cette écriture fait prévoir la forme des sections parallèles à

xOy, donc celle de la surface, lieu de ces sections.

Septembre 1930.

1 En coordonnées polaires
é2 ± 16 ab cos 6
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