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SUR CERTAINS.VOLUMES ALGEBRIQUES

PAR

Pierre Papirron, Prof. au Lycée (Mulhouse).

§1. — A diverses reprises !, G. HumpBERT appliquait & la
Géométrie le théoreme d’Abel, calculant, entre temps 2, quelques
aires sphériques; vingt ans aprés 2, M. A. BunL était amené a
reprendre ces questions et les complétait par de fort intéressantes
recherches sur les volumes.

Nous nous proposons d’étudier systématiquement ces sommes
abéliennes de volumes & parois latérales cylindriques, coniques
ou conoidales; de curieuses associations se découvrent ainsi entre
la sphere, par exemple, et des surfaces d’apparences tres diffé-
rentes, voire méme entre des courbes planes.

Nombreux sont les développements auxquels se prétent les
formules générales; mais peut-étre serait-il fastidieux, et partant
maladroit, d’en user indéfiniment.

1. VOLUMES A PAROIS CYLINDRIQUES.

§ 2. — Expression générale. — Une cloison ¢ étant prise sur une
surface (s), un cylindre de base ¢ découpe sur une surface algé-
brique (S), sans relation nécessaire avec (s), un certain nombre
de plages 2; qui limitent, avec un plan de section droite (P),
autant de volumes V;; proposons-nous d’évaluer la somme 2V,.

1 Journal de Mathématiques, 4me gérie: tomes III (1887), V (1889) et VI (1890).
2 1888.

8 Annales de la Faculté de Toulouse, 3¢ gérie: tomes II, VI et VII,

L’Enseignement mathém., 30° année. 1931. 14
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Sotent p, M;, m les points de (P), 2; et ¢ sur une méme normale
au plan de base,
PN,

0 —_—
e ==
e a— ]

Pm
a, 3, 7 les cosinus directeurs de la normale en m a (s), enfin
F(X, Y, Z) =0

Iéquation, algébrique, de (S).
1. Rapportons I'espace a un triedre trirectangle dont la face
20y coincide avec (P). '

Il est évident que '
XV, :ff(EZi)ng‘

avec, (x, y, z) désignant les cordoonnées de m,

Bref

Si Pon ordonne d’ailleurs le polynome entier F par rapport
aux puissances décroissantes de Z,

F=2Pg(X, Y)+ ZP7H (X, Y) 4 2PN, Y) + ..

e !
aV. — _ vz y
wv= [ [t e ()

2. Dans le cas général ou le plan (P) admet pour équation

1l vient

AX +uvY 4+ vZ —d =0,
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A, w, v, désignant des cosinus directeurs,

v, :J f}?ﬁi(m + uf 4 vy)ds .
:ffpi.'ﬁ;i(m + up + vy)ds .

T

Or
P_I7—?::)\x+:J.y—%—‘/z—~d
et
X, =24 Mg, — 1) (dx + py + vz -—d) ,
AI:z—f—‘/(... )( )
FN,, Y, Z) =0
Bref

=V = fj (S¢) ha + vy + vz — d) (ha + pf + vy)do

avec (2)
Fla +2..., y4+uo..., z24+v..) =20
§ 3. — Reprenons 'expression (1). Les cloisons 2, étant au

nombre de p, si @ se trouve située sur la surface (s,) d’équation

_owley)
polz, y) '
ou
pzelx, y) + 9@, y) =0,
1l vient
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les volumes V; ont donc pour moyenne arithmétique le volume
cylindrique de méme nature que limite la cloison o.
A (S) se trouve donc associée la surface (s,) particuliére: lieu

: , A g
du point de coordonnées (x, Y, ____E), ¢’est-a-dire du bary-
p

centre des points M; isomassifs — centre des moyennes dis-
tances —; c’est la surface conjuguée de la direction z'z relative
a la surface donnée. De la ce théoréme qui lie simplement celui
d’Abel & la théorie des polaires:

Les volumes que détermine un cylindre sur une surface alge-
brique ont pour moyenne arithmétique celut que ce méme cylindre
découpe sur la surface conjuguée de la direction des génératrices
relativement a la surface donnée.

Lorsqu’en particulier le coefficient ¢ (x, y) est nul — il en est
ainsi, en particulier, quand Oy est un plan de symétrie pour (S)
— la somme abélienne I'est également: la surface conjuguée est
le plan zOy.

Plus généralement, si

A ol Bl

¢ c
la surface conjuguée est plane et le volume moyen est celui d’un
tronc cylindrique élémentaire; les surfaces (S) ont pour équation

ZP(aX + BY + ¢Z —Rh)o(X, Y) + ZPTONX, Y) 4+ ... = 0.
§ 4. — Cas des quadriques. — S1, dans ’équation précédente,

p == 2, nous obtenons pour surfaces (S) les quadriques; directe-
ment, a ’aide de
AX?2 + 0+ 2BXY + ... +2CX + ...+ D =0,

il vient
PR A” ,

2(B'z + By 4 C”") :

Il

-G -6
I

Péquation de (s,),
le+By+A’,Z+CI’:0,

est celle du plan diamétral conjugué de la direction 2’ :

Les volumes que détermine un cylindre sur une quadrique ont
pour moyenne arithmétique celui que ce méme cylindre découpe
sur le plan diamétral conjugué de la direction des génératrices.
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§ 5. — Cas des cyclides. — Prenons les cyclides d’équation

(X2 £ Y? 4 79?2 — 4R (AX? + BY? 4 CZ?)
— 4k (aX 4+ bY + ¢Z) U =0 .

Pour utiliser I'expression (2), formons I’équation en p

A0x 4y +vz—d) + ids(a 4+ o —d)P

XV, = fo——d()\a + up + vy)ds
= — ’1dff(l7. + uB 4+ vy)ds ;

le volume moyen est celui que le méme cylindre découpe sur le
plan de base et le planparallele mené par I'origine. Ce résultat
remarquable est celul que donnerait une sphere centrée a cette
origine.

de sorte que

§ 6. — 1l est immédiat de constater que la surface (s,) ne
dépend pas du plan (P): lui substituer, en effet, un plan (P’)
revient & ajouter ou & retrancher a V; le volume d’un tronc

.
~_t ce méme volume.

cylindrique, donc & la moyenne

§ 7. — Noyau cylindrique. — Analogue a la question des
sommes abéliennes est celle des noyaux cylindriques, relative
aux surfaces (S)

22 (X0 Y) + 24N, Y) + O(X, Y) =0 .

Le volume de ce noyau, dont les génératrices sont paralleles
a z'z, a pour expression

x_.U

fr == fa |2y do .

Et comme
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VI —Thst)
= g

i

1l vient

Sil'on trace ¢ sur la surface (s,) d’équation

ou

le volume du noyau est celui du cylindre de méme nature que
limite (s,). Ici (P) ne joue aucun role.

Considérons alors une quadrique a centre; rapportons-la au
diametre paralléle aux génératrices du cylindre et au plan
conjugué !, en sorte que son équation s’écrive

AXZ £ A'Y? L A"ZE 4 ¢ = 0 (= + 1) .
Ieci
= A", b =0,

= = Az® + Aly?

+

et (s;) a pour équation

ZQ.A”? + /}A//(Ax‘z + A/y‘z + E) —_ O ’
ou

" "

. A
Ax® + A yz+——z —3z* e =0 ;

c’est la transformée de la quadrique (S) par la dilatation

() (z0y, z'z, 2).
En particulier, & la sphere

X2 4+ Y? 4 72 = R
correspond l’ellipsoide de révolution allongé

y*

- — 1 = 0.
)l.!

5.

+ 35 + g

b
z-
4 R2

13

(==

1 Les axes de coordonnées ne sont plus rectangulaires; mais les intégrales donnent des
expressions proportionnelles aux volumes.
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2. — VOLUMES A PAROIS CONIQUES.

§ 8. — Expression générale. — Substituons au cylindre un
cone et calculons 2V,.

Soient M;, m les points de 2, et de ¢ sur une méme droite
issue du sommet du cone,

OM.

1

Om

Cs
v

1 ’

«, 3, 7 les cosinus directeurs de la normale en m a (s).

Rapportons 1l’espace a un triéedre trirectangle ayant pour
sommet celui du cone; il vient

Al B4 1,1 .l
‘\"\i:fj 5 (Se)) (be + By + va)ds

avec
Fleiz, o5y 42 = 0,

{

Si 'on ordonne d’ailleurs F par rapport aux puissances dé-
croissantes de XYZ,

b

o (X, Y, 7))+ o (X, Y, Z)

+ (])m_Q(X, Y, Z) 4+ ...+, ,
1l vient

3
1 ? D L U L b
Vi -f] <——%3+ Mg — 35 ) (aw + By + va)do
(I)m (Dm m
()
§ 9. — Tout d’abord, la parenthése
(I)jn—i

~ 4+ 8..—3..,
&b
m
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etant homogéne et d’ordre — 3, peut étre égalée & la somme

oF oG oH
oz | vy | oz

des lors, ¢ désignant le contour de o,

dr dy dz |

|
| 1
\" __f’ 7 |
3 | S Yo
| i
’ }

H |

D’autre part, toute modification laissant invariante la méme
parenthése n’altére point 2V,, et ceci permet un grand nombre
d’associations entre surfaces (S); en particulier, si

3
m—1

b

1 i)

m—2 mm“*o’

les sommes précédentes sont nulles.

Nous n’aborderons pas le développement de ces questions;
M. A. Buhl a défriché ce terrain dans les quatrieme et cinquieme
Mémoires précités L.

§ 10. — Lorsque o appartient a la surface (s,) d’équation

3 g

1 (Dm—i c (I)m—i (I)m—Q (Dm—?’ ,
— [ — — + 3 g — 3 =1,
m - -

ou
3 | « 2
m(bm —+ 3(I)m 'I)m—i—} —3d P

m m~1(l’m—2 T (I)m—1 =0,

1
IV, = mffg(ax—%— By + vz)d

les volumes V; ont donc pour moyenne arithmétique le volume
conique de méme nature que limite la cloison a; cette surface (s,)
est généralement de degré 3m.

1l vient

§ 11. — Volume cylindro-conigue. — Prenons pour (S) un
cylindre circulaire dont nous pouvons toujours prendre I’équa-
tion sous la forme

FE(X———Q)Q—}—YZ——Rz::O.

1 Pages 317-327; 195-204. Voir aussi Géom. et Analyse Int. doubles, pp. 8 et 30.
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En cette hypothese

b, =24y,
G o4 = — 2ax ,

‘I’,m_2 = a® — R? ,
(])m_3 = 0 ;

(89) @ donc pour equation

2t 4 ) 4 6 + ) an(a — R — Batat = 0,

soit finalement !

(@ + ¢")° — azl(e® + 3R*)2* — 3(a* — R¥)y*] = 0 .

(’est un cylindre dont la base, sextique tricirculaire, posséde
au sommet du cone un point triple.

1° ¢ > R (sommet du cone intérieur au cylindre).

Les trois branches passant a I’origine sont réelles, les tangentes
en ce point ayant pour coefficients angulaires respectifs

La courbe rencontre z'x au point d’abscisse

Va (a® + 3 R?)

ce point est du reste intérieur a la circonférence directrice

(x —a)® +y>? — R = 0 .

1 En coordonnées polaires
P3 = a[3R? cos b + a2 cos 30] .

Les valeurs maximum et minimum de ¢ sont acquises pour

) = 0
et, pour o
. V3a2 + R2 S—
sint = 4 ~— TEE et alors 0 = —Va2— R? s

avec a>R .
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Enfin, sextique et circonférence se coupent aux points de
coordonnées (fig. 1)

R? R
<a-——, i—-\/a“—}{2>.
a

Fl(}']

L

2. a < R (sommet du cone intérieur au cylindre).
La branche tangente en 0 & l'axe y'y est seule réelle; la
sextique est intérieure & la circonférence (fig. 2).

§12. — Volume sphéro-conique. — Prenons pour (S) la sphere
d’équation
(N —a)? + Y2 4 Z2 — R* = 0 ;
I’équation de (s,) s’obtient en substituant y? -+ z2 & y* dans les
calculs du paragraphe précédent; soit.

(@ + ) — azf(@® + 3RYa* — B(a? — RY)2| = 0
avec
rr=y+z

Ainsi (s,) n’est autre que la surface de révolution d’axe z'Ox
ayant pour méridienne la sextique déja étudiée.
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§ 13. — Si1, en résumé, nous associons a la circonférence

2

(x—a)* +y*— R =0

la sextique

(" — ¥ — ax[(a® +~ 3R 2? — 3(a* — R y’] = 0,

un cone de sommet O découpe:
10 Sur les cvlindres droits admettant ces courbes pour direc-
trices, '

20 Sur les surfaces d’axe Ox admettant ces courbes pour
méridiennes
des cloisons 2, et X, d’une part, une cloison s d’autre part, telles
que le dernier volume conique soit la movenne des deux premiers.

X
a
y 0
F[g.z
§ 14. — Pour les surfaces (S) de révolution
az> + br* —1 = 0

y

a méridienne conique, ovale de Cassini, limacon de Pascal, les
surfaces (s,) sont les mémes:

(z* + r?)* — z(Az? + Brl) = 0 .
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De la une association possible de méridiennes fort différentes;

nous n’insisterons pas sur la détermination de ces méridiennes
assoclées.

3. — VOLUMES A PAROIS CONOIDALES.

§ 15. — Expression générale. — Substituons enfin au cylindre
un conoide droit et calculons 2V,

Soient, ’axe conoidal étant confondu avec z'z, p, M;, m les

points de z'z, de 2, et de ¢ sur une méme paralléle au plan 2Oy

.M,

<

O

1 ’
‘U‘m

a, B, 7 les cosinus directeurs de la normale en m & (s).

Il vient
TV, fo%(ilpi)(aanﬁy)dc ,

aved

Flo,z, ;v z) = 0.

Si on ordonne d’ailleurs F par rapport aux puissances
décroissantes de XY,

F

il

Ag(Xy Y, Z) + Ay + -

A; étant homogeéne et de degré 1 en XY, il vient

2
- 1 Aq—i Aq~2
P q ) q

§ 16. — Posons
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appliquons & l'intégrale double la formule de Stokes

/ [ [Nz + By ds = [ Pdz + Qdy
G C

S

/ avec

oP dQ °Q oP

b—z——f\y ﬁ——x\x é—x—-—ay
Introduisant la fonction K, homogéne et de degré — 2 par

rapport & xy, telle que
L K

0%

nous obtenons
P

Q

y[K + Qz, y)]
— z[K + Q(z, y)]

I

i

() étant une fonction arbitraire, homogéne et de degré — 2;
deés lors

L
TV, = 2-0/“{1\ +Ql(y dw — zdy)

Si donc ¢ appartient & une surface (s;) d’équation

Kz, y, 2 + Q, y =h.

VY .
_\i_hca,

la somme des volumes équivaut au volume cylindrique de
hauteur 2 et dont la base est la projection de o sur 20y.
Lorsqu’en particulier (S) est un cylindre & génératrices pa-
ralléles a z'z,
K = Az

et les surfaces (s;) ont pour équation
Az +Q = h,

car A ne renferme pas la variable z.

A toute surface algébrique (S) peut éire attachée une famille
de surfaces (s,) telles qu’un contour ¢ y tracé donne un conoide
pour lequel la somme des volumes limités aux différentes cloisons
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2. quw'il découpe sur (S) soit équivalente au volume d’un cylindre
droit de hauteur constante ayant pour base la projection de =
sur le plan directeur du conoide.

Ces surfaces ne dépendent que des trois premiers termes de
Péquation de (S), ordonnée suivant les puissances décroissantes

de XY:
Ag(XL Y, Z) + A (XL Y, Z) 4+ Ay =0

§ 17. — Surfaces (s,) attachées au cylindre circulaire
(X —@)? + Y?— R =0 |
Dans le cas actuel
Aq = xz? + y?, Aq_1 = — 2azx , Aq_2 = q® — R2,

et

4 a2 22 a! — R?2

Wy Pty

L

Péquation générale de (s,) s’écrit, tous calculs faits,
(2 + 9 — T [(R* + a)a? + (R® — a)y’] + Oz, y) = 0,

® étant homogene et de degré + 2.
En supposant nulle cette derniére fonction, s’obtient la surface
(S;) particuliére

(22 + y?)? *E}L—%[(Rz + a?)a® + (R*— ag)yz:] =0,

ou, en coordonnées cylindriques

h r?
T 242 cos 26 — R2

Or, la quartique bicirculaire
(x* + y*)? — (Az? + By®) = 0

est la podaire centrale de la conique

2

K

y*
L2 — 1 =0 :
B

>|
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(s;) est donc le lieu des podaires centrales des coniques

2 2

x

I + — 1 =0
z 9 9 3 9 9
sections du paraboloide
0. — & y
T OREL g2 T }ij—~ a®
o h

par les plans normaux & son axe.

1. R > a (axe conoidal intérieur au cylindre).

Le paraboloide est elliptique, les coniques de section sont des
ellipses.

Les deux formes des podaires sount reproduites dans les
figures 3 et 4.

Q oc

fqu(GLR4CL/3 fio. & (av3 =R)

2. R = a (axe conoidal génératrice du cylindre).

Il n’y a plus qu’une seule cloison 2; ce cas doit donc étre
écarté.

3. R < a (axe conoidal extérieur au cylindre).

Le paraboloide est hyperbolique, les coniques de section sont
des hyperboles; les podaires ont un point double au centre de
ces hyperboles.

Lorsque, dans le premier cas, a est nul — ’axe conoidal est celui
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du cylindre et les deux volumes conoidaux partiels sont équiva-
lents — la surface (s;) se réduit au paraboloide de révolution

RZ
x2+y2—2—?z~z::0;

une vérification partielle serait tres aisée.

§ 18. Surfaces (s,) attachées a la sphére.

(N —a)? + Y2 £ 72— R — 0 .
Ici
ha®x® 2z2+ aQ—R?

A= T
(@ + )’ 7+

et les surfaces (s;) ont pour équation, calculs effectués,

8lhata? — 2(a® + y¥) (@ — R ]z — 22°(2* + )
— 3h{z* + ¥ + Oz, y) = 0 ;
® étant homogene et de degré 2.

En supposant nulle cette fonction, on obtient la surface
particuliere (s;) d’équation

22% (22 + ¥ + 3h(2® + y¥)? — 62[(R® + a%)a® 4 (R — aYy?] = 0 .

Eerivons-la

2 : 2
(x* + y*)? — f[(f{? + & — %)x" -+ <R2—— a’® — %)y{l =0 ;

(s;) apparait comme le lieu des podaires centrales des coniques,
sections paralleles & xOy de la surface

22 2
+ Y

z 2 2_5._“) 2 ny 2_2"_2 -
Q;L—(R + a 3> 2h (R a 3>

Remarquons que ces coniques ont pour lieux de leurs sommets
les paraboles semi-cubiques

z 2 z?
s : — 922 (Re S ——
y = 0 = 2 (R 4 @Y — o
et
_ s 9% py_ o _ 28
z =0 y' = 2. (R — af) — o
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dans le cas des sections elliptiques (R < a), ceci peut servir de
définition a ces anti-podaires.

§ 19. — Reprenons 'assertion évidente qui permet d’associer
diverses surfaces (S): toute modification des A;, donc de (S),
qui n’altére point A n’altere point 2V,.

Nous donnerons deux exemples.

1. Cylindres associés au cylindre circulaire

(XN — )2+ Y2 — g2 =0 .

Nous avons trouvé

A1 o? . FP—a?

"\ = — — s a . o .
— (xz +_ y2)2 xl + yz

Substituons a la base circulaire ’ovale de Cassini
(XN — 0+ Y F (X —0)°—a®Y2 =0
ou le limacon de Pascal
(X =02+ v — 2(X — )T — 0 [(XN = 1)? + Y*] = 0 ;

il vient respectivement

A\ _ '16l3{1,‘2 9 2l2(3x2 _11_ yQ) :F b:'xz _ a2y2
— @y T z* + y?
et
\ — 16(a + )%2* . 2032 + y*) + 4afa + 20)2® — b2 (x® + y?)
R e '

Dans ces trois cas, -\ est donc de la forme

2 Az? + Bys
L@+ )

et les cylindres peuvent étre convenablement associés; la surface
, ’ L
(s,) attachée & cet ensemble

(@ + y)? — 27 (Aa* + ByY) = 0

L’Enseignement mathém., 30c année, 1931, 15
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est le lieu des podaires centrales des sections normales & l'axe
du paraboloide

2 9

BN

2. Surfaces de révolution associées a la sphére

(N— D24 Y2 L 22— g2 = 0 .

Nous avons trouvé

. 412 2 ‘z,z—}—lz——a?’
A= g — 2 5 3
(@* + ¥7) z’ + y

Substituons & la méridienne circulaire du plan Oy une conique
ou un ovale de Cassini d’axe paralléle a z'z; nous obtenons les
surfaces de révolution

al(X — )2 + Y| 4 bZ2—1 =0

et
(N =02+ Y2+ 22 F p[(N— )2+ Y] — a®Z = 0

dont ’axe est paralléle & I’axe conoidal. Il vient respectivement

= Pt galf A b — 1
T @+ oY) z + y?
et
A = 1612 22 B 02-22(3%2 + ) T b2 (x? + y) + 2Z2(xz + y?) |
CE@ e z* 4y

Dans les trois cas A est done de la forme

Ax? 4+ By? 4+ Cz%(2® + y?
(@* + y°)*

2.

 E

les surfaces peuvent étre convenablement associées; la surface
(s;) attachée a cet ensemble,.

C
@4y —2 D Y =2 ) =0

ou
@ + ) — 22 [(A + D)ar + (B + Dayy’] = 0
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est le lieu des podaires centrales des sections normales a ’axe
de la surface cubique

Ces coniques ont pour lieu des sommets les paraboles semi-
cubiques
y = 0 22 = 27 (A 4 Dg?)

(B + Dz?) ;

dans les cas des sections elliptiques ceci peut servir de définition
aux anti-podaires car les deux paraboles sont réelles.

§ 20. — Reprenons 'expression (7) et supposons ¢ tracée sur
la surface (s,) d’équation

ou

1l vient

les volumes V, ont pour moyenne arithmétique le volume conoidal
de méme nature que limite la cloison o.

Lorsqu’en particulier (S) est un cylindre dont les génératrices
sont paralléles a z'z, (s,) est un cylindre; le degré de sa directrice
plane est 2g.

§ 21. — Volume cylindro-conoidal. — Prenons pour équation
du cylindre circulaire (S)

F=(XN—a?+ Y2 —R =0,
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En cette hypothése

A, =2+ oy
Aq_1 = — 2ax
Aq_2 = a2 — R2 .

(s9) @ pour équation
(2 + y2)2 — [(Ra + a?)a? + (R — a‘-’)yﬂ] =0 ;

la directrice de ce cylindre est la podaire centrale de la conique

2 y?
R? + @2 + Rz — o2

~

fig:s (R ~a) iy 6 (R <ca)

ellipse ou hyperbole selon que R est supérieur ou inférieur a aq,
c’est-a-dire que l’axe conoidal est intérieur ou extérieur au
cylindre donné.

§ 22. — Volume sphéro-conoidal. — Dans le cas de la sphére
(X — a)? + Y2 4 Z2 — R2 = 0

on obtiendra pour (s,) la surface d’équation

(@ + ¥ (@ + gt + 2) — (R + a)ar — (Rt — @Yy = 0 .

Bl e A i i et L o i e

Fr
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Sous la forme
(22 + y2)2 — [(R3 4@t — )2 + (R2— a2 — zz)yz] — 0

nous la reconnaissons comme le lieu des podaires centrales des
sections, normales & 1’axe conoidal, de la surface
< + e —1=0.

2

R? 4 a? — 22 R — a2 — 2

Ces sections sont d’ailleurs des coniques a centre dont les
sommets décrivent les circonférences

y = 0 z? 4+ z R? + @

x = 0 y: + 22 = R? — a? ;

|

lorsque R est supérieur & a ces deux courbes sont réelles et la
propriété envisagée peut servir de définition aux anti-podaires.
§ 23. — Prenons encore les cyclides d’équation

(X2 4+ Y2 + Z2)2 — 4h(ANZ ++ BY: 4 CZ2)
— 4h(aX + bY + ¢Z) £ 1 = 0 |

I’axe conoidal étant toujours z'Oz.
Dans le cas actuel

\(1 — (x‘Z + y‘z): ,
Ny =0,
N = 272(2* 4 y?) — h(Ax? + By?) .

Iéquation de (s,) s’écrit

(@* 4+ ¥°)* + 2 (2° + y?) — 2h(A2? + By?) = 0
ou
(@2 + y?) (x® + y* + 2°) — 2h(A2® + By?) = 0 ;

¢’est la surface trouvée au § 21, sauf & poser

QAh:RZ—;—a,g,

‘..)Hh = R‘;’_,a'Z .
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Ce résultat lie donc, une fois de plus, sphéres et cyclides;
1l se présentait un résultat analogue dans ’étude des aires ou des
volumes cylindriques et coniques 1.

§ 24. — Considérons le cas des surfaces (S) d’équation
1&2 - ‘Al -+ 1’\0 = 0,

dont les sections normales & z'z sont rencontrées en deux points
par tout plan contenant z’z. Un conoide y détermine deux nappes,

et
. 1 ;
=V = “z‘ff(.’«i + o) (22 + By)ds

donne P’expression du noyau conoidal que limitent 2, et 2, dans
le seul cas ou les deux nappes se trouvent de part et d’autre de
Paxe z'z: axe conoidal intérieur au cylindre ou coupant la sphére,
dans les cas précédents.

Dans le cas contraire, le volume du méme noyau a pour
expression

P

(0 4 By) d

¢’est-a-dire

= 5 / /’IALII//_\V —4A :(m+(3y)d67 (6)

f

|

Si done @ est tracée sur la surface (s,) d’équation
4 2 4
A2 + ’1/\21\11\0 — A1 =

le volume du noyau équivaut a celui du conoide que limite 7.

§ 25. — Prenons 'exemple du cylindre circulaire

(N —a)? 4+ Y2 — K2 =0 .

1 A. BuHL, Annales de la Facullé de Toulouse, t. VII, 5™¢ mémoire, paézes 198-199.
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L’équation de la surface (s,) s’écrit, tous calculs faits 1,

0 ;

I

(z2 + y2)t — lGa?xﬁ[R‘é’x? + (R2 — a‘l)y‘z]

il s’agit d’un cylindre & directrice du huitiéme degré avec point
quadruple a l'origine.

1. R < a(axe conoidal extérieur au cylindre; noyau véritable)
(fig. 7).

ﬁca.'(

Les tangentes au point multiple sont les tangentes & la cir-
conférence directrice; d’autre part 'axe Ox est rencontré au
point d’abscisse 24/Re, intérieur & la circonférence précédente.

2. R > a (axe conoidal intérieur au cylindre) (fig. 8).

Les tangentes précédentes n’existent plus; le point sur Oz,
toujours intérieur a ladite circonférence, subsiste.

Dans les figures 7 et 8 les demi-courbes seules ont été dessinées.

§ 26. — Un résultat simple s’obtient encore en considérant un
cylindre dont la directrice est le limacon de Pascal

(X2 4+ Y2 — 2aX)? — b2(X2 + Y2) = 0 .

I’axe conoidal étant ici la ligne des points doubles z'z.

1 En coordonnées polaires

64 = 16a2 cos? § (R2-— a2 sin2 @) .
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Avec
Az = (xz - y2)2 ,
A1 = — bdax(2? + v?) ,
Ay = hatx — b (2* + 3?)

s’obtient Péquation ! de (s,):
(22 4+ y?)® — 64a2 22 = 0 .

Ce cylindre offre une directrice sextique tricirculaire, dont la
forme rappelle celle de la figure 2 et se trouve entiérement
comprise a l'intérieur du limagon générateur.

-
C

§ 27. — Enfin, dans le cas de la sphere

F;3.8

(N —a)? + Y2 4 Z2 — R = 0,
Péquation de (s,) est la suivante:
(22 + y2)* — '16a2m2[(R2 — )22 + (R? — a? — z‘-’)y2] — 0 .

Cette écriture fait prévoir la forme des sections paralléles a
20y, donc celle de la surface, lieu de ces sections.

Septembre 1930.

1 En coordonnées polaires
2=+ 16abcosh .



	SUR CERTAINS VOLUMES ALGÉBRIQUES
	1. Volumes a parois cylindriques.
	2. — Volumes a parois coniques.
	3. — Volumes a parois conoïdales.


