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REPRESENTATION CONFORME 129

D’autre part, dans (111), si y améme covariant bilinéaire que w;,

’

7= wyy = — Ko, w,] ou divw = divg = K (113)
K étant la courbure totale du ds2 on a
Y= v, + d‘iﬁ
et 'équation du réseau cerclé se réduit a

a0 — ¥ = 0 ou ds*>. d(d — W) = 0 ; (l14)
ds

par suite ce réseau est alors un réseau angulaire (celui défini par les
lignes coordonnées dans le cas W = const.); cette forme de I'équation
suffit & montrer que la condition (113) est invariante par transfor-
mation conforme. On peut évidemment établir une classification
des réseaux cerclés au point de vue des transformations conformes
superficielles, mais la théorie de ces réseaux peut aussi se baser sur la
géométrie conforme spatiale (géométrie des sphéres), ce qui en facilite
I'étude; aussi nous ne donnons pas d’autres applications 1.

X. INVARIANTS DES FORMES ET EQUATIONS QUADRATIQUES.

31. Soit une forme quadratique
o® = Ldu® + 2Mdudy + Ndo? (115)

qu’on peut considérer comme décomposable d’une infinité de facons
en un produit de deux formes linéaires

w; = z(A,du + B, dy) w, = — (A,du + B,dv)

K| =

x étant un facteur arbitraire, A;, B;, A,, B, solutions des équations
A A, = L AB, - A, B, = 2M B,B, = N .

Nous avons indiqué (Equivalences) la formation réguliére des inva-
riants de la forme «(?) et les relations de ceux-ci avec les invariants des
formes @, et @w,, et nous avons vu alors qu’on se trouvait amené, en
posant

L. = A? N = B? (1'16)

111 est, d’autre part, intéressant de rapprocher cette théorie de celle des changements
de connexion (avec torsion) des surfaces. Cf. Thése, Note terminale.

[’Enseignement mathém., 30e année, 1931. 9
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a introduire la forme de Pfaff

w = Adu + Bdo (117)

a laquelle nous joindrons son adjointe positive

w, = i(— Adu + Bdy)

1
La forme quadratique
9 = — i(Ldu? — Ndo?) = o w; (118)

peut étre appelée, comme on s’en rend aisément compte, forme
bissectrice de la forme () et les formes linéaires dont elle est le produit
seront aussi considérées comme des formes de Pfaff bissectrices
(1re ou 2me) de @), Sans reprendre, pour les formes quadratiques, les
calculs faits pour les formes de Pfaff des invariants de formes propor-
~ tionnelles, nous allons nous contenter de mettre en évidence I'interpré-
tation géométrique des invariants. Les indices 1 et 2 étant affectés
respectivement aux formes @, et @,, en posant

A : A ;
— 1 pRin — 2 R
Q=5 =¢ Q= 3,
nous prendrons pour les formes @ et @;
O T 9 =
¢ = —1"2—? =9+ 3

et ceci justifie les noms donnés aux formes @, ®@;, 5®.

32. La forme «(» posséde un invariant du 1€r ordre

U § A EAY ’ ,
H:LN:7;< 2. " Va,/) = (22 — %4 (119)

qui est aussi invariant de I'équation «(*) = 0, et ne s’annule que si
«(?) est un produit de formes de Pfaff orthogonales; il sera commode

de poser

— 0
v = 2 2 M — AB cos2wm TR cos? 2w

P —. A%du® 1~ 2AB cos 2w .dude + B2do?
— P {e"?i? du? 4 (e%" -+ 8—21‘")du dy -+ P dvg} )

Le cas des formes quadratiques «(? a invariant u. constant présente
peu d’intérdt, Uétude de telles formes se ramenant aussitot a celle
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d’une seule forme de Pfaff, @ ou w; par exemple, et les facteurs
linéaires des formes «(® et (52 entrant dans un méme réseau angu-
laire. Cependant l'introduction de la forme bissectrice S attache
a une forme quadratique quelconque une forme del’espéce prédédente,
dont l'invariant du 1T ordrco est nul.

A partir d’un ds? arbitraire

ds? = W2dudp

on pourra comme précédemment traduire les invariants et les opéra-
teurs de la forme o(®» avec les parametres différentiels de ce ds? par
le moyen de seminvariants. La forme () sera semi-normale pour le
ds? si 4P = W2; autrement dit on pourra lui attacher un dg? cano-
nique: ds? = 4P du do.

Les opérateurs différentiels les plus simples de la forme () sont
ceux de sa forme bissectrice w, soit I, 3, ou ceux que nous en avons

déduit &), G; les quatre invariants du 2me ordre ainsi formés sont
D, T, et '

p= I, 0
ou 5 (121)
g = .
S = Gu =%(9-—6) 4
composantes de la forme invariante
dp:@p.w—}—%p.wi. (122)

Nous ne poussons pas plus loin le calcul des invariants, et ne
revenons pas sur le cas particulier des formes «{(¥ = 2M du dy.

33. Nous avons vu quon peut ramener le cas d’une équation
invariante «(?) = 0 & celui d’une forme invariante normée. En nous
en tenant au cas général, nous prenons pour facteur normant

Q =R? 4+ §? = go (123)
ou, par l'intermédiaire d’un ds?

Pulty W2 )
Q= —F—=q¢p ¢ (123")

d’ou la forme normale
0P = Qa® (124)
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qu'accompagne la forme de Plaff pseudo-normale *w = \/Q , le
facteur normant n’étant pas défini & partir de la forme @ seulement.
Considérons alors les formes

du = \/y.u U, (e“w du + et do)

\

(125)

\

o= Ao, (67 du + € do)

et les opérateurs *3,, *3, ou *@, *& attachés & *w, et de méme
Ou, 0p Oou &L, Y attachés & dy, de sorte que

. N g _ 0. )
Lz = A Yz = Ay

d’aprés les formules (39). On peut alors, pour former les invariants
de *«(), suivre deux voies légérement divergentes (Equivalences, nos
26 et 28). Dans le premier cas, on emploie les opérateurs attachés a
dp.; on rencontre d’abord I'invariant du 2me ordre

Pu B vy _ P )
v= o=y = £ (126)

qu’on retrouve de méme avec les opérateurs attachés & *@; puis 'on
obtient les invariants du 4me ordre

_ Ap _ Al —9) _ g _ |
=%, "= iy i ES ® = Y (127)

\

8::@%).

et I'on poursuit d e méme le calcul pour les invariants d’ordre supérieur.
Dans le second cas, on utilise les opérateurs de la forme *@; pour la
forme normale *¢(*), on a

_ 1
*Q:*P*G:*R2+*SZZ1 *p:’\/t *g = e

\/

et en posant
*R = cos 0 N *S == sinf

on retrouve l'invariant
0 =4¢—0 (126°)

d’ou les invariants suivants, qui s’expriment aussitdt avec ceux
précédemment calculés. Entre les opérateurs de dyp. et *w, on a d’ail-
leurs les relations

*3, = e“iﬂ‘au *¥0) = cos 0. &L — sinl. Yy 128)
¥ — o3 *© = sin0.L 4 cosl. Yy

14 ¢
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Pour une forme *»®?) générale, pour laquelle ® =40, ou O'(w, ) 720,
nous avons montré que les invariants wu, =, ®, © sont suffisants pour
la conservation de Iéquation «® = 0.

34. Au point de vue géométrique, nous considérons que I'équation
a(®) = 0 définit un double faisceau, ou faisceau du second ordre, de
lignes tracées sur une surface; Péquation B®) = 0 définit le double
faisceau bissecteur du précédent, et @ =: 0 est I'équation d’un faisceau
simple, considéré comme premier bissecteur. Le faisceau d’équation
du = 0 est celui le long duquel I'angle d’ouverture 2, du faisceau
initial est permanent: # est I'inclinaison du faisceau dy. = 0 sur le
faisceau bissecteur @ = 0; dans le cas général © %0, les lignes

= const. et les lignes # = const. forment des faisceaux différents.

Il sera d’autre part naturel d’utiliser la représentation sur un
d*s? canonique défini par

*W? — 4y

o, = 4*P (129)

sur lequel les formes *@® et dyp. sont semi-normales, donc le faisceau
dp. = 0 un faisceau de courbes paralléles, avec Ay = 1.

Au point de vue de lisothermie, on pourra distinguer les cas
suivants:

1o L’mvariant I de la forme @ est nul, ou Ag = 0; le double faisceau
bissecteur est alors isotherme, et nous pourrons dire que le double
faisceau o) = 0 est hémi-isotherme.

20 Aw = 0; avec p = cos? 2w, ¢ = Qu, on traduit facilement cette
condition avec les invariants de I'équation () = 0. Ceci exprime que
les deux faisceaux simples appartenant & «® = 0 font partie d’un
méme ensemble (I,).

3° On a simultanément

Ao =0 Ao = 0 ; (130)

alors les faisceaux simples de I'équation »(® = 0 font partie d’un
méme ensemble isotherme, comprenant aussi les faisceaux de 5 = 0;
nous dirons que ces conditions (130) sont celles d’holo-isothermie
de «¥ = 0.

XI. DEUX FAISCEAUX QUADRATIQUES DE LIGNES.

35. Nous avons, au Chapitre VI, considéré implicitement un double
faisceau orthogonal avec les formes adjointes @ et @;, et montré les
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