Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 30 (1931)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: APPLICATION A LA REPRÉSENTATION CONFORME DES

TRANSFORMATIONS A VARIABLES SÉPARÉES

Autor: Delens, P. C.

Kapitel: VIII. Faisceaux non isothermes.

DOI: https://doi.org/10.5169/seals-23887

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

à celle attachée à un autre réseau angulaire isotherme $X={\rm const.},$ $Y={\rm const.},$ etc. par une similitude dont l'angle et le rapport sont liés par la relation

$$\nabla \log \frac{W}{x} = J \nabla \varphi$$

de sorte que φ et $\log \frac{W}{x}$ sont deux solutions conjuguées de l'équation $\Lambda z = o$. C'est par le choix de ces solutions que se différencient les divers réseaux angulaires isothermes constituant l'ensemble des faisceaux isothermes de la surface — brièvement l'ensemble isotherme.

Si l'on suppose aussi qu'on effectue, en chaque point \mathbf{m} , un changement de l'étalon de longueur, de sorte que la simili-étoile de repère du réseau isotherme considéré devienne une étoile de vecteurs unitaires, ceci revient à une représentation sur le $d\sigma_0^2$ canonique de ϖ_0

$$d\sigma_0^2 = df^2 + dg^2 = dU dV$$

et, selon qu'on opérera sur un étalon de longueur ou l'autre, on considérera les repères et simili-repères attachés à ds^2 et $d\sigma_0^2$ comme de modules 1 et $\frac{1}{x}$, ou x et 1.

VIII. FAISCEAUX NON ISOTHERMES.

24. Soit l'équation $\varpi = o$ d'un faisceau non isotherme; par le moyen d'un facteur normant $\nu^* = \sqrt{I}$, on donnera au premier membre de l'équation la forme normale

$$\vec{\omega}^* = \sqrt{1} \, \vec{\omega} \tag{99}$$

dont les invariants seront ceux de l'équation $\omega = o$; en particulier, si on part des formes $\omega_0 = df$, ou ω_1 , on aura

$$\vec{\omega}^* = \sqrt{\frac{\Theta'(f, \Omega f)}{\Delta f}} \ df = \sqrt{\Theta'(f, \Omega f)} \ \vec{\omega}_1 \ .$$

Il résulte de la première formule (36) que la forme normale &* est caractérisée par son invariant I* ramené à l'unité

$$I^* = 1$$

cependant qu'en général les ordres des opérateurs et des invariants (dont les symboles portent des astérisques) sont majorés de deux unités par rapport à ceux qui leur correspondent pour une forme &

quelconque. Nous avons établi que, jusqu'à l'ordre n inclus, l'équation $\varpi = o$ a $\frac{n(n-3)}{2}$ invariants, soit en général (pour n>3) n-2 nouveaux invariants d'ordre n; ces invariants, considérés comme ceux de la forme ϖ^* , sont d'ailleurs donnés par les formules déjà établies, ainsi que les opérateurs différentiels attachés à ϖ^* ; ainsi

$$\begin{split} \mathcal{O}^* &= \, \mathsf{I}_0^{-\frac{1}{2}} \, \mathcal{O}_0 = \, \mathsf{I}_1^{-\frac{1}{2}} \, \mathcal{O}_1 \qquad \mathfrak{E}^* = \, \mathsf{I}_0^{-\frac{1}{2}} \, \mathfrak{E}_0 = \, \mathsf{I}_1^{-\frac{1}{2}} \, \mathfrak{E}_1 \quad \text{etc.} \\ \mathcal{D}^* &= \, \mathsf{I}_0^{-\frac{1}{2}} \, \Omega f - \frac{\Delta' \left(f, \, \mathsf{I}_0^{-\frac{1}{2}} \right)}{\Delta f} = \, \mathsf{I}_0^{-\frac{1}{2}} \, \mathsf{D}_1 - \overline{\Lambda} f^{-\frac{1}{2}} \, \Delta' \left(f, \, \mathsf{I}_1^{-\frac{1}{2}} \right) \\ \mathcal{T}^* &= \, - \, \frac{\Theta' \left(f, \, \mathsf{I}_0^{-\frac{1}{2}} \right)}{\Delta f} = \, \mathsf{I}_1^{-\frac{1}{2}} \, \mathsf{T}_1 - \Delta f^{-\frac{1}{2}} \, \Theta' \left(f, \, \mathsf{I}_1^{-\frac{1}{2}} \right) \quad \text{etc.} \end{split}$$

avec les expressions déjà données

$$I_1 = \Theta'(f, \Omega f) = \Lambda \varphi$$
 $I_0 = \frac{I_1}{\Delta f}$ etc.

Le ds^2 utilisé pour la formation des paramètres différentiels précédents étant arbitraire, on peut en particulier le fixer suivant le $d\sigma^{*2}$ canonique à σ^* , de sorte que cette forme soit à la fois normale et semi-normale. A l'équation $\sigma=0$ on peut associer l'équation différentielle du $\sigma=0$ ordre $\sigma d\sigma=0$ des courbes constituant avec le faisceau donné le réseau angulaire déjà signalé. L'on peut plus généralement considérer l'ensemble ($\sigma=0$) des courbes de même $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme arbitraire et un $\sigma=0$ 0 par rapport à un faisceau isotherme ar

$$\sqrt{rac{\overline{\xi}}{\eta}}\;e^{-iarphi}\,du\,+\sqrt{rac{\eta}{\overline{\xi}}}\;e^{iarphi}\,dv\,=\,0$$

 $\xi(u)$, $\eta(v)$ étant des fonctions arbitraires de leurs arguments. L'arc conforme $d\sigma^*$ n'est attaché qu'aux courbes d'un même ensemble (I_1) .

Nous avons déjà indiqué (Equivalences) certaines formes particulières de l'équation $\varpi = 0$; par exemple dans les cas où le $d\sigma^{*2}$ canonique à ϖ^* serait à courbure totale k^* nulle ou constante, on aurait

$$Q = \frac{a(u)}{b(v)} e^{Z(u)M(v)} \qquad k^* = 0$$

$$Q = \frac{a(u)}{b(v)} \left\{ \frac{C \overline{Z(u) - M(v)^2}}{2 Z' M'} \right\}^{\frac{1}{C}} \qquad k^* = C , \text{ constante.}$$

25. Le problème de la classification des faisceaux de courbes vis-à-vis des transformations conformes est celui de la conservation des équations $\varpi = 0$, ou des formes normales ϖ^* ; si nous avons étudié auparavant la formation des invariants des formes générales ϖ , et des formes particulières ϖ_0 , ϖ_1 , c'est d'abord parce que les méthodes applicables à ces formes nous menaient aux résultats cherchés pour les formes ϖ^* ou les équations; mais on doit aussi considérer que les invariants des équations sont des fonctions f invariantes, ou conduisent à de nouvelles formes de Pfaff invariantes, auxquelles s'appliquent les calculs précédemment faits.

Quant aux relations suffisantes entre invariants pour assurer l'équivalence conforme d'équations $\varpi=0$, ou la conservation de formes ϖ^* — le problème relatif aux formes ϖ quelconques offrant ici moins d'intérêt — nous nous contentons de rappeler que pour les formes normales ϖ^* possédant des invariants conformes, nous avons distingué trois classes principales avec:

1º le cas général où les invariants D* et T* du 4º ordre sont distincts;

2º le cas où il y a entre ces deux invariants une relation identique, mais où les invariants du 5º ordre sont distincts de l'invariant du 4º ordre conservé;

3º le cas où les invariants du 4º ordre sont fonctions d'un seul d'entre eux.

On peut interpréter ces trois cas en les ramenant à des problèmes d'applicabilité, en prenant pour ds^2 le $d\sigma^{*2}$ canonique normal sur lequel

$$l^* = I_1 = \Lambda \phi = rot \, g_1 = 1$$

les invariants essentiels D* et T* étant alors les courbures géodésiques du faisceau considéré et du faisceau orthogonal; avec les notations de la formule (96) on a alors

$$\int_{0}^{\infty} ds = \sqrt{\varphi_{uv}} (e^{-i\varphi} du + e^{i\varphi} dv)$$

$$ds^{2} = d\sigma^{*2} = 4\varphi_{uv} du dv$$

$$W^{2} = 4P^{*} = 4\varphi_{uv} \qquad e^{w} = \frac{W}{2} = \sqrt{\varphi_{uv}}$$
(100)

les invariants de la forme ϖ^* s'exprimant au moyen de φ et de ses dérivées, et les formes ϖ^* d'un même ensemble différant par le choix de l'angle φ solution de l'équation $4\varphi_{uv}=W^2$.

Dans le cas général, l'ensemble considéré, qui se conserve dans la déformation, est astreint seulement à la condition précédente $I^* = 1$; dans le second cas, le faisceau $\varpi = 0$ appartient à un réseau angulaire déficient, les lignes z = const. suivant lesquelles les courbures géodé-

siques restent constantes étant différentes des lignes $k^* = \text{const.};$ dans le dernier cas, tous les invariants du faisceau $\omega = 0$ restent constants le long des mêmes lignes z = const.

IX. Problèmes où intervient la représentation conforme.

26. A un faisceau de courbes donné, d'équation $\varpi=0$, se rattachent naturellement de façon invariante les courbes $z={\rm const.}, z$ étant un invariant quelconque de l'équation, et les invariants des courbes ainsi introduites facilitent l'interprétation géométrique des invariants d'ordre supérieur de l'équation donnée. D'autres familles de courbes, se rattachant à des invariants relatifs, invariants brisés, etc., sont également intéressantes à considérer; la plus simple est la famille de courbes $\varphi={\rm const.}$, et les relations de ce nouveau faisceau avec le faisceau donné interviennent souvent dans les propriétés géométriques: ces courbes $\varphi={\rm const.}$ sont en effet les isoclines conformes du faisceau donné par rapport au système isotherme de lignes coordonnées $X={\rm const.}$, $Y={\rm const.}$

Les courbes W = const. sur un ds^2 donné sont aussi intéressantes, mais elles se rapportent seulement à une représentation plane du ds^2 . Considérons plus généralement une équation $\varpi = 0$, et introduisons les formes semi-normales pour deux ds^2 en correspondance

On a donc $\varpi_1' = r\varpi_1$, et en appliquant les formules relatives aux formes proportionnelles (Chap. III), on obtient sans peine les modifications que subissent les invariants euclidiens attachés aux courbes se correspondant dans une représentation conforme entre deux surfaces. Les courbes r = const. interviendront ici à côté des courbes $\varphi = \text{const.}$; nous allons en donner quelques exemples: les courbures géodésiques des courbes $\varpi = 0$ sur les deux surfaces en question sont liées par la relation

$$D_{1}' = \frac{1}{r} (D_{1} + \mathcal{O}_{1}' r) = \frac{1}{r} (D_{1} + \mathcal{O}_{1} \log r)$$
 (103)