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Comme nous Pavons établi, les invariants de la forme @, sont les
invariants euclidiens (géodésiques) de I'équation w = 0. Avec les
notations

/_IL_ — (2 — e—?’i'; \_V — ew (49/)

lo 2

on peut écrire une forme semi-normale
W [ / f, > . 5
@, = - — du + Yodo) = eV Wdu 4 eV Tdp . (96)
T <\// V',

VII. FAISCEAUX ISOTHERMES.

22. Il est bien connu, dans la représentation conforme des surfaces,
qu'a coté des deux faisceaux formés par les deux séries de lignes
minima, du = 0 et dv = 0, les faisceaux isothermes de courbes sont
aussi conservés; 'équation différentielle @ = 0 d’un tel faisceau du
premier ordre est en effet caractérisée par la condition invariante

I =0

et I'équation @ == 0 n’a alors aucun invariant conforme. Nous avons
donné bien des formes & 'invariant I de w; considérons en particulier
une forme semi-normale w; sur un ds? et rappelons diverses interpré-
tations de I'équation I, = 0. D’aprés

I = 5AlogQ =0 (97)

2% log Q
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le rapport gﬁ des coefficients de I'équation @ = 0 est le quotient de

deux fonctions arbitraires, I'une de u, 'autre de ¢; le facteur intégrant

a b . . 192 . -
5A — gp rameéne alors a I'équation intégrable

1
®, = E{a(u)du + blo)de} =0
et les courbes intégrales sont données par

1
/':§{U(u)du+v(0)do}:const. U=a, YV =10,
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lgs accents mdiquant, pour les fonctions d’une seule variable, les
dérivées par rapport & celle-ci; une transformation (3) donne alors

N A (P
& f une forme réduite X = E(u + ¢). L’on a en méme temps

donc la condition {97') exprime aussi que les courbes ¢ = const.
forment un faisceau isotherme, @ élant varvable isothermique, et cette
propriété est caractéristique; nous nous étions d’ailleurs ramené a
des fonctions f pour lesquelles Af ou Qf est nul: ¢’est ce qu’exprime,
a un phangement de fonction f preés, la forme suivante de I’équation
Invariante

L=0( Q) =0 Qf=F() (98)

ou F est une fonction arbitraire, qu’on peut choisir pour avoir QF = 0.
En revenant alors a la notation / pour la fonction choisie, et choi-
sissant de méme la fonction g pour que Qg = 0 puisqu'on a aussi

I, = ©'(g, Qg) = 0

il en résulte, d’apres (91), ylog ¢ = 0, et 'on peut par suite prendre
g = 1 x =y B == 22
ds? = W2(dX? + dY?) = 2?(df? + dg®) .
On a encore
D, = (D, logz T, = 6, logz

g, = — ViegW + JVo = — Vlogux
toutes formules qui sont hien d’accord avec
I, = rotg, = — (M,®,) logz = 0

et les formes particuliéres que prennent alors les formules déja
établies.

23. En résumé, ce qui caractérise un faisceau isotherme, ¢’est d’étre
associé a un faisceau également isotherme de trajectoires orthogonales,
et plus généralement d’étre incorporé dans un réseau angulaire iso-
therme, toutes les courbes d’un tel réseau pouvant éire représentées
par des intégrales f = const., g = const., etc. pourvues en un méme

. . A 1 .
point m de vecteurs gradients de méme module —5 ces gradients

forment en tout point de la surface une simili-éloile, se ramenant
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& celle attachée & un autre réseau angulaire isotherme X = const.,
Y = const., etc. par une similitude dont I’angle et le rapport sont
liés par la relation

W
E

\ log = JVo

-

de sorte que ¢ et log\éi sont deux solutions conjuguées de I’équation

Az = 0. Cest par le choix de ces solutions que se différencient les
divers réseaux angulaires isothermes constituant Iensemble des
faisceaux isothermes de la surface — briévement l'ensemble tsotherme.

Si I'on suppose aussi qu'on effectue, en chaque point m, un change-
ment de Vétalon de longueur, de sorte que la simili-étoile de repeére
du réseau isotherme considéré devienne une étoile de vecteurs uni-
taires, cecl revient 4 une représentation sur le dg) canonique de @

doy = df? + dg® = dUdV

et, selon qu'on opérera sur un étalon de longueur ou 'autre, on consi-
dérera les repéres et simili-repéres attachés a ds* et dg) comme de

modules 1 et %, ou x et 1.

VIII. FAISCEAUX NON ISOTHERMES.

24. Soit Iéquation @ = o d’un faisceau non isotherme; par le
moyen d’un facteur normant y* == 4/T, on donnera au premier membre
de I’équation la forme normale

B* = 4/1 6 (99)

dont les invariants seront ceux de I’équation ¢ = o0; en particulier,
s1 on part des formes 73, = df, ou &, on aura

-t & (f QFf . Y =Y
e — \/"(/_\f/) if = VO QN %, .

Il résulte de la premiére formule (36) que la forme normale * est
caractérisée par son invariant [* ramené & I'unité

I* = 1

cependant qu’en général les ordres des opérateurs et des invariants
(dont les symboles portent des astérisques) sont majorés de deux
unités par rapport & ceux qui leur correspondent pour une forme
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