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124 P. C. DELENS

siques restent constantes étant différentes des lignes %* = const.;
dans le dernier cas, tous les invariants du faisceau m = 0 restent
constants le long des mémes lignes z = const.

IX. PROBLEMES OU INTERVIENT LA REPRESENTATION CONFORME.

26. A un faisceau de courbes donné, d’équation 5 = 0, se rattachent
naturellement de facon invariante les courbes z = const., z étant
un invariant quelconque de I’équation, et les invariants des courbes
ainsi introduites facilitent 'interprétation géométrique des invariants
d’ordre supérieur de I’équation donnée. D’autres familles de courbes,
se rattachant & des invariants relatifs, invariants brisés, etc., sont
également intéressantes & considérer; la plus simple est la famille de
courbes ¢ = const., et les relations de ce nouveau faisceau avec le
faisceau donné interviennent souvent dans les propriétés géomé-
triques: ces courbes ¢ == const. sont en effet les isoclines conformes
du faisceau donné par rapport au systéme isotherme de lignes
coordonnées X = const., Y = const.

Les courbes W = const. sur un ds? donné sont aussi intéressantes,
mais elles se rapportent seulement & une représentation plane du ds2
Considérons plus généralement une équation @ = 0, et introduisons
les formes semi-normales pour deux ds? en correspondance

ds? — Widude  ds' — W'2dudp (101)
W
R V4
® =y w S = WV

1 1 1 2\/p

v WI
P o= (102)

\)1

On a donc w, == rw;, et en appliquant les formules relatives aux
formes proportionnelles (Chap. I1I), on obtient sans peine les modifi-
cations que subissent les invariants euclidiens attachés aux courbes
se correspondant dans une représentation conforme entre deux
surfaces. Les courbes r = const. interviendront ici & coté des courbes
¢ = const.; nous allons en donner quelques exemples: les courbures
géodésiques des courbes w = 0 sur les deux surfaces en question sont
liées par la relation

(D, + D)) = _,1:(1)1 + @, log 1) (103)

’ 1
D, = —
1 -
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qu’on obtient encore en utilisant les formules

D, = 0), log W + (EX Di = OD; log W’ + %iﬁp
I3 1 ‘\~/ 1 oo v
3, = - 09, G, = - 6, W = rW .
r r

On déduit en particulier de la formule (103): il est toujours possible
de représenter conformément un faisceau de courbes non géodésiques
suivant un faisceau de géodésiques, et pour mettre en correspondance
conforme deux faisceaux de géodésiques, il est nécessaire et suffisant que
ces faisceaux sorent ceux des courbes r = const., suivant lesquelles le
module de la représentation reste constant. On peut aussi, pour les
relations entre invariants euclidiens, faire appel aux formules
vectorielles.

g = g — Vlogr (104)

/

4
d, = rd, t, = rt; V/'logr = Vlogr
ou l'on suppose les deux ds? représentés sur une méme surface.

27. Nous modifierons légérement ici les notations précédentes pour
reprendre celles de notre Thése; au point courant m d’une surface
est attaché un repére euclidien ma, a, n, de sorte que

dm = o,a; + ©,a,
wy = Ay (e, o)day wy = Ay(ay, %y)day ;
Pindice s étant affecté aux opérations superficielles, nous posons

d(I) — (1)1(01 + (bz())z VS(D == (blal + (I)zaz

pour une fonction scalaire ®(ay, «,) déterminée sur la surface. Le
covariant bilinéaire o, de », introduit la forme de Pfaff a,, et les
vecteurs f, g, par

7
0y = [w, w,] rot a;, = lfa'zls = g X 3,
f = g3, + g3, g =1t = —ga + ga, .

Soit une premiére application au probléme des congruences de nor-
males, traité par Beltrami, Laguerre, etc.; les droites [mu], u étant le
vecteur unitaire

U = sinl.a, + cosf.n

forment une congruence de normales s’il existe un point

P = m } Au
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tel que le déplacement dp soit orthogonal & u, donc
uXxdp=uxdm-+di =0 (105)

équation qui exprime que u X dm est une differentielle exacte, donc
u un gradient (spatial)

U= —VA=VF(a)

V = sinf.a, = VSF(°‘1) .

La condition d’intégrabilité de I'équation précédente

sinf.o, +drA =0 (105")

s’écrit
sin 6w, w,] 4 [d(sin0).w,] = 0 . (106)

En écartant la solution sin @ = 0, correspondant aux normales
a la surface, et posant
log sin = ©

il vient

[fa’z]s + [Vs®'a’1]s = (g_— Vs‘@)) X a‘2 = gl — ®2 - O ¢ (107)

28. Une solution bien connue est obtenue quand les lignes du
champ projeté, de tangentes a,, forment un faisceau de géodésiques
g, =0; on a alors ® = G(«,), fonction arbitraire (# == const. en

particulier).
Revenons au cas général, et soit O0 une solution particuliére de (107);

alors
0 = 0, + G(a) sin§ = ¢ sin 0, (108)

est la solution générale; 1l suffit donc de connaitre une solution
particuliére &, de
(g —V,0) X a, =0.
Si les lignes du champ projeté, a, = const., sont isothermes et si

le ds?, rapporté a ces lignes et leurs trajectoires orthogonales, a la

forme
. ds? = W2(dX2 4 dY?)

la formule (61) montre qu’il suffit de prendre

C , w
B, = —w -+ ¢ sin90=—w—- <9“=7>

¢, G étant des constantes.
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La méme solution est valable si la forme précédene du ds? est
rapportée & un systéme isotherme que les lignes «, = const. coupent
sous angle ¢ permanent (constant le long de ces lignes) puisquon
a alors

g =—Vu 4+ JVo JVo x a, = 0 o = H{(a,) ;

une représentation conforme de la surface suivant le di? = da? 4 dy?
fait alors correspondre un faisceau de droites aux lignes du champ
projeté.

Enfin, dans le cas général, il suffit de méme d’effectuer une repre-
sentation conforme transformant en géodésiques les lignes du champ
projeté; g = g — V;log r étant alors porté par a,, il reste a satisfaire a

(Vs lOg‘?’———VS@) X 8y = 0

d’ou la solution particuliére

sin 60 = CI‘ ¥

En résumé, les transformations conformes permettent de déduire
la solution générale du probleme du cas particulier ou les lignes du
champ projeté sont des géodésiques, le vecteur v du champ projeté

participant & la transformation conforme (superficielle) qui raméne

le faisceau de géodésiques aux lignes de ce champ; le vecteur u se
déduit ensuite de sa projection v.

29. Comme seconde application, nous donnerons quelques indica-
tions sur une théorie nouvellement développée; celle des réseaux
cerclés (zyklische Kurvennetze)l; un tel réseau est formé par les
courbes d'un surface dont les cercles osculateurs sont, en un méme
point m, cosphériques a un cercle orthogonal & la surface en ce point,
et est défini par une équation différentielle du 2me ordre. Soit u le
vecteur unitaire suivant le diameétre de ce cercle, issu de m, tangent
a la surface; le cercle, de rayon p, est défini en chaque point par le

u . .
vecteur w = — ou par le vecteur perpendiculaire v = — Jw.

Un repeére sﬁperﬁciel arbitraire ma,a, étant choisi en tout point de
la surface, soient t et q les tangente et normale unitaires aux lignes
du réseau cerclé, g la courbure géodésique (suivant q) d’une ligne
d’un faisceau contenu dans ce réseau

I

fxt=¢g xq.

o
o

1'W. BLAscHKE, J. Rapon: Ueber konforme Geometrie, Abh, Hamb., 4, 5 (1925,
1926). Exposé de T. Takasu: Differentialkugelgeometrie, Tokohu Sc. Rep., 17 (1928).
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Soit ® I'angle d’une ligne du réseau avec la premiére ligne coor-
donnée, & laquelle sont attachés les vecteurs f,, g, = Jf,; d’aprés la
formule (61), on a

f=f +Vd. (109)
La propriété géométrique indiquée se traduit aussitot par
§=WX(qg=vVv Xt

donc I'équation différentielle cherchée est

dm

(fp + V,®) Xt =v X t t:'&? (110)
ou, avec les‘ formes de Pfaff
w, = f;, X dm y =V X dm
gE_____"’w;dq’:_;;. (111)

Sous forme entiére, cette équation s’écrit encore

G—ryds® =0 (1117)
avec
G = ds? (wy, + dD) = (wi - m:)wlz + o dw, — w,dw, .

L’équation G = 0 est I'équation du réseau des géodésiques (eucli-
diennes) de la surface: c’est un cas particulier de réseau cerclé
avec y = 0.

30. La transformation conforme

_ — 1 (dlogr).
d32 o 1‘2 ds2 g = - ( B _______1
g+ — >

~
>

donne a I'équation (111) la forme

7.+ (d logr);
ds

Il

[

(112)

SOl

2.
d

v/

ce qui montre que toute transformation conforme change un réseau cerclé
en un autre de méme espéce, ou conserve ’ensemble de ces réseaux.
Si y; est une différentielle exacte — & covariant bilinéaire y; = 0,
ou l'invariant D de y nul — on peut annuler g, donc le réseau cerclé
est un réseau de géodésiques conformes pour le ds? convenable.
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D’autre part, dans (111), si y améme covariant bilinéaire que w;,

’

7= wyy = — Ko, w,] ou divw = divg = K (113)
K étant la courbure totale du ds2 on a
Y= v, + d‘iﬁ
et 'équation du réseau cerclé se réduit a

a0 — ¥ = 0 ou ds*>. d(d — W) = 0 ; (l14)
ds

par suite ce réseau est alors un réseau angulaire (celui défini par les
lignes coordonnées dans le cas W = const.); cette forme de I'équation
suffit & montrer que la condition (113) est invariante par transfor-
mation conforme. On peut évidemment établir une classification
des réseaux cerclés au point de vue des transformations conformes
superficielles, mais la théorie de ces réseaux peut aussi se baser sur la
géométrie conforme spatiale (géométrie des sphéres), ce qui en facilite
I'étude; aussi nous ne donnons pas d’autres applications 1.

X. INVARIANTS DES FORMES ET EQUATIONS QUADRATIQUES.

31. Soit une forme quadratique
o® = Ldu® + 2Mdudy + Ndo? (115)

qu’on peut considérer comme décomposable d’une infinité de facons
en un produit de deux formes linéaires

w; = z(A,du + B, dy) w, = — (A,du + B,dv)

K| =

x étant un facteur arbitraire, A;, B;, A,, B, solutions des équations
A A, = L AB, - A, B, = 2M B,B, = N .

Nous avons indiqué (Equivalences) la formation réguliére des inva-
riants de la forme «(?) et les relations de ceux-ci avec les invariants des
formes @, et @w,, et nous avons vu alors qu’on se trouvait amené, en
posant

L. = A? N = B? (1'16)

111 est, d’autre part, intéressant de rapprocher cette théorie de celle des changements
de connexion (avec torsion) des surfaces. Cf. Thése, Note terminale.

[’Enseignement mathém., 30e année, 1931. 9
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