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Comme nous l'avons établi, les invariants de la forme us1 sont les

invariants euclidiens (géodésiques) de l'équation us ~ 0. Avec les
notations

j Q e-n' ^ e'" (49')
' V

on peut écrire une forme semi-normale

~ (^/f~ ^u ^ eW~l? eW+l?

VII. Faisceaux isothermes.

22. Il est bien connu, dans la représentation conforme des surfaces,
qu'à côté des deux faisceaux formés par les deux séries de lignes
minima, du — 0 et dv 0, les faisceaux isothermes de courbes sont
aussi conservés; l'équation différentielle us 0 d'un tel faisceau du
premier ordre est en effet caractérisée par la condition invariante

I 0

et l'équation us 0 n'a alors aucun invariant conforme. Nous avons
donné bien des formes à l'invariant I de us; considérons en particulier
une forme semi-normale usx sur un ds2 et rappelons diverses interprétations

de l'équation I-, 0. D'après

I, « |AlogQ 0 (97)

ft2 log Q _ 0 Q
A

__
g(u)

ö u ô v B b (v)

A
le rapport — des coefficients de l'équation us 0 est le quotient de

deux fonctions arbitraires, l'une de u, l'autre de c; le facteur intégrant
2^ ramène alors à l'équation intégrable

| a (u) du + b(v)dv} 0

et les courbes intégrales sont données par

I
/ ~2 { ^ {u) du -f- Y (v) dv j- const. U' a Y' b
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les accents indiquant, pour les fonctions d'une seule variable, les
dérivées par rapport à celle-ci; une transformation (3) donne alors
a / une forme réduite X — (u-|»v). L'on a en même temps

L A® 0 (97')

\logQ-^(log] -logi) -^{<b(w) -TW}
donc la condition (97') exprime aussi que les courbes <p const,
forment un faisceau isotherme, cp étant variable isothermique, et cette
propriété est caractéristique; nous nous étions d'ailleurs ramené à
des fonctions / pour lesquelles A/ ou Q,f est nul: c'est ce qu'exprime,
à un changement de fonction / près, la forme suivante de l'équation
invariante

h &(f. an =0 af= F (/') (98)

où F est une fonction arbitraire, qu'on peut choisir pour avoir ÛF 0.
En revenant alors à la notation / pour la fonction choisie, et
choisissant de même la fonction g pour que Qg 0 puisqu'on a aussi

I, ®'(g, Qg) 0

il en résulte, d'après (91), vl°g Ç ~ 0, et l'on peut par suite prendre

q I x — y p — x2

ds2 W2(dX2 + dY2) x2(df2 + dg2)

On a encore
Dx CD1 log^ C&1 logic

gL — V log W -j- JV<p — V log ic

toutes formules qui sont bien d'accord avec

Il — rot gx — ((©!©!> log X — 0

et les formes particulières que prennent alors les formules déjà
établies.

23. En résumé, ce qui caractérise un faisceau isotherme, c'est d'être
associé à un faisceau également isotherme de trajectoires orthogonales,
et plus généralement d'être incorporé dans un réseau angulaire
isotherme, toutes les courbes d'un tel réseau pouvant être représentées
par des intégrales / — const., g const., etc. pourvues en un même

\
point m de vecteurs gradients de même module—; ces gradients

forment en tout point de la surface une simili-étoile, se ramenant
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à celle attachée à un autre réseau angulaire isotherme X const.,
Y const., etc. par une similitude dont l'angle et le rapport sont
liés par la relation

V log^ JY?

de sorte que <p et log ~ sont deux solutions conjuguées de l'équation

A- o. C'est par le choix de ces solutions que se différencient les
divers réseaux angulaires isothermes constituant l'ensemble des
faisceaux isothermes de la surface -—< brièvement Vensemble isotherme.

Si l'on suppose aussi qu'on effectue, en chaque point m, un changement

de l'étalon de longueur, de sorte que la simili-étoile de repère
du réseau isotherme considéré devienne une étoile de vecteurs
unitaires, ceci revient à une représentation sur le dv20 canonique de

diq df- -f dg2 dE d\

et, selon qu'on opérera sur un étalon de longueur ou l'autre, on
considérera les repères et simili-repères attachés à ds2, et de2 comme de

modules 1 et - ou x et 1.
«ç

VIII. Faisceaux non isothermes.

24. Soit l'équation 50 — o d'un faisceau non isotherme; par le

moyen d'un facteur norman t y* — -y/F, on donnera au premier membre
de l'équation la forme normale

50* yT 50 (99)

dont les invariants seront ceux de l'équation 50 o: en particulier,
si on part des formes 5o0 df, ou 5ox, on aura

ss. df v©'(/'. Of) Ö,

Il résulte de la première formule (36) que la forme normale 50* est
caractérisée par son invariant I* ramené à l'unité

I* 1

cependant qu'en général les ordres des opérateurs et des invariants
(dont les symboles portent des astérisques) sont majorés de deux
unités par rapport à ceux qui leur correspondent pour une forme 50
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