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SUR GERTAINS VOLUMES ALGÉBRIQUES

PAR

Pierre Papillon, Prof, au Lycée (Mulhouse).

§ 1. — A diverses reprises1, G. Humbert appliquait à la
Géométrie le théorème d'Abel, calculant, entre temps 2, quelques
aires sphériques; vingt ans après 3, M. A. Buhl était amené à

reprendre ces questions et les complétait par de fort intéressantes
recherches sur les volumes.

Nous nous proposons d'étudier systématiquement ces sommes
abéliennes de volumes à parois latérales cylindriques, coniques
ou conoïdales; de curieuses associations se découvrent ainsi entre
la sphère, par exemple, et des surfaces d'apparences très
différentes, voire même entre des courbes planes.

Nombreux sont les développements auxquels se prêtent les

formules générales; mais peut-être serait-il fastidieux, et partant
maladroit, d'en user indéfiniment.

1. Volumes a parois cylindriques.

§ 2. — Expression générale. •— Une cloison étant prise sur une
surface (5), un cylindre de base cr découpe sur une surface
algébrique (S), sans relation nécessaire avec (5), un certain nombre
de plages 2i qui limitent, avec un plan de section droite (P),
autant de volumes Vi; proposons-nous d'évaluer la somme

1 Journal de Mathématiques, 4me série: tomes III (1887), V (1889) et VI (1890).
2 1888.
3 Annales de la Faculté de Toulouse, 3me série: tomes II, VI et VII.
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210 PIERRE PAPILLON

Soient jjl, Mi? m les points de (P), ^ et o* sur une même normale
au plan de base,

FM.
„

%

' *
F m

a, jS, 7 les cosinus directeurs de la normale en m à (s), enfin

F (X Y Z) 0

l'équation, algébrique, de (S).
1. Rapportons l'espace à un trièdre trirectangle dont la face

xOy coïncide avec (P).
Il est évident que

SVi JJ (SZ.)Y d,

avec, (x: y, z) désignant les cordoonnées de m,

zi Pi • 2 '

F (x y p^z) 0

)zy

Bref

^ =//<%)

F (œ y ?i0

Si l'on ordonne d'ailleurs le polynôme entier F par rapport
aux puissances décroissantes de Z,

F Zpf(X, Y) + Z, Y) + Z""s(->(\ Y) +

il vient

(i)

2. Dans le cas général où le plan (P) admet pour équation

XX + uï + vZ — d o
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/, ja, v, désignant des cosinus directeurs,

\\ j J* F i\J (a a + ;j.|3 + -

- J Pi F m (A a -f u.ß + v y) d a

Or

et

Fm À£c -f- a?/ -f- vs — d

X. x + a(c. — 1) (Xa; + ;j.y + ^ -
Yi y+ M-- (•••

z4 ,+»(...

I:V YV zi) 0
•

Bref

(SV, J (vp.) (A# + a?/ -f vz — <i) (aa + ixß + v y) cZ cr

/
\ avec

F (a: oII+ri.++

(2)

§ 3. — Reprenons l'expression (1). Les cloisons étant au
nombre de p, si i se trouve située sur la surface (s0) d'équation

2/)

/'?(•« • 2/)

ou
pztf (x, 3/) + y) 0

il vient

SVj J1 pzTdct
cr

— p I I zyd? •
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les volumes Vi ont donc pour moyenne arithmétique le volume
cylindrique de même nature que limite la cloison <r.

A (S) se trouve donc associée la surface (s0) particulière: lieu

(2 Z \x, y, 11), c'est-à-dire du bary-

centre des points isomassifs -— centre des moyennes
distances —; c'est la surface conjuguée de la direction z' z relative
à la surface donnée. De là ce théorème qui lie simplement celui
d'Abel à la théorie des polaires:

Les volumes que détermine un cylindre sur une surface
algébrique ont pour moyenne arithmétique celui que ce même cylindre
découpe sur la surface conjuguée de la direction des génératrices
relativement à la surface donnée.

Lorsqu'en particulier le coefficient <p(x, y) est nul — il en est

ainsi, en particulier, quand xOy est un plan de symétrie pour (S)

— la somme abélienne l'est également: la surface conjuguée est
le plan xOy.

Plus généralement, si

ax + by — h

9 c

la surface conjuguée est plane et le volume moyen est celui d'un
tronc cylindrique élémentaire; les surfaces (S) ont pour équation

Zv (aX -f bY + cZ — h) 9 (X Y) + 0 (X Y) + 0

§ 4. — Cas des quadriques. — Si, dans l'équation précédente,

p — 2, nous obtenons pour surfaces (S) les quadriques; directement,

à l'aide de

AX2 + + 2BXY + + 2CX + + D 0

il vient
9 A"

4 2(B's + By + C") ;

l'équation de (s0),
B'x + By + k"z + C" 0

est celle du plan diamétral conjugué de la direction :

Les volumes que détermine un cylindre sur une quadrique ont

pour moyenne arithmétique celui que ce même cylindre découpe

sur le plan diamétral conjugué de la direction des génératrices.
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§ 5. — Cas des cyelides. — Prenons les cyclides d'équation

(X2 -f Y2 + VAf — 4h (AX2 + BY2 4- CZ2)

— 4 /r (aX + ÔY + cZ) ± Z4 0

Pour utiliser l'expression (2), formons l'équation en p

A (ax + ;j.y + v3 — d) 4 4 d? (À a; + — d)n +

de sorte que

le volume moyen est celui que le même cylindre découpe sur le

plan de base et le plan "parallèle mené par l'origine. Ce résultat
remarquable est celui que donnerait une sphère centrée à cette
origine.

§ 6. '— Il est immédiat de constater que la surface (,s0) ne

dépend pas du plan (P): lui substituer, en effet, un plan (Pr)
revient à ajouter ou à retrancher à Vt le volume d'un tronc

§ 7. — Noyau cylindrique. — Analogue à la question des

sommes abéliennes est celle des noyaux cylindriques, relative
aux surfaces (S)

Z2ç(X Y) -f Z6(X Y) 4- W(X Y) » 0

Le volume de ce noyau, dont les génératrices sont parallèles
à z'z, a pour expression

cylindrique, donc à la moyenne
1 ce même volume.

Et comme
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il vient

PIERRE PAPILLON

N f f
T

Si l'on trace a- sur la surface (Sj) d'équation

a/y-' — i ©w
'— z

OU

zV(z y) + 4 9 0 — ^ 0

le volume du noyau est celui du cylindre de même nature que
limite (5!). Ici (P) ne joue aucun rôle.

Considérons alors une quadrique à centre ; rapportons-là au
diamètre parallèle aux génératrices du cylindre et au plan
conjugué en sorte que son équation s'écrive

AX2 + A' Y2 + A"Z2 -f s 0 It ± 1)

Ici
o A" <1 0,
H Ax2 -f A'y1 4- s

et (sj) a pour équation

z2. A"~ + \A"[Ax2 + A'y2 + s) 0

OU
A" A"

Ax~ -f- A y2 -j- -y z'' ~~jr~ -S" -)-£ 0 ;

c'est la transformée de la quadrique (S) par la dilatation
(0(xOy, z'z,2).

En particulier, à la sphère

X2 -f Y2 + Z2 R2

correspond l'ellipsoïde de révolution allongé

1 Les axes de coordonnées ne sont plus rectangulaires; mais les intégrales donnent des

expressions proportionnelles aux volumes.
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2. — Volumes a parois coniques.

§ 8. — Expression générale. — Substituons au cylindre un
cône et calculons

Soient Mi? m les points de li et de cr sur une même droite
issue du sommet du cône,

ôïï.
Om

a, /3, 7 les cosinus directeurs de la normale en m à (s).

Rapportons l'espace à un trièdre trirectangle ayant pour
sommet celui du cône; il vient

sYi=f + h
I T

i F (Pi x Pi y :Hz) o

Si l'on ordonne d'ailleurs F par rapport aux puissances
décroissantes de XYZ,

F EE Y, Z) + *m_l(X, Y, Z)

+ (F
m-9

X r Y, Z) + + <t0

il vient

«I» <|>
0 Cj)

m-1 7U-2 0 m-3ïv- - U/(-¥+-s^-'1 +»+**
(4)

9. — Tout d'abord, la parenthèse

(j)m-1 o
-TT" + o — 3

<]>

m



216 PIERRE PAPILLON

étant homogène et d'ordre — 3, peut être égalée à la somme

ôF
f

bG a H
bas ùy öz

dès lors, c désignant le contour de g*,

i dx dy dz j

XV, / x y z

F G H

D'autre part, toute modification laissant invariante la même

parenthèse n'altère point et ceci permet un grand nombre
d'associations entre surfaces (S); en particulier, si

(ï>3 — a <i> $ (i> _l 3 (F2 <î>
0 om-1 m m-1 m-2 ~ m m-3

les sommes précédentes sont nulles.
Nous n'aborderons pas le développement de ces questions;

M. A. Buhl a défriché ce terrain dans les quatrième et cinquième
Mémoires précités 1.

§ 10. — Lorsque o* appartient à la surface (sQ) d'équation

m

OU

1 / 1 0
(^m-1

Q
'^m-3 \ ,f

"Ts H à "à 6 — 1
»

1

^ ^\n 1 ^V/i-2 ^ ^Vi-l ®

il vient
i
- (*x + ßy + fz)di ;

les volumes Vi ont donc pour moyenne arithmétique le volume

conique de même nature que limite la cloison a* ; cette surface (s0)

est généralement de degré 3m.

§ 11. — Volume cylindro-conique. — Prenons pour (S) un

cylindre circulaire dont nous pouvons toujours prendre l'équation

sous la forme

F =E (X _ a)2 + Y2 - R2 0

i Pages 317-327; 195-204. Voir aussi Géom. et Analyse Int. doubles, pp. 8 et 30.



VOLUMES ALGÉBRIQUES 217

En cette hypothèse

m
x2 + y

m-'i
0 ;

(s0) a donc pour équation

2{x2 + y2)3 + 6 (x2 + y2)ax(a2 — R2) — 8a3x3 0

soit finalement1

(x2 Ar y'2)3 — ax[(a2 + oR2)x2 — 3 (a2 —- R2)?/2] 0

C'est un cylindre dont la base, sextique tricirculaire, possède
au sommet du cône un point triple.

1° a > R (sommet du cône intérieur au cylindre).
Les trois branches passant à l'origine sont réelles, les tangentes

en ce point ayant pour coefficients angulaires respectifs

ce point est du reste intérieur à la circonférence directrice

00

La courbe rencontre x'x au point d'abscisse

V^a (a2 + 3 R2) ;

[x — a)2 -f y2 — R2 0

1 En coordonnées polaires

p a[3R2 cos 0 + a2 cos 30]

Les valeurs maximum et minimum de p sont acquises pour

0 0

et, pour

et alors p — /a2 — R2

avec a > R
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Enfin, sextique et circonférence se coupent aux points de
coordonnées (fig. 1)

(a — —
\ a a

X

\((1 a \ /

y /* /°

A

2. a < R (sommet du cône intérieur au cylindre).
La branche tangente en 0 à l'axe y'y est seule réelle; la

sextique est intérieure à la circonférence (fig. 2).

§ 12. — Volume sphéro-conique. — Prenons pour (S) la sphère

d'équation
(X — a)2 + Y2 + Z2 — R2 0 ;

l'équation de (Sq) s'obtient en substituant y2 + z2 à y2 dans les

calculs du paragraphe précédent; soit.

(x2 + >'2)3 — ax[(a2 + 3R2)*2 — 3 (a2 - R2)/'2| 0

avec
r1 y2 4-

Ainsi (s0) n'est autre que la surface de révolution d'axe x'Ox
ayant pour méridienne la sextique déjà étudiée.
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§ 13. — Si, en résumé, nous associons à la circonférence

(x — a)~ -f- y2 — R2 0

la sextique

(xl — y2)3 — ax[(a2 — 3 R2) x2 — 3 (a2 — R2)*/"] 9 *

un cône de sommet 0 découpe:
1° Sur les cylindres droits admettant ces courbes pour

directrices,

2° Sur les surfaces d'axe Ox admettant ces courbes pour
méridiennes
des cloisons et -2 d'une part, une cloison cr d'autre part, telles

que le dernier volume conique soit la moyenne des deux premiers.

M

§ 14. — Pour les surfaces (S)

az2 + br-

[z2 + r1)- — (a2 2

(z2 -f r2 — 2ar)2 —

à méridienne conique, ovale de

surfaces (s0) sont les mêmes:

(z2 -f r2)3 — z(i

de révolution

— 1 0,
;2 ± b2r2) 0

- b2 (22 + r2) 0

Cassini, limaçon de Pascal, les

+ R r2) 0
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De là une association possible de méridiennes fort différentes ;

nous n'insisterons pas sur la détermination de ces méridiennes
associées.

3. — Volumes a parois conoïdales.

§ 15. — Expression générale. — Substituons enfin au cylindre
un conoïde droit et calculons ^Vi.

Soient, l'axe conoïdal étant confondu avec z'z, fx, Mi? m les

points de z'z, de et de o* sur une même parallèle au plan xOy

oc, /S, y les cosinus directeurs de la normale en m à (s).

Il vient

2Vi jJ^(2Pi)(a+̂ h)d° •

\ avec

F(Pi«» PiV a) 0

Si l'on ordonne d'ailleurs F par rapport aux puissances
décroissantes de XY,

F Afl(Xr Y, Z) + Aq_i +

Ai étant homogène et de degré i en XY, il vient

(5)

§ 16. — Posons

A! A
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appliquons à l'intégrale double la formule de Stokes

Ç Ç A(zx 4- ßy) dv Ç Pdix + Qdy
^ <T C

\ avec

f ôP _ &Q _ _ ö_Q _ ôP
^

hz.
1

kx î>y

Introduisant la fonction K, homogène et de degré — 2 par
rapport à xy, telle que

A —ds

nous obtenons
P y[K + Q(X, y)}

Q — x[K + Q(a; 2/)]

il étant une fonction arbitraire, homogène et de degré —2;
dès lors

- Y. i-f fK + Q] (y dx — x dy)

Si donc g appartient à une surface (Sj) d'équation

K (x y z) -f* il (x y) h

ÏV. h,% ;

la somme des volumes équivaut au volume cylindrique de

hauteur h et dont la base est la projection de g sur xOy.
Lorsqu'en particulier (S) est un cylindre à génératrices

parallèles à z*z,
K A*

et les surfaces (s^ ont pour équation

Az -f il — h

car A ne renferme pas la variable z.

A toute surface algébrique (S) peut être attachée une famille
de surfaces (s^ telles qu'un contour g y tracé donne un conoïde

pour lequel la somme des volumes limités aux différentes cloisons
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2i qu'il découpe sur (S) soit équivalente au volume d'un cylindre
droit de hauteur constante ayant pour base la projection de

sur le plan directeur du conoïde.
Ces surfaces ne dépendent que des trois premiers termes de

l'équation de (S), ordonnée suivant les puissances décroissantes
de XY:

Aa(x Y Z) + Aq_{ (X Y Z) + + A0 » 0

§ 17. — Surfaces (Sj) attachées au cylindre circulaire

(X — a)2 + Y2 — R2 0

Dans le cas actuel

\ x2 + y2 Aq_{ — 2ax Aq_2 a2 — H2
f

et
4fl2x2 a2 — H2

~ (r* + r)2 £2 + y2

l'équation générale de (Sj) s'écrit, tous calculs faits,

(x2 + y2)2 — ^ [(R2 + a2)x2 + (R2 — a2)y2~\ + A (x y) 0

0 étant homogène et de degré + 2.

En supposant nulle cette dernière fonction, s'obtient la surface

(/) particulière

(X2 + yY_[(R2 + a2)*2 + (R. _ 0

ou, en coordonnées cylindriques

hr2
* ~ 2 2 6 — R2

'

Or, la quartique bicirculaire

(*' + yT - (A*2 + '¥) 0

est la podaire centrale de la conique
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(s est donc le lieu des podaires centrales des coniques

ar.
_j y——-— 1 0

2j(R»+ #} 2^(Rs- a*)

sections du paraboloïde

— R2 + a2 -T H2 _ a2

h h

par les plans normaux à son axe.
1. R > a (axe conoïdal intérieur au cylindre).
Le paraboloïde est elliptique, les coniques de section sont des

ellipses.
Les deux formes des podaires sont reproduites dans les

figures 3 et 4.

2. R a (axe conoïdal génératrice du cylindre).
Il n'y a plus qu'une seule cloison 2; ce cas doit donc être

écarté.
3. R < a (axe conoïdal extérieur au cylindre).
Le paraboloïde est hyperbolique, les coniques de section sont

des hyperboles; les podaires ont un point double au centre de

ces hyperboles.
Lorsque, dans le premier cas, a est nul — l'axe conoïdal est celui
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du cylindre et les deux volumes conoïdaux partiels sont équivalents

— la surface (/) se réduit au paraboloïde de révolution

R2
X2 A y2 — 2 — z 0 :

une vérification partielle serait très aisée.

§ 18. Surfaces (Sj) attachées à la sphère.

(X — a)2 + Y2 + Z2 — R2 0

Ici
i 4 a2 x2

2
s2 + a2 — R2

— (x2 + y2)2 x1 + y2

et les surfaces (s-^ ont pour équation, calculs effectués,

3 [4 a2x2 — 2 [x2 + y2) [a2 — R2)]s — 2 z*(x2 + y2)

— 3 h(x2 + y2)2 + (-> (x y) 0 ;

0 étant homogène et de degré 2.

En supposant nulle cette fonction, on obtient la surface

particulière (s') d'équation

2z^(x2 + y2) + 3h(x2 -j- y2)2 — 6z£(R2 -f- a2)x2 + (R2 — a2)£/2] 0
•

Ecrivons-la
2 z

(X2 + y2)2 —
h

RS + a*~ -ïK + (R2 ~ 0

(/) apparaît comme le lieu des podaires centrales des coniques,
sections parallèles à xOy de la surface

y2
-j y

" 1=0.
2KR2 + a2-^) 2KR2-a2-^

Remarquons que ces coniques ont pour lieux de leurs sommets
les paraboles semi-cubiques

2 s2

y 0 «s - 2^.(11« + «»)
3fc

et
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dans le cas des sections elliptiques (R < a), ceci peut servir de

définition à ces anti-podaires.

§ 19. — Reprenons l'assertion évidente qui permet d'associer
diverses surfaces (S): toute modification des Ài7 donc de (S),

qui n'altère point A n'altère point 2 \Y.
Nous donnerons deux exemples.
1. Cylindres associés au cylindre circulaire

(X - I)2 + Y2 — a- 0

Nous avons trouvé

4/2x2
2

^ — 0/2

(x2 + y2)2
'

x2 + y2

Substituons à la base circulaire l'ovale de Cassini

[(X — iy + Y2]2 =F b2(X — ly — a2 Y2 0

ou le limaçon de Pascal

[(X - l)2+ Y2 -2 a(X — l)]2 - 62[(X — iy + Y2] 0 ;

il vient respectivement

^
16/-'x2

2
2/2 (Sx2 -y y2) b2 x2 — a2y2

~ (x2 + y2)2
*

* x* + y2

et

v —
16 (a _ 2

"b y2) + 4a(a + 21) x2 — b2 (x2 + y2)~ (x2 A y2)2
'

x1 + y2

Dans ces trois cas, A est donc de la forme

2
Aie2 + B?/s

(x2 + y2)2

et les cylindres peuvent être convenablement associés; la surface
(/) attachée à cet ensemble

(x2 + y2)2- 2UAx+ V) 0

L'Enseignement mathém., 30e année, 1931. i;>
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est le lieu des podaires centrales des sections normales à l'axe
du paraboloïde

2. Surfaces de révolution associées à la sphère

(X — l)2 + Y2 + z2 — o

Nous avons trouvé

412 x2 z2 + l2 — a2

(x2 + y1)2
'

x2 + y2

Substituons à la méridienne circulaire du plan #0?/ une conique
ou un ovale de Cassini d'axe parallèle à z'z\ nous obtenons les

surfaces de révolution

a [(x — iy + y2J + b7J — î o

et
[(X — ly + Y2 + z2]2 =F è2[(X — l)2 + Y2] — a2Z2 0

dont l'axe est parallèle à l'axe conoïdal. Il vient respectivement

^ rA2x2
_

al2 + bz2 — 1

~~ {x2 + y2y x2 + y2

et

—
16 Px2

__
o2*2(8*2 + y'2) T b2(x2 + y2) + 2 z2 (x2 + y2)

~' (x2 + y2)2
** + y2

Dans les trois cas A est donc de la forme

o
Ax2 + By2 + Cz2{x2 -f y2)

(x2 + y2)2

les surfaces peuvent être convenablement associées ; la surface

(/) attachée à cet ensemble,

(x2 + y-)2 — 2
j~ (Ax2 + i^r) — 2

—J- (x2 + y2) 0

OU

(X2 + y2)2 - 2^[(A + Vz*)x* + (B + Vz2)y2] 0
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est le lieu des podaires centrales des sections normales à l'axe
de la surface cubique

1 0.
T<a + '*) Ï'B + Dz2)

Ces coniques ont pour lieu des sommets les paraboles semi-

cubiques

y ~ 0 z2 2
pr-

(A -f- Ds2)

» *= 0 y 2-* (B + Ds2) ;

dans les cas des sections elliptiques ceci peut servir de définition
aux anti-podaires car les deux paraboles sont réelles.

§ 20. — Reprenons l'expression (7) et supposons c tracée sur
la surface (s0) d'équation

ou

il vient

V K
" V

1

qXq + 2AgAg_2 — A^_1 — 0

-vi yy ^ (aa; + ?y)da

les volumes ont pour moyenne arithmétique le volume conoïdal
de même nature que limite la cloison <j.

Lorsqu'en particulier (S) est un cylindre dont les génératrices
sont parallèles à z'z, (s0) est un cylindre; le degré de sa directrice
plane est 2q.

§ 21. — Volume cylindro-conoïdal. — Prenons pour équation
du cylindre circulaire (S)

V (X — aV + V2 - R2 o
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En cette hypothèse

Aq ~ x2 + y2

— 2 ax

Aq_2 a2 — R2

(s0) a pour équation

(x2 + y2)2 — [(R2 -f <P)x2 + (R2 — a2)?/2] 0 ;

la directrice de ce cylindre est la podaire centrale de la conique

*2
+ —yi i o •

R2 + a2 ^ R2 — a2

T

\\ \
0 Cl I X

Fi 5 P. ^ a

ellipse ou hyperbole selon que R est supérieur ou inférieur à a,
c'est-à-dire que l'axe conoïdal est intérieur ou extérieur au
cylindre donné.

§ 22. — Volume sphéro-conoïdal. — Dans le cas de la sphère

(X — a)2 + Y2 -f Z2 — R2 0

on obtiendra pour (sQ) la surface d'équation

{x2 + y2) (x2 + y2 + z2) — (R2 + a2)x2 — (R2 — a2)y2 ~ 0
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Sous la forme

(X2 4 y1)'1 — [(R2 4 a1 — z2) x2 4 (R2 — à2 — s2) y2] 0

nous la reconnaissons comme le lieu des podaires centrales des

sections, normales à Faxe conoïdal, de la surface

+ r)—11 _ __ 1 — o
R2 4- à2 — z'2 R2 — a2 — z2

Ces sections sont d'ailleurs des coniques à centre dont les

sommets décrivent les circonférences

y 0 x2 4 z'2 R2 4 a2

x 0 y'1 f s2 - - -• R2 — à2 ;

lorsque R est supérieur à a ces deux courbes sont réelles et la
propriété envisagée peut servir de définition aux anti-podaires.

§ 23. — Prenons encore les cyclides d'équation

(X2 4- Y2 4 Z2)2 — 4 h (A X2 4 BY2 4 CZ2)

- 4 k (aX 4 6Y 4 et) ± Z4 0

l'axe conoïdal étant toujours z'Cte.

Dans le cas actuel

Aq (a? 4 y2)'2

-Vi 0
'

Ag_o S 2 Z2 (4 4 y2) — 4 h(hx2 4 B^2) :

l'équation de (s0) s'écrit

(x2 4 y2)2 4 Z2 (x2 4 y2) — 2h(Ax2 4 By2) — 0

OU

(x2 4 y2) (x2 4 y2 4 z~) — -h(\x2 4 By2) 0 ;

c'est la surface trouvée au § 21, sauf à poser

2 A h R 2 4 a2

2 HÄ R2 — a2
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Ce résultat lie donc, une fois de plus, sphères et cyclides;

il se présentait un résultat analogue dans l'étude des aires ou des

volumes cylindriques et coniques 1.

§ 24. — Considérons le cas des surfaces (S) d'équation

A2 + Ax + A0 0

dont les sections normales à z'z sont rencontrées en deux points
par tout plan contenant z'z. Un conoïde y détermine deux nappes,
et

-vi ï S!(?i+pl)(a* +
v

donne l'expression du noyau conoïdal que limitent 11 et 22 dans
le seul cas où les deux nappes se trouvent de part et d'autre de

l'axe z'z: axe conoïdal intérieur au cylindre ou coupant la sphère,
dans les cas précédents.

Dans le cas contraire, le volume du même noyau a pour
expression

n jff | pi — ç-l\(«« +

c'est-à-dire

K — J J f — 4A0 Aa {ax + ßy) ds

Si donc o" est tracée sur la surface (s2) d'équation

A'+WA'A — A4 0
2 2 10 1

le volume du noyau équivaut à celui du conoïde que limite

§ 25. — Prenons l'exemple du cylindre circulaire

(X _ a)2 q. y2 _ i;2 o

1 A. Buhl, Annales de la Facullé de Toidoase, t. VII, 5me mémoire, pages 198-199.
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L'équation de la surface (s2) s'écrit, tous calculs faits1,

(x2 + y~Y — 16a2£2[R2#2 -f (R2 — a2)y2~\ 0 ;

il s'agit d'un cylindre à directrice du huitième degré avec point
quadruple à l'origine.

1. R < a (axe conoïdal extérieur au cylindre; noyau véritable)
(fig- 7)-

Les tangentes au point multiple sont les tangentes à la
circonférence directrice; d'autre part l'axe O# est rencontré au
point d'abscisse 2^/Ra, intérieur à la circonférence précédente.

2. R > a (axe conoïdal intérieur au cylindre) (fig. 8).
Les tangentes précédentes n'existent plus; le point sur 0:r,

toujours intérieur à ladite circonférence, subsiste.
Dans les figures 7 et 8 les demi-courbes seules ont été dessinées.

§ 26. — Un résultat simple s'obtient encore en considérant un
cylindre dont la directrice est le limaçon de Pascal

(X2 + Y2 _ 2aX)2 — b2 (X.2 + Y2) 0

l'axe conoïdal étant ici la ligne des points doubles z'z.

1 En coordonnées polaires

P4 16a2 cos2 Çj (R2 — a2 sin2 0)



232 PIERRE PAPILLON

Avec
A2 (X2 + y2)2

Aj =E — 4 ax(x2 + y2)

A0 ka2x — è2(x2 + y2)

s'obtient l'équation 1 de (s2) :

(x2 + 2/2)3 — 64 a2 b2 x2 0

Ce cylindre offre une directrice sextique tricirculaire, dont la
forme rappelle celle de la figure 2 et se trouve entièrement
comprise à l'intérieur du limaçon générateur.

y

0 ta I

f'3

X

.0

§ 27. — Enfin, dans le cas de la sphère

(X — a)2 + Y2 + Z2 - m 0

l'équation de (s2) est la suivante:

(,x2 + y2)4— 16a2£2[(R2 — z2)x2 + (R2 — a2 — z2)y2^ 0

Cette écriture fait prévoir la forme des sections parallèles à

xOy, donc celle de la surface, lieu de ces sections.

Septembre 1930.

1 En coordonnées polaires
é2 ± 16 ab cos 6
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