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2. — Volumes a parois coniques.

§ 8. — Expression générale. — Substituons au cylindre un
cône et calculons

Soient Mi? m les points de li et de cr sur une même droite
issue du sommet du cône,

ôïï.
Om

a, /3, 7 les cosinus directeurs de la normale en m à (s).

Rapportons l'espace à un trièdre trirectangle ayant pour
sommet celui du cône; il vient

sYi=f + h
I T

i F (Pi x Pi y :Hz) o

Si l'on ordonne d'ailleurs F par rapport aux puissances
décroissantes de XYZ,

F EE Y, Z) + *m_l(X, Y, Z)

+ (F
m-9

X r Y, Z) + + <t0

il vient
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9. — Tout d'abord, la parenthèse
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étant homogène et d'ordre — 3, peut être égalée à la somme

ôF
f

bG a H
bas ùy öz

dès lors, c désignant le contour de g*,

i dx dy dz j

XV, / x y z

F G H

D'autre part, toute modification laissant invariante la même

parenthèse n'altère point et ceci permet un grand nombre
d'associations entre surfaces (S); en particulier, si

(ï>3 — a <i> $ (i> _l 3 (F2 <î>
0 om-1 m m-1 m-2 ~ m m-3

les sommes précédentes sont nulles.
Nous n'aborderons pas le développement de ces questions;

M. A. Buhl a défriché ce terrain dans les quatrième et cinquième
Mémoires précités 1.

§ 10. — Lorsque o* appartient à la surface (sQ) d'équation

m

OU

1 / 1 0
(^m-1

Q
'^m-3 \ ,f

"Ts H à "à 6 — 1
»

1

^ ^\n 1 ^V/i-2 ^ ^Vi-l ®

il vient
i
- (*x + ßy + fz)di ;

les volumes Vi ont donc pour moyenne arithmétique le volume

conique de même nature que limite la cloison a* ; cette surface (s0)

est généralement de degré 3m.

§ 11. — Volume cylindro-conique. — Prenons pour (S) un

cylindre circulaire dont nous pouvons toujours prendre l'équation

sous la forme

F =E (X _ a)2 + Y2 - R2 0

i Pages 317-327; 195-204. Voir aussi Géom. et Analyse Int. doubles, pp. 8 et 30.
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En cette hypothèse

m
x2 + y

m-'i
0 ;

(s0) a donc pour équation

2{x2 + y2)3 + 6 (x2 + y2)ax(a2 — R2) — 8a3x3 0

soit finalement1

(x2 Ar y'2)3 — ax[(a2 + oR2)x2 — 3 (a2 —- R2)?/2] 0

C'est un cylindre dont la base, sextique tricirculaire, possède
au sommet du cône un point triple.

1° a > R (sommet du cône intérieur au cylindre).
Les trois branches passant à l'origine sont réelles, les tangentes

en ce point ayant pour coefficients angulaires respectifs

ce point est du reste intérieur à la circonférence directrice

00

La courbe rencontre x'x au point d'abscisse

V^a (a2 + 3 R2) ;

[x — a)2 -f y2 — R2 0

1 En coordonnées polaires

p a[3R2 cos 0 + a2 cos 30]

Les valeurs maximum et minimum de p sont acquises pour

0 0

et, pour

et alors p — /a2 — R2

avec a > R
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Enfin, sextique et circonférence se coupent aux points de
coordonnées (fig. 1)

(a — —
\ a a

X

\((1 a \ /

y /* /°

A

2. a < R (sommet du cône intérieur au cylindre).
La branche tangente en 0 à l'axe y'y est seule réelle; la

sextique est intérieure à la circonférence (fig. 2).

§ 12. — Volume sphéro-conique. — Prenons pour (S) la sphère

d'équation
(X — a)2 + Y2 + Z2 — R2 0 ;

l'équation de (Sq) s'obtient en substituant y2 + z2 à y2 dans les

calculs du paragraphe précédent; soit.

(x2 + >'2)3 — ax[(a2 + 3R2)*2 — 3 (a2 - R2)/'2| 0

avec
r1 y2 4-

Ainsi (s0) n'est autre que la surface de révolution d'axe x'Ox
ayant pour méridienne la sextique déjà étudiée.
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§ 13. — Si, en résumé, nous associons à la circonférence

(x — a)~ -f- y2 — R2 0

la sextique

(xl — y2)3 — ax[(a2 — 3 R2) x2 — 3 (a2 — R2)*/"] 9 *

un cône de sommet 0 découpe:
1° Sur les cylindres droits admettant ces courbes pour

directrices,

2° Sur les surfaces d'axe Ox admettant ces courbes pour
méridiennes
des cloisons et -2 d'une part, une cloison cr d'autre part, telles

que le dernier volume conique soit la moyenne des deux premiers.

M

§ 14. — Pour les surfaces (S)

az2 + br-

[z2 + r1)- — (a2 2

(z2 -f r2 — 2ar)2 —

à méridienne conique, ovale de

surfaces (s0) sont les mêmes:

(z2 -f r2)3 — z(i

de révolution

— 1 0,
;2 ± b2r2) 0

- b2 (22 + r2) 0

Cassini, limaçon de Pascal, les

+ R r2) 0
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De là une association possible de méridiennes fort différentes ;

nous n'insisterons pas sur la détermination de ces méridiennes
associées.

3. — Volumes a parois conoïdales.

§ 15. — Expression générale. — Substituons enfin au cylindre
un conoïde droit et calculons ^Vi.

Soient, l'axe conoïdal étant confondu avec z'z, fx, Mi? m les

points de z'z, de et de o* sur une même parallèle au plan xOy

oc, /S, y les cosinus directeurs de la normale en m à (s).

Il vient

2Vi jJ^(2Pi)(a+̂ h)d° •

\ avec

F(Pi«» PiV a) 0

Si l'on ordonne d'ailleurs F par rapport aux puissances
décroissantes de XY,

F Afl(Xr Y, Z) + Aq_i +

Ai étant homogène et de degré i en XY, il vient

(5)

§ 16. — Posons

A! A


	2. — Volumes a parois coniques.

