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REPRESENTATION CONFORME 121

& celle attachée & un autre réseau angulaire isotherme X = const.,
Y = const., etc. par une similitude dont I’angle et le rapport sont
liés par la relation

W
E

\ log = JVo

-

de sorte que ¢ et log\éi sont deux solutions conjuguées de I’équation

Az = 0. Cest par le choix de ces solutions que se différencient les
divers réseaux angulaires isothermes constituant Iensemble des
faisceaux isothermes de la surface — briévement l'ensemble tsotherme.

Si I'on suppose aussi qu'on effectue, en chaque point m, un change-
ment de Vétalon de longueur, de sorte que la simili-étoile de repeére
du réseau isotherme considéré devienne une étoile de vecteurs uni-
taires, cecl revient 4 une représentation sur le dg) canonique de @

doy = df? + dg® = dUdV

et, selon qu'on opérera sur un étalon de longueur ou 'autre, on consi-
dérera les repéres et simili-repéres attachés a ds* et dg) comme de

modules 1 et %, ou x et 1.

VIII. FAISCEAUX NON ISOTHERMES.

24. Soit Iéquation @ = o d’un faisceau non isotherme; par le
moyen d’un facteur normant y* == 4/T, on donnera au premier membre
de I’équation la forme normale

B* = 4/1 6 (99)

dont les invariants seront ceux de I’équation ¢ = o0; en particulier,
s1 on part des formes 73, = df, ou &, on aura

-t & (f QFf . Y =Y
e — \/"(/_\f/) if = VO QN %, .

Il résulte de la premiére formule (36) que la forme normale * est
caractérisée par son invariant [* ramené & I'unité

I* = 1

cependant qu’en général les ordres des opérateurs et des invariants
(dont les symboles portent des astérisques) sont majorés de deux
unités par rapport & ceux qui leur correspondent pour une forme
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quelconque. Nous avons établi que, jusqu’a ’ordre 7 inclus, équation
nin — 3) . y , i

( 5 = invariants, soit en général (pour n > 3) n — 2 nou-
veaux invariants d’ordre n; ces invariants, considérés comme ceux
de la forme &*, sont d’ailleurs donnés par les formules déja établies,

ainsi que les opérateurs différentiels attachés a ©*; ainsi

W =0 a

1 1

1 1
@*=1,2P, =1, * A, Gr=1,26, =1, 26, et

|

1 1 1

1 / 1 T2 — —— ——
Dr =1, T af— 2 <f'A/‘.°+2)— =1, 7D, —Kf Tl 1 7)

1
(r 1 2 L L i
T =— : </A/]0 2) =1, T, —Af °® ®,<f7 I, 2) etc.

avec les expressions déja données

L= 0, Qf) = Ae I, = L/ 1o,

Le ds? utilisé pour la formation des paramétres différentiels précé-
dents étant arbitraire, on peut en particulier le fixer suivant le dg*?
canonique a ©*, de sorte que cette forme soit a la fois normale et
semi-normale. A I'équation @ = 0 on peut associer I’équation diffé-
rentielle du 2¢ ordre wdw; — w;dw = 0 des courbes constituant avec
le faisceau donné le réseau angulaire déja signalé. L’on peut plus
généralement considérer Uensemble (1) des courbes de méme Ag par
rapport a un faisceau isotherme arbitraire et un ds* arbitrairement
fixé, ensemble formé de faisceaux pour lesquels les seminvariants I,
seront simultanément ramenés & 'unité quand on passera de @, & w*;
un tel ensemble a méme généralité que I'’ensemble isotherme (I; = 0),
et les faisceaux qui le constituent sont donnés par I’équation générale

L \/f‘- e dy = 0
g 3

E(u), n(v) étant des fonctions arbitraires de leurs arguments. L’arc
conforme dg* n’est attaché qu’aux courbes d’un méme ensemble (I,).

Nous avons déja indiqué (Equivalences) certaines formes parti-
culiéres de Iéquation @ = 0; par exemple dans les cas ou le dg*?2
canonique & w* serait & courbure totale £* nulle ou constante, on
aurait

_ el zwme) e g
V= 3m° =
V[ CZlw) =M (9)° )
Q = a(u i k* = G, conslante.
b(a)i 2% M
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25. Le probléme de la classification des faisceaux de courbes
vis-4-vis des transformations conformes est celui de la conservation
des ¢équations 5 = 0, ou des formes normales z*; si nous avons
¢tudié auparavant la formation des invariants des formes générales o,
et des formes particuliéres 3, 7;, c’est d’abord parce que les
méthodes applicables & ces formes nous menaient aux résultats
cherchés pour les formes ©* ou les équations; mais on doit aussi
considérer que les invariants des équations sont des fonctions f inva-
riantes, ou conduisent a de nouvelles formes de Pfaff invariantes,
auxquelles s’appliquent les calculs précédemment faits.

Quant aux relations suffisantes entre invariants pour assurer
I'équivalence conforme d’équations © = 0, ou la conservation de
formes ©* — le probléme relatif aux formes % quelconques offrant
ici moins d’intérét — nous nous contentons de rappeler que pour les
formes normales 75* possédant des invariants conformes, nous avons
distingué trois classes principales avec:

10 le cas général ou les invariants D* et T* du 4¢ ordre sont
distincts:

20 Je cas ou il v a entre ces deux invariants une relation identique,
mais ou les invariants du 5¢ ordre sont distincts de I'invariant du
4e ordre conservé;

30 le cas ou les invariants du 4¢ ordre sont fonctions d’un seul
d’entre eux.

On peut interpréter ces trois cas en les ramenant & des problémes
d’applicabilité, en prenant pour ds? le dg*? canonique normal sur
lequel

1* = I1 = A\Y’ = rotg, = 1
les invariants essentiels D* et T* étant alors les courbures géodésiques
du faisceau considéré et du faisceau orthogonal; avec les notations
de la formule (96) on a alors

\ B = A/c (7 du + et do)

' ds® = do*? = b¢, dudp

uy

LY

g W
W2 = 4P* = 4o e‘”:—) '\/Qp

nwy

les invariants de la forme &* s expmmant au moyen de g et de ses
dérivées, et les formes ©3* d’'un méme ensemble différant par le choix
de l’angle ¢ solution de I'équation 4¢ = W2

Dans le cas général, ’ensemble considéré, qui se conserve dans la
déformation, est astreint seulement a la condition précédente 1* =
dans le second cas, le faisceau # = 0 appartient & un réseau angulaire
déficient, les lignes z = const. suivant lesquelles les courbures géodé-



124 P. C. DELENS

siques restent constantes étant différentes des lignes %* = const.;
dans le dernier cas, tous les invariants du faisceau m = 0 restent
constants le long des mémes lignes z = const.

IX. PROBLEMES OU INTERVIENT LA REPRESENTATION CONFORME.

26. A un faisceau de courbes donné, d’équation 5 = 0, se rattachent
naturellement de facon invariante les courbes z = const., z étant
un invariant quelconque de I’équation, et les invariants des courbes
ainsi introduites facilitent 'interprétation géométrique des invariants
d’ordre supérieur de I’équation donnée. D’autres familles de courbes,
se rattachant & des invariants relatifs, invariants brisés, etc., sont
également intéressantes & considérer; la plus simple est la famille de
courbes ¢ = const., et les relations de ce nouveau faisceau avec le
faisceau donné interviennent souvent dans les propriétés géomé-
triques: ces courbes ¢ == const. sont en effet les isoclines conformes
du faisceau donné par rapport au systéme isotherme de lignes
coordonnées X = const., Y = const.

Les courbes W = const. sur un ds? donné sont aussi intéressantes,
mais elles se rapportent seulement & une représentation plane du ds2
Considérons plus généralement une équation @ = 0, et introduisons
les formes semi-normales pour deux ds? en correspondance

ds? — Widude  ds' — W'2dudp (101)
W
R V4
® =y w S = WV

1 1 1 2\/p

v WI
P o= (102)

\)1

On a donc w, == rw;, et en appliquant les formules relatives aux
formes proportionnelles (Chap. I1I), on obtient sans peine les modifi-
cations que subissent les invariants euclidiens attachés aux courbes
se correspondant dans une représentation conforme entre deux
surfaces. Les courbes r = const. interviendront ici & coté des courbes
¢ = const.; nous allons en donner quelques exemples: les courbures
géodésiques des courbes w = 0 sur les deux surfaces en question sont
liées par la relation

(D, + D)) = _,1:(1)1 + @, log 1) (103)

’ 1
D, = —
1 -
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