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VOLUMES ALGEBRIQUES 215

2. — VOLUMES A PAROIS CONIQUES.

§ 8. — Expression générale. — Substituons au cylindre un
cone et calculons 2V,.

Soient M;, m les points de 2, et de ¢ sur une méme droite
issue du sommet du cone,

OM.
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«, 3, 7 les cosinus directeurs de la normale en m a (s).

Rapportons 1l’espace a un triéedre trirectangle ayant pour
sommet celui du cone; il vient

Al B4 1,1 .l
‘\"\i:fj 5 (Se)) (be + By + va)ds

avec
Fleiz, o5y 42 = 0,

{

Si 'on ordonne d’ailleurs F par rapport aux puissances dé-
croissantes de XYZ,

b

o (X, Y, 7))+ o (X, Y, Z)

+ (])m_Q(X, Y, Z) 4+ ...+, ,
1l vient
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§ 9. — Tout d’abord, la parenthése
(I)jn—i

~ 4+ 8..—3..,
&b
m
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etant homogéne et d’ordre — 3, peut étre égalée & la somme

oF oG oH
oz | vy | oz

des lors, ¢ désignant le contour de o,

dr dy dz |

|
| 1
\" __f’ 7 |
3 | S Yo
| i
’ }

H |

D’autre part, toute modification laissant invariante la méme
parenthése n’altére point 2V,, et ceci permet un grand nombre
d’associations entre surfaces (S); en particulier, si

3
m—1

b

1 i)

m—2 mm“*o’

les sommes précédentes sont nulles.

Nous n’aborderons pas le développement de ces questions;
M. A. Buhl a défriché ce terrain dans les quatrieme et cinquieme
Mémoires précités L.

§ 10. — Lorsque o appartient a la surface (s,) d’équation

3 g

1 (Dm—i c (I)m—i (I)m—Q (Dm—?’ ,
— [ — — + 3 g — 3 =1,
m - -

ou
3 | « 2
m(bm —+ 3(I)m 'I)m—i—} —3d P

m m~1(l’m—2 T (I)m—1 =0,

1
IV, = mffg(ax—%— By + vz)d

les volumes V; ont donc pour moyenne arithmétique le volume
conique de méme nature que limite la cloison a; cette surface (s,)
est généralement de degré 3m.

1l vient

§ 11. — Volume cylindro-conigue. — Prenons pour (S) un
cylindre circulaire dont nous pouvons toujours prendre I’équa-
tion sous la forme

FE(X———Q)Q—}—YZ——Rz::O.

1 Pages 317-327; 195-204. Voir aussi Géom. et Analyse Int. doubles, pp. 8 et 30.
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En cette hypothese

b, =24y,
G o4 = — 2ax ,

‘I’,m_2 = a® — R? ,
(])m_3 = 0 ;

(89) @ donc pour equation

2t 4 ) 4 6 + ) an(a — R — Batat = 0,

soit finalement !

(@ + ¢")° — azl(e® + 3R*)2* — 3(a* — R¥)y*] = 0 .

(’est un cylindre dont la base, sextique tricirculaire, posséde
au sommet du cone un point triple.

1° ¢ > R (sommet du cone intérieur au cylindre).

Les trois branches passant a I’origine sont réelles, les tangentes
en ce point ayant pour coefficients angulaires respectifs

La courbe rencontre z'x au point d’abscisse

Va (a® + 3 R?)

ce point est du reste intérieur a la circonférence directrice

(x —a)® +y>? — R = 0 .

1 En coordonnées polaires
P3 = a[3R? cos b + a2 cos 30] .

Les valeurs maximum et minimum de ¢ sont acquises pour

) = 0
et, pour o
. V3a2 + R2 S—
sint = 4 ~— TEE et alors 0 = —Va2— R? s

avec a>R .
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Enfin, sextique et circonférence se coupent aux points de
coordonnées (fig. 1)

R? R
<a-——, i—-\/a“—}{2>.
a

Fl(}']

L

2. a < R (sommet du cone intérieur au cylindre).
La branche tangente en 0 & l'axe y'y est seule réelle; la
sextique est intérieure & la circonférence (fig. 2).

§12. — Volume sphéro-conique. — Prenons pour (S) la sphere
d’équation
(N —a)? + Y2 4 Z2 — R* = 0 ;
I’équation de (s,) s’obtient en substituant y? -+ z2 & y* dans les
calculs du paragraphe précédent; soit.

(@ + ) — azf(@® + 3RYa* — B(a? — RY)2| = 0
avec
rr=y+z

Ainsi (s,) n’est autre que la surface de révolution d’axe z'Ox
ayant pour méridienne la sextique déja étudiée.
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§ 13. — Si1, en résumé, nous associons a la circonférence

2

(x—a)* +y*— R =0

la sextique

(" — ¥ — ax[(a® +~ 3R 2? — 3(a* — R y’] = 0,

un cone de sommet O découpe:
10 Sur les cvlindres droits admettant ces courbes pour direc-
trices, '

20 Sur les surfaces d’axe Ox admettant ces courbes pour
méridiennes
des cloisons 2, et X, d’une part, une cloison s d’autre part, telles
que le dernier volume conique soit la movenne des deux premiers.

X
a
y 0
F[g.z
§ 14. — Pour les surfaces (S) de révolution
az> + br* —1 = 0

y

a méridienne conique, ovale de Cassini, limacon de Pascal, les
surfaces (s,) sont les mémes:

(z* + r?)* — z(Az? + Brl) = 0 .
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De la une association possible de méridiennes fort différentes;

nous n’insisterons pas sur la détermination de ces méridiennes
assoclées.

3. — VOLUMES A PAROIS CONOIDALES.

§ 15. — Expression générale. — Substituons enfin au cylindre
un conoide droit et calculons 2V,

Soient, ’axe conoidal étant confondu avec z'z, p, M;, m les

points de z'z, de 2, et de ¢ sur une méme paralléle au plan 2Oy

.M,

<

O

1 ’
‘U‘m

a, B, 7 les cosinus directeurs de la normale en m & (s).

Il vient
TV, fo%(ilpi)(aanﬁy)dc ,

aved

Flo,z, ;v z) = 0.

Si on ordonne d’ailleurs F par rapport aux puissances
décroissantes de XY,

F

il

Ag(Xy Y, Z) + Ay + -

A; étant homogeéne et de degré 1 en XY, il vient

2
- 1 Aq—i Aq~2
P q ) q

§ 16. — Posons
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