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SUR CERTAINS.VOLUMES ALGEBRIQUES

PAR

Pierre Papirron, Prof. au Lycée (Mulhouse).

§1. — A diverses reprises !, G. HumpBERT appliquait & la
Géométrie le théoreme d’Abel, calculant, entre temps 2, quelques
aires sphériques; vingt ans aprés 2, M. A. BunL était amené a
reprendre ces questions et les complétait par de fort intéressantes
recherches sur les volumes.

Nous nous proposons d’étudier systématiquement ces sommes
abéliennes de volumes & parois latérales cylindriques, coniques
ou conoidales; de curieuses associations se découvrent ainsi entre
la sphere, par exemple, et des surfaces d’apparences tres diffé-
rentes, voire méme entre des courbes planes.

Nombreux sont les développements auxquels se prétent les
formules générales; mais peut-étre serait-il fastidieux, et partant
maladroit, d’en user indéfiniment.

1. VOLUMES A PAROIS CYLINDRIQUES.

§ 2. — Expression générale. — Une cloison ¢ étant prise sur une
surface (s), un cylindre de base ¢ découpe sur une surface algé-
brique (S), sans relation nécessaire avec (s), un certain nombre
de plages 2; qui limitent, avec un plan de section droite (P),
autant de volumes V;; proposons-nous d’évaluer la somme 2V,.

1 Journal de Mathématiques, 4me gérie: tomes III (1887), V (1889) et VI (1890).
2 1888.

8 Annales de la Faculté de Toulouse, 3¢ gérie: tomes II, VI et VII,
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Sotent p, M;, m les points de (P), 2; et ¢ sur une méme normale
au plan de base,
PN,

0 —_—
e ==
e a— ]

Pm
a, 3, 7 les cosinus directeurs de la normale en m a (s), enfin
F(X, Y, Z) =0

Iéquation, algébrique, de (S).
1. Rapportons I'espace a un triedre trirectangle dont la face
20y coincide avec (P). '

Il est évident que '
XV, :ff(EZi)ng‘

avec, (x, y, z) désignant les cordoonnées de m,

Bref

Si Pon ordonne d’ailleurs le polynome entier F par rapport
aux puissances décroissantes de Z,

F=2Pg(X, Y)+ ZP7H (X, Y) 4 2PN, Y) + ..

e !
aV. — _ vz y
wv= [ [t e ()

2. Dans le cas général ou le plan (P) admet pour équation

1l vient

AX +uvY 4+ vZ —d =0,
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A, w, v, désignant des cosinus directeurs,

v, :J f}?ﬁi(m + uf 4 vy)ds .
:ffpi.'ﬁ;i(m + up + vy)ds .

T

Or
P_I7—?::)\x+:J.y—%—‘/z—~d
et
X, =24 Mg, — 1) (dx + py + vz -—d) ,
AI:z—f—‘/(... )( )
FN,, Y, Z) =0
Bref

=V = fj (S¢) ha + vy + vz — d) (ha + pf + vy)do

avec (2)
Fla +2..., y4+uo..., z24+v..) =20
§ 3. — Reprenons 'expression (1). Les cloisons 2, étant au

nombre de p, si @ se trouve située sur la surface (s,) d’équation

_owley)
polz, y) '
ou
pzelx, y) + 9@, y) =0,
1l vient
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les volumes V; ont donc pour moyenne arithmétique le volume
cylindrique de méme nature que limite la cloison o.
A (S) se trouve donc associée la surface (s,) particuliére: lieu

: , A g
du point de coordonnées (x, Y, ____E), ¢’est-a-dire du bary-
p

centre des points M; isomassifs — centre des moyennes dis-
tances —; c’est la surface conjuguée de la direction z'z relative
a la surface donnée. De la ce théoréme qui lie simplement celui
d’Abel & la théorie des polaires:

Les volumes que détermine un cylindre sur une surface alge-
brique ont pour moyenne arithmétique celut que ce méme cylindre
découpe sur la surface conjuguée de la direction des génératrices
relativement a la surface donnée.

Lorsqu’en particulier le coefficient ¢ (x, y) est nul — il en est
ainsi, en particulier, quand Oy est un plan de symétrie pour (S)
— la somme abélienne I'est également: la surface conjuguée est
le plan zOy.

Plus généralement, si

A ol Bl

¢ c
la surface conjuguée est plane et le volume moyen est celui d’un
tronc cylindrique élémentaire; les surfaces (S) ont pour équation

ZP(aX + BY + ¢Z —Rh)o(X, Y) + ZPTONX, Y) 4+ ... = 0.
§ 4. — Cas des quadriques. — S1, dans ’équation précédente,

p == 2, nous obtenons pour surfaces (S) les quadriques; directe-
ment, a ’aide de
AX?2 + 0+ 2BXY + ... +2CX + ...+ D =0,

il vient
PR A” ,

2(B'z + By 4 C”") :

Il

-G -6
I

Péquation de (s,),
le+By+A’,Z+CI’:0,

est celle du plan diamétral conjugué de la direction 2’ :

Les volumes que détermine un cylindre sur une quadrique ont
pour moyenne arithmétique celui que ce méme cylindre découpe
sur le plan diamétral conjugué de la direction des génératrices.
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§ 5. — Cas des cyclides. — Prenons les cyclides d’équation

(X2 £ Y? 4 79?2 — 4R (AX? + BY? 4 CZ?)
— 4k (aX 4+ bY + ¢Z) U =0 .

Pour utiliser I'expression (2), formons I’équation en p

A0x 4y +vz—d) + ids(a 4+ o —d)P

XV, = fo——d()\a + up + vy)ds
= — ’1dff(l7. + uB 4+ vy)ds ;

le volume moyen est celui que le méme cylindre découpe sur le
plan de base et le planparallele mené par I'origine. Ce résultat
remarquable est celul que donnerait une sphere centrée a cette
origine.

de sorte que

§ 6. — 1l est immédiat de constater que la surface (s,) ne
dépend pas du plan (P): lui substituer, en effet, un plan (P’)
revient & ajouter ou & retrancher a V; le volume d’un tronc

.
~_t ce méme volume.

cylindrique, donc & la moyenne

§ 7. — Noyau cylindrique. — Analogue a la question des
sommes abéliennes est celle des noyaux cylindriques, relative
aux surfaces (S)

22 (X0 Y) + 24N, Y) + O(X, Y) =0 .

Le volume de ce noyau, dont les génératrices sont paralleles
a z'z, a pour expression

x_.U

fr == fa |2y do .

Et comme
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VI —Thst)
= g

i

1l vient

Sil'on trace ¢ sur la surface (s,) d’équation

ou

le volume du noyau est celui du cylindre de méme nature que
limite (s,). Ici (P) ne joue aucun role.

Considérons alors une quadrique a centre; rapportons-la au
diametre paralléle aux génératrices du cylindre et au plan
conjugué !, en sorte que son équation s’écrive

AXZ £ A'Y? L A"ZE 4 ¢ = 0 (= + 1) .
Ieci
= A", b =0,

= = Az® + Aly?

+

et (s;) a pour équation

ZQ.A”? + /}A//(Ax‘z + A/y‘z + E) —_ O ’
ou

" "

. A
Ax® + A yz+——z —3z* e =0 ;

c’est la transformée de la quadrique (S) par la dilatation

() (z0y, z'z, 2).
En particulier, & la sphere

X2 4+ Y? 4 72 = R
correspond l’ellipsoide de révolution allongé

y*

- — 1 = 0.
)l.!

5.

+ 35 + g

b
z-
4 R2

13

(==

1 Les axes de coordonnées ne sont plus rectangulaires; mais les intégrales donnent des
expressions proportionnelles aux volumes.
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