**Zeitschrift:** L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

**Band:** 30 (1931)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Buchbesprechung: Louis Cagniard. — Les variations du Pouvoir inducteur spécifique des

Fluides. (Mémorial des Sciences physiques, dirigé par Henri Villat et Jean Villey; fasc. XVIII.) — Un fascicule gr. in-8° de 62 pages. Prix:

15 francs. Gauthier-Villars & Cie. Paris, 1931.

Autor: Buhl, A.

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

## Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 26.11.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

lation électrique, directe ou indirecte, est une merveille. La facilité de transporter les effets désirés à des distances quelconques permet d'instituer des réseaux régularisés comme par une sorte de conscience partout agissante. Si le réseau ne pense pas, il semble, au moins, qu'il vive, d'une vie multiple conservant, conciliant des vitesses, des tensions, des fréquences. Et il semble aussi qu'on ne soit pas condamné à se contenter éternellement d'un à peu près. L'exposé de M. Barbillion laisse entrevoir des solutions définitives.

A. Buhl (Toulouse).

Louis Cagniard. — Les variations du Pouvoir inducteur spécifique des Fluides. (Mémorial des Sciences physiques, dirigé par Henri Villat et Jean Villey; fasc. XVIII.) — Un fascicule gr. in-8° de 62 pages. Prix: 15 francs. Gauthier-Villars & Cie. Paris, 1931.

C'est à Faraday, Mossotti, Clausius que remonte la notion de pouvoir inducteur spécifique, en abrégé de P. I. Les idées de Maxwell sur le rôle des diélectriques s'y mêlent forcément mais, malgré la Théorie de Debye et les efforts de Langevin, ce rôle est encore loin d'être précisé de façon satisfaisante. Actuellement, il devient, de toutes manières, extrêmement remarquable, avec les formes actuelles de la Physique théorique, avec les discontinuités quantiques de la polarisation diélectrique, les notions d'équilibre statistique et l'intervention de considérations probabilitaires d'abord imparfaitement maniées mais qui, étant dans la nature des choses, sont plus à perfectionner qu'à proscrire.

Les résultats expérimentaux ont aussi leurs incohérences, très excusables d'ailleurs, les variations du P. I. des liquides, avec la pression, demandant des appréciations de capacité extrêmement délicates. La détermination du P. I. des gaz est plus difficile encore mais les résultats acquis sont mieux d'accord avec les faits que ceux relatifs aux liquides car, dans ce dernier cas, on n'a pas le droit de négliger des actions intermoléculaires.

Ces actions entre molécules voisines ont donné lieu à une théorie « complète » de Gans, plus *indéterminée*, à vrai dire, que *complète*. C'est cela qui lui fait un succès facile, sans autoriser toutefois une négation de son ingéniosité. Il est difficile aussi d'accorder les différents théoriciens sur l'existence de dipôles dans tel ou tel diélectrique. En provoquant un état de dilution de molécules dipolaires on peut, semble-t-il, négliger les associations de dipôles; malheureusement on a surtout pris pour solvant le benzène généralement considéré comme dipolaire. La dipolarité engendre des phénomènes de dispersion dans le domaine hertzien.

Debye, s'inspirant d'une idée d'Einstein, traite la molécule dipolaire comme une sphère pouvant se mouvoir en milieu continu suivant les lois de l'hydrodynamique classique. C'est déjà compliqué et l'analogie est vague. Un diélectrique liquide, dans un champ tournant de haute fréquence, doit subir une rotation avec une orientation retardée des dipôles. Enfin des sols d'anhydride vanadique, découverts par M. Errera, ont un P. I. énorme, de caractère « caricatural »; mais il s'agit d'un colloïde, c'est-à-dire d'un corps en évolution continuelle. Le P. I. reste donc, pour bien des raisons, d'une étude aussi déconcertante que captivante.