
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 30 (1931)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: APPLICATION A LA REPRÉSENTATION CONFORME DES
TRANSFORMATIONS A VARIABLES SÉPARÉES

Autor: Delens, P. C.

Kapitel: IX. Problèmes où intervient la représentation conforme.

DOI: https://doi.org/10.5169/seals-23887

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-23887
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


P. C. DELENS

siques restent constantes étant différentes des lignes k* const.;
dans le dernier cas, tous les invariants du faisceau co 0 restent
constants le long des mêmes ligfres z const.

IX. Problèmes où intervient la représentation conforme.

26. A un faisceau de courbes donné, d'équation tà 0, se rattachent
naturellement de façon invariante les courbes z — const., z étant
un invariant quelconque de l'équation, et les invariants des courbes
ainsi introduites facilitent l'interprétation géométrique des invariants
d'ordre supérieur de l'équation donnée. D'autres familles de courbes,
se rattachant à des invariants relatifs, invariants brisés, etc., sont
également intéressantes à considérer; la plus simple est la famille de
courbes <p — const., et les relations de ce nouveau faisceau avec le
faisceau donné interviennent souvent dans les propriétés
géométriques: ces courbes <p const, sont en effet les isoclines conformes
du faisceau donné par rapport au système isotherme de lignes
coordonnées X const., Y const.

Les courbes W const, sur un ds2 donné sont aussi intéressantes,
mais elles se rapportent seulement à une représentation plane du ds2.

Considérons plus généralement une équation w — 0, et introduisons
les formes semi-normales pour deux ds2 en correspondance

ds2 W*dudv ds'2 W'2 du dv (101)

W
Vl ~ 2VP

_ W
2 VH

W.. v. ûET

üö v öif
1 1

On a donc rcsv et en appliquant les formules relatives aux
formes proportionnelles (Chap. III), on obtient sans peine les
modifications que subissent les invariants euclidiens attachés aux courbes
se correspondant dans une représentation conforme entre deux
surfaces. Les courbes r — const, interviendront ici à côté des courbes

y const.; nous allons en donner quelques exemples: les courbures
géodésiques des courbes m 0 sur les deux surfaces en question sont
liées par la relation

Dt — — (ö1 -j- cDx f) — — (L>i + C01 log / (103)
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qu'on obtient encore en utilisant les formules

Û?1log W + ®1? d[ log W +

c7[- 07,^- W rW
r 1 r

On déduit en particulier de la formule (103): il est toujours possible
de représenter conformément un faisceau de courbes non géodésiques
suivant un faisceau de géodésiques, et pour mettre en correspondance
conforme deux faisceaux de géodésiques, il est nécessaire et suffisant que
ces faisceaux soient ceux des courbes r const., suivant lesquelles le
module de la représentation reste constant. On peut aussi, pour les
relations entre invariants euclidiens, faire appel aux formules
vectorielles.

gi gi ~ V Jog f (104)

di rdi t[ V' log r pü V log r

ou Von suppose les deux ds2 représentés sur une même surface.

27. Nous modifierons légèrement ici les notations précédentes pour
reprendre celles de notre Thèse; au point courant m d'une surface
est attaché un repère euclidien maj a2 n, de sorte que

d m wicii + w2 a2

tol ==: hK ^2) d ^1 w2 ^2(^1 » a2)^a2 '

l'indice s étant affecté aux opérations superficielles, nous posons

«Iy^ + <h2w2 + d>2a2

pour une fonction scalaire $(«!, a2) déterminée sur la surface. Le
covariant bilinéaire de (f)1 introduit la forme de Pfafï &)12 et les
vecteurs f, g, par

tOl K2w2] rot^ai {fa2]5 g X a2

f £18-! + 02^2 g Jf 02^1 "h 01^2 •

Soit une première application au problème des congruences de
normales, traité par Beltrami, Laguerre, etc.; les droites [mu], u étant le
vecteur unitaire

U sin 0. aL + cosö.n

forment une congruence de normales s'il existe un point

p m + Xu



126 P. C. DELENS
tel que le déplacement dp soit orthogonal à u, donc

U X dp u X dm + dX 0 (105)

équation qui exprime que u X dm est une différentielle exacte, donc
u un gradient (spatial)

u — Va VF (oq)

V sin 6 ax V^F (oq)

La condition d'intégrabilité de l'équation précédente

sin 6 (jdx -j- d~k — 0 (105')

s'écrit
sin 6 [o)12 w2] -f- [d (sin 0) oq] 0 (108)

En écartant la solution sin 9 0, correspondant aux normales
à la surface, et posant

log sin 6 ©

il vient

[f a2], -f [V5@. aj, (g — Vç@) x a2 gx — ©2 -*= 0 (107)

28. Une solution bien connue est obtenue quand les lignes du
champ projeté, de tangentes at, forment un faisceau de géodésiques
g1 0 ; on a alors 0 — G(ai) fonction arbitraire (9 — const, en
particulier).

Revenons au cas général, et soit 0O une solution particulière de (107) ;

alors
© 0O -f- G(oq) sin 6 =2 eG sin 0o ('08)

est la solution générale; il suffît donc de connaître une solution
particulière 0O de

(g — V5©) x a2 o

Si les lignes du champ projeté, a2 — const-, sont isothermes et si
le ds2, rapporté à ces lignes et leurs trajectoires orthogonales, a la
forme

ds2 W2(dX2 + dY2)

la formule (61) montre qu'il suffît de prendre

©0 — # + c sin 90 (e'" -y)

c, C étant des constantes.
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La même solution est valable si la forme précédente du ds2 est

rapportée à un système isotherme que les lignes oc2 — const, coopent
sous angle <p permanent (constant le long de ces lignes) puisqu'on
a alors

g — Y m -f J Y © JVcpxa2 0 cp H (a2) ;

une représentation conforme de la surface suivant le dl2 dx2 + dy2
fait alors correspondre un faisceau de droites aux lignes du champ
projeté.

Enfin, dans le cas général, il suffît de même d'effectuer une
représentation conforme transformant en géodésiques les lignes du champ
projeté ; g' g — Vs log r étant alors porté par ax, il reste à satisfaire à

(V, log r — Y#0) X a2 0

d'où la solution particulière
sin 0O O

En résumé, les transformations conformes permettent de déduire
la solution générale du problème du cas particulier où les lignes du
champ projeté sont des géodésiques, le vecteur v du champ projeté
participant à la transformation conforme (superficielle) qui ramène
le faisceau de géodésiques aux lignes de ce champ; le vecteur u se
déduit ensuite de sa projection v.

29. Gomme seconde application, nous donnerons quelques indications

sur une théorie nouvellement développée; celle des réseaux
cerclés (zyklische Kurvennetze)1; un tel réseau est formé par les
courbes d'un surface dont les cercles osculateurs sont, en un même
point m, cosphériques à un cercle orthogonal à la surface en ce point,
et est défini par une équation différentielle du 2me ordre. Soit u le
vecteur unitaire suivant le diamètre de ce cercle, issu de m, tangent
à la surface; le cercle, de rayon p, est défini en chaque point par le

vecteur w ï ou par le vecteur perpendiculaire v — Jw.

Un repère superficiel arbitraire ma1a2 étant choisi en tout point de
la surface, soient t et q les tangente et normale unitaires aux lignes
du réseau cerclé, g la courbure géodésique (suivant q) d'une ligne
d'un faisceau contenu dans ce réseau

g f x t g x q

1 W. Blaschke, J. Radon: Ueber konforme Geometrie, Abh. Hamb., 4, 5 (1925,
1926). Exposé de T. Takasu : Differentialkugelgeometrie, Tôkohu Sc. Rep., 17 (1928).
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Soit <b l'angle d'une ligne du réseau avec la première ligne
coordonnée, à laquelle sont attachés les vecteurs f0, g0 Jf0; d'après la
formule (61), on a

f f0 + Vs$ (109)

La propriété géométrique indiquée se traduit aussitôt par

g w x q v x t

donc l'équation différentielle cherchée est

(f0 + V^4>) x t v x t t ^ (110)

ou, avec les formes de Pfafî

wi2 f0 x dm y v x dm

„ _ wia + d<$>

_ x (111)ds ds

Sous forme entière, cette équation s'écrit encore

Ç—yds2 0 (111')

avec
Ç — ds2 (wi2 -f- d(l>) — (tojL -f- W2) W12 ~f" d 0)x

L'équation Ç* 0 est l'équation du réseau des géodésiques
(euclidiennes) de la surface : c'est un cas particulier de réseau cerclé
avec y 0.

30. La transformation conforme

ds2 /2 ds2 g i ^ r)j

donne à l'équation (111) la forme

7. + (d log r)i _ y
ds ds

(112)

ce qui montre que toute transformation conforme change un réseau cerclé

en un autre de même espèce, ou conserve l'ensemble de ces réseaux.
Si yi est une différentielle exacte — à covariant bilinéaire y[ 0,

ou l'invariant D0 de y nul — on peut annuler g, donc le réseau cerclé
est un réseau de géodésiques conformes pour le ds2 convenable.
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D'autre part, dans (111), si ^ a même covariant bilinéaire que

/' W;2 — K[co1ol)2] ou div w divg K (1.13)

K étant la courbure totale du ds2, on a

7. wi2 ~f~ dW

et l'équation du réseau cerclé se réduit à

0 ou > — If) 0 ; (114)
as

par suite ce réseau est alors un réseau angulaire (celui défini par les

lignes coordonnées dans le cas lF const.); cette forme de l'équation
suffît à montrer que la condition (113) est invariante par transformation

conforme. On peut évidemment établir une classification
des réseaux cerclés au point de vue des transformations conformes
superficielles, mais la théorie de ces réseaux peut aussi se baser sur la
géométrie conforme spatiale (géométrie des sphères), ce qui en facilite
l'étude; aussi nous ne donnons pas d'autres applications h

X. Invariants des formes et équations quadratiques.

31. Soit une forme quadratique

a<*> L du2 + 2M dudv + N dv2 (115)

qu'on peut considérer comme décomposable d'une infinité de façons
en un produit de deux formes linéaires

1

m1 x(A1du + dv) m2 — {A 2du + B2dv)

x étant un facteur arbitraire, Al7 Bx, A2, B2 solutions des équations

AxA2 L A,B2 + A2Bt 2M BxB2 N

Nous avons indiqué (Equivalences) la formation régulière des
invariants de la forme a(2) et les relations de ceux-ci avec les invariants des
formes as1 et cu2, et nous avons vu alors qu'on se trouvait amené, en
posant

L — À2 N B2 (116)

1 II est, (l'autre part, intéressant de rapprocher cette théorie de celle des changements
de connexion (avec torsion) des surfaces. Cf. Thèse, Note terminale.
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