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REPRESENTATION CONFORME 111

que jusqu’a Pordre n ineclus, on doit réguliérement! prévoir n(n—2)
invariants, dont 2 (n-1) nouveaux d’ordre n; si un ds? est adjoint, le

. . . 927 . n{83n—1
nombre des invariants du systéme s’éléve a M—%“‘)> dont 3n—2

nouveaux d’ordre n; par suite les seminvariants sont au nombre de
3n, dont 3 nouveaux pour chaque ordre. Cette régularité n’est

d’ailleurs as acquise our les remiers ordres; c’est ainsi ue
)
4

. . : AP
pour 'ordre un existe le seul seminvariant S = 77 » Ue nous avons

réduit & 'unité pour les formes semi-normales.

V1. ForMES DE PFAFF ADJOINTES — OPERATEURS ET INVARIANTS —
dg? CANONIQUE A UNE FORME.

15. Dans le réseau angulaire attaché a un faisceau simple de
courbes, nous avons déja eu & considérer le faisceau simple des
trajectoires orthogonales des courbes de la premiére famille. Entre
les invariants et les opérateurs appartenant & ces deux faisceaux,
des rapprochements intéressants sont & faire. Pour simplifier le
langage, nous dirons que des formes de Pfaff & et y sont orthogonales
s1 les courbes intégrales des deux équations w5 = 0 et v = 0 sont deux
faisceaux de trajectoires orthogonales; en outre, & toute forme 73
nous assoclerons plus particuliérement une des formes orthogonales ;,
que nous dirons adjointe posilive de @ (% étant Uadjointe négative
de r3;), telle que

67)
; w; = ydg = i(— Adu 4 Bdy) = A, du + B, dy (67)

& w = xdf = Adu 4 Bdy

et nous affecterons de l'indice i les expressions relatives a cette
forme #;; on aura les relations

P, = P Q =—0Q
et comme
A=af, =g,  B=u, =—uys
on voib, en posant
x
) = Y ¢ = — (68
I 1= (68)

1 Quand il y a k équations de conditions pour exprimer la conservation d’un systeme
par les transformations (3), le nombre des invariants & prévoir jusqu’a Pordre n inclus

1
est /{ﬂ"?i—) — 9n. (CL. 1a note du ne° 4).
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que les fonctions f, g, ¢ satisfont aux relations établies aux no 2 et 3
par les formules (11), (11'), (12) et (13). On a aussi

20du = zdf + iydg = © + iw,

. . . (69)
2Bdv = xdf — zydg = 15 — ify;

ce qui établit une symétrie intéressante entre les variables u, ¢ et
7, g et entre les formes Adu, Bdv et 3, ;.

16. Les formules
. - e
i 1,9“ 305 = —1J,

donnent aussitot pour les opérateurs du 1er ordre et les invariants
du 2¢ ordre

@D, =% G, =— 0 (70)
D, =T T, = —0D. (71)

On a ensuite, pour les opérateurs du 2¢ ordre et la parenthése du
1er ordre.

£=£  M=—-IM 9, =N
(@,T) = (D)

puis pour les invariants du 3¢ ordre

I =1 b= hy = — h jo=— . (

12 2

N1
2
~=

Les relations intimes qui se poursuivent entre les opcrateurs et
les invariants de formes adjointes @ et #; — et se généraliseraient
pour des formes @, = cos #.m -+ sin#.w; — ont leur origine dans
les expressions vectorielles, invariantes ou comitantes, du réseau
angulaire attaché a ces formes. Cela était déja apparent pour les
formes semi-normales, et nous reviendrons sur le point de vue vectoriel.
Mais nous remarquerons d’abord qu’a toute forme @ est attachée
une forme quadratique comitante dg2, que nous dirons canoniqie
pour w, et liée & cette forme @ comme le ds® I'est & une forme semi-
normale; en posant en effet

2 2

ds® = 4 Pdudv = w3 -+ t;j; (

~ 1
-
~—

et considérant do? comme un ds? donné, le seminvariant S d’ordre
un de @ par rapport & ce ds? est réduit a I'unité; entre autres conse-
quences, linvariant du 3¢ ordre £ de @ est la courbure totale de la
forme dg2 Si une forme @ est d’abord considérée en liaison avee
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un ds* donné, on pourra, par des transformations conformes appro-
priées, conserver cette forme et ramener le ds? & la forme dg¢?, pour
laquelle @ est canonique. Les expressions vectorielles interprétées
pour une forme semi-normale, par rapport au ds?, donneront donc
lieu & une interprétation analogue pour une forme quelconque, par
rapport au dg? canonique.

17. Reprenons le cas d’un ds? donné, c’est-a-dire d’un étalon de
longueur invariant fixé en tout point m d’une surface. Soient

B =axdm  ds— (dm)* (75)
la forme w et le ds? donnés, et la forme adjointe
B, = b X dm b= Ja . (76)
En se reportant aux formes (67), ou encore
a=2xVf b=uaVg (67
et aux formules (32) et (39), les opérateurs de m et m; fourniront les

parameétres différentiels d’une fonction z, que nous écrirons, avec les
vecteurs inverses de a et b

a—2 p=2= (77)
ax b><
sous les formes
¥ _ -
@Z:axzzzaxvz %z:bX2Vz:b><vz. (78)
ax b >

Par l'effet de la parenthése
(PT)z =a x V(b x Vz) —b x V(a x Vz)
_ = (Vb xa—Va x b) x Vz
le vecteur comitant
—f=Vbxa—Vaxh (79)

et la forme de Pfaff correspondante — f % dm sont mis en évidence.

18. Pour une forme semi-normale w, et les vecteurs

- \Y —
alza:d:__f‘;“‘ bl:blzt:l]d
Vay
— 5 =V xd—Vd xt (79")

L'Enseignement mathém., 30¢ année; 1931.
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f, est le vecteur de la formule (61) et 'on a aussi

(le: '\/A—/ %1f: 0

B, =—Dug=0  Tg= D;g=+/Ag
_f1><vf:(@1‘(”91)/‘:'1‘1\/:\—/. I =—fixd=—g xt
-flxvg:(col%l)g:——Dlx/Z&—éy Di=1f xt=—g x4d

comme cela a été établi; par suite, puisque

d X Vd=txVt=0

Vd = tf, Vt= — df
D, = divd T, =divt —g = (divd)d - (dive)t .

(80)

Les formules (78) montrent bien que les opérateurs (@ et G sont
indépendants du ds? utilisé seulement comme intermédiaire, et les
formules (80) donneront, pour une forme @, des expressions analogues
a celles obtenues pour une forme semi-normale si au ds? est substitué
le do? canonique a cette forme, et si les opérations (multiplication
intérieure, gradient, divergence, etc.) sont effectuées vis-a-vis de ce dg2.

d e :
On peut alors, aux symboles jds—’ N utilisés aux no 11 et suivants,
d t

substituer des symboles a%—, ai— , bien qu’ils n’aient pas une signifi-
a b

cation absolue comme les précédents, la forme dg? étant attachée a
la forme w.

On obtient une autre notation convenable pourles opérateurs (0 et ©
en portant des formes différentielles exactes df et dg; d’apres les
formules (32) du n° 6 et (39) du n® 9, en tenant compte de

Vz=2Vf+2,Vg Vg = -S—JV/’
1l vient
F,z = Zr
Bz = = ou (0D.)2 = 2z
voz pomm— ng 7'0 == g-

et par suite
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d’ou la notation symbolique

D=" T=m = (82)
(@)

les 0 rappelant 'accouplement des formes de Pfaff @ et ;.

Une notation voisine est atteinte en partant de la relation identique
entre trois formes de Pfaff & deux variables (analogue a celle entre
trois vecteurs du plan), et choisissent pour une de ces formes une
différentielle exacte dz

[57]dz = — [1.ds]ws + [wdz]y, (83)
iz — ['/vdz] [ dz] )
[1.6] [57] "

puis convenant de I'écriture symbolique

- [£]o+[2]

de sorte qu'une réduction au dénominateur commun [@ y1, effectuée
suivant les régles de la multiplication extérieure, rétablisse la signi-

Z

: . : dz .
fication de I'expression; la notation [a a avantage d’une analogie

avec celle du quotient entier. Dans le cas particulier X = @i, On
trouve ainsi
)z = [%Z:l Gz = D,z = [éz_] (85)
i

notation voisine de (82).

19. Nous allons étendre I'analogie, déja signalée a la fin du n° 15,
entre les variables u, v et f, g, entre les formes Adu, Bdv et w, w;, com-
mencée par les formules (67) et (69) entre autres. Nous rapprochons
pour cela les formules (19) et (81)

Dz = L Gz =% (81)
x y
zlt ZV

J,3 = Y 8,2 = B (19)

puis les invariants du 1¢€r ordre obtenus par I’emploi de ces paramétres
différentiels; en appliquant en effet les formules (33) a partir de
wy, = df et (w;), = dg, on obtient

D=—T, = —0 logy = () logy T = Glogz (86)

1

o = 3,logB g = 3,6 logA (20)

L
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et on compléte les formules déja obtenues par

D = 3 (M logP + i log Q) = 2 () log p — O log q)
1 (87)
I :5(%10gp—i@10gQ) %(@logp+%logq)
1 1
o = §(su logp — 3, loggq) = E(S logP — & log Q)
(88)

ity

B = 22, logp — 3, logg) = +(5, log P + 3, log Q) -

tol

Les relations entre opérateurs du 2¢ ordre et parenthéses ont été
données par les formules (24') et (25), mais en remarquant 'analogie
des formes

2= (33+53~ + B3, + 29

I = DG+ AR +~TOE DG

on voit en particulier qu’a
thV
£z = 'Suvz = p

correspond

2
Nz = ;fg . (89)

Pour les invariants du 3¢ ordre, on compléte les formules (30) par

1
— 1 :——;ﬁlogQ::-Zg(,logq
_/.~:—;—ﬁlogP:%(flogp——D]zlogq)
(90)
- h:%(ﬂn log P + 19T log Q) :-Z-(JTL log p — £ logq)
e %(91 logP — I log Q) = %9‘6 logp .

20. Revenons encore sur certaines expressions vectorielles intéres-
santes; les trajectoires orthogonales g = const. des courbes f = const.
correspondant a la relation

Vg = qIVf (117)
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on en déduit, comme nous avons vu

Af= —Vfx Viegyg Ag = Vg x Vlogyg (12')

d’ou le vecteur
Vlog(]_—:———Q/Vf—I— Qg.Vg (91)

et en prenant les rotationnels (condition d’intégrabilité), on obtient

V7. VQf] = [Vg.VQg] (92)
L =0(f Qf) = 6' (g, Qg) ; (64) (927)
on vérifie encore que le seminvariant I, n’est pas altéré si on substitue

a f, par exemple, une fonction quelconque F (f) de cette variable 1.
Mais, a partir des formules (80), on obtient aussi

2 2

Ad=ILt— (D +19d At=—1Id—(D+ THt (93)
I =tx Ad=—dx At =[d.Ad] = [t. At (94)

autre expression de ce seminvariant fondamental.

Nous allons montrer la relation entre les formes [V/.VQf] et [d.Ad]
en supposant la forme w, = df réalisée sur un ds? égal & son do?
canonique; on a alors

A=Y Af=1 g =
Vd =tf, = V2f  [tf,] = 0 divd =t x f;, = Af = Qf

donec
f, = Qf.t Vd = Qf.

Vid = ©2VQf — QF°(dt + td)t
Ad = (t x VOt —Qfd = VQf— @ x VQf + Q/)d

le coefficient de d dans la derniére expression étant la courbure
totale du ds2, d’ou enfin

[d.Ad] =t x VQf = [V/.VQ[f] .

1 Nous rappelons les relations

vF = F'vf AF = F23f ©2F = F/vf° + F/v2f AF = F/Af + F'\f
B 1 1\ 1\’ 1
S S S e O RR ORI RS A

les accents indiquant les dérivées par rapport 4 7.
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(Vest 1& I'invariant I, de w,; c’est aussi le seminvariant I, pour

ds® = dg), mais pour un autre ds?, soit ds'2, pour lequel les symboles
seraient accentués, on aurait

21. Résumons, en modifiant un peu leur forme, certains des résultats
précédemment ohtenus; si’on part d’une forme de Pfaff quelconque w,
on peut lui associer, au moyen d’un facteur intégrant y,, la forme

intégrable
a laquelle est associée le dg’ canonique

. 1
dog = 4f, [, duds = w, + (@) = df? + s’
avec ’
g = —iqfy 8, =14/,

Sur ce dg:, les intégrales f = const. sont des courbes paralléles
et I'on a, pour les premiers invariants de @,

Dy = Qf = — @, logq = g <1>

YAV
_ 2 2O (1 95
“"O~ODOD°+D°—‘1a/‘2<q> 9
o? log ¢
——-—IO_‘::‘ —C@OD():(]W

5 1 ‘ooz ,
en accord avec les formules (87) et (99), ou p = V2 Différentes consé-

quences, d’ailleurs connues, peuvent en étre déduites, suivant la
nature de la fonction ¢ de f, g.

Dans le cas ou, & coté de la forme w, est donné un ds?, on peut
associer & g, au moyen d’un facteur semi-normant v, la forme semi-

normale
A%

SV

pour laquelle le dg? canonique se confond avec le ds?

2 2 2
d0'1 = ds? = w;_‘{“ a)'].i .
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Comme nous Pavons établi, les invariants de la forme @, sont les
invariants euclidiens (géodésiques) de I'équation w = 0. Avec les
notations

/_IL_ — (2 — e—?’i'; \_V — ew (49/)

lo 2

on peut écrire une forme semi-normale
W [ / f, > . 5
@, = - — du + Yodo) = eV Wdu 4 eV Tdp . (96)
T <\// V',

VII. FAISCEAUX ISOTHERMES.

22. Il est bien connu, dans la représentation conforme des surfaces,
qu'a coté des deux faisceaux formés par les deux séries de lignes
minima, du = 0 et dv = 0, les faisceaux isothermes de courbes sont
aussi conservés; 'équation différentielle @ = 0 d’un tel faisceau du
premier ordre est en effet caractérisée par la condition invariante

I =0

et I'équation @ == 0 n’a alors aucun invariant conforme. Nous avons
donné bien des formes & 'invariant I de w; considérons en particulier
une forme semi-normale w; sur un ds? et rappelons diverses interpré-
tations de I'équation I, = 0. D’aprés

I = 5AlogQ =0 (97)

2% log Q

A (v)
= ) T e T ————
du oy 0 Q B

le rapport gﬁ des coefficients de I'équation @ = 0 est le quotient de

deux fonctions arbitraires, I'une de u, 'autre de ¢; le facteur intégrant

a b . . 192 . -
5A — gp rameéne alors a I'équation intégrable

1
®, = E{a(u)du + blo)de} =0
et les courbes intégrales sont données par

1
/':§{U(u)du+v(0)do}:const. U=a, YV =10,
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