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REPRÉSENTATION CONFORME 111

que jusqu'à l'ordre n inclus, on doit régulièrement1 prévoir n(n-2)
invariants, dont 2 (n-1) nouveaux d'ordre n; si un ds2 est adjoint, le

nombre des invariants du système s'élève à ——-1- dont 3n-2
nouveaux d'ordre n; par suite les seminvariants sont au nombre de
3n, dont 3 nouveaux pour chaque ordre. Cette régularité n'est
d'ailleurs pas acquise pour les premiers ordres; c'est ainsi que

4P
pour l'ordre un existe le seul seminvariant S ^- que nous avons

réduit à l'unité pour les formes semi-normales.

VI. Formes de Pfaff adjointes — Opérateurs et invariants —-
d(72 CANONIQUE A UNE FORME.

15. Dans le réseau angulaire attaché à un faisceau simple de
courbes, nous avons déjà eu à considérer le faisceau simple des
trajectoires orthogonales des courbes de la première famille. Entre
les invariants et les opérateurs appartenant à ces deux faisceaux,
des rapprochements intéressants sont à faire. Pour simplifier le
langage, nous dirons que des formes de Pfaff to et ^ sont orthogonales
si les courbes intégrales des deux équations to 0 et y 0 sont deux
faisceaux de trajectoires orthogonales; en outre, à toute forme A
nous associerons plus particulièrement une des formes orthogonales
que nous dirons adjointe positive de to (to étant Y adjointe négative
de zoi), telle que

to xdf Ada 4- B <2e

(67)
?'H ~ y ^4' 1 (— A du N F do) À. du + B;àv>

et nous affecterons de l'indice i les expressions relatives à cette
forme ttf; on aura les relations

P. P Q. « - Q

et comme
A xfa lys« B xfj — — îygv

on voit, en posant

p 3=3 xv q ~ (68)

1 Quand il y a h équations de conditions pour exprimer la conservation d'un système
par les transformations (3), le nombre des invariants à prévoir jusqu'à l'ordre n inclus

fi(n -f-1
est k— 2n. (Cf. la note du n° 4).
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que les fonctions /, g, q satisfont aux relations établies aux nos 2 et 3

par les formules (11), (11'), (12) et (13). On a aussi

2 Adu — mdf + lV dg îo + itàé
< (69)

xdf — lydg ta — *56,

ce qui établit une symétrie intéressante entre les variables u1 v et
/, g et entre les formes Adu, B dv et 56,

16. Les formules

*ui i5a $vi —

donnent aussitôt pour les opérateurs du 1er ordre et les invariants
du 2e ordre

® i ^ — & (70)

D, T T. -D. (7J)

On a ensuite, pour les opérateurs du 2e ordre et la parenthèse du
1er ordre.

j et ff DM, - DM <91, - - 91

I (cV^)(iï>©)
(72)

puis pour les invariants du 3e ordre

I. i i /, ^ _ j
Les relations intimes qui se poursuivent entre les opérateurs et

les invariants de formes adjointes ta et nSi — et se généraliseraient
pour des formes as<} =« cos m + sin i. — ont leur origine dans
les expressions vectorielles, invariantes ou comitantes, du réseau

angulaire attaché à ces formes. Cela était déjà apparent pour les

formes semi-normales, et nous reviendrons sur le point de vue vectoriel.
Mais nous remarquerons d'abord qu'à toute forme as est attachée
une forme quadratique comitante do-2, que nous dirons canonique

pour us. et liée à cette forme us comme le ds2 l'est à une forme semi-

normale; en posant en effet

da2 4Pdudv rp -f- iô\ {>'»)

et considérant ch2 comme un eis2 donné, le seminvariant S d'ordre
un de us par rapport à ce ds2 est réduit à l'unité; entre autres
conséquences, l'invariant du 3e ordre h de tu est la courbure totale de la
forme da2. Si une forme ta est d'abord considérée en liaison avec
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un ds2 donné, on pourra, par des transformations conformes appropriées,

conserver cette forme et ramener le ds2, à la forme d<j2, pour
laquelle m est canonique. Les expressions vectorielles interprétées
pour une forme semi-normale, par rapport au ds2, donneront donc
lieu à une interprétation analogue pour une forme quelconque, par
rapport au da2 canonique.

17. Reprenons le cas d'un ds2 donné, c'est-à-dire d'un étalon de
longueur invariant fixé en tout point m d'une surface. Soient

rd a x dm ds2 (dm)* (75)

la forme m et le ds2 donnés, et la forme adjointe

tit — b x tf'm b Ja (76)

En se reportant aux formes (67), ou encore

a xYf b xVg (67')

et aux formules (32) et (39), les opérateurs de w et ccq fourniront les
paramètres différentiels d'une fonction z, que nous écrirons, avec les
vecteurs inverses de a et b

a - 4 S (")
a* b*

sous les formes

=àxv, -b-_l£ b X V ; (78)
a* b*

Par l'effet de la parenthèse

(CDtyz äxV(bxVz)-bxV(axVz)
(Vb xa-Vaxb) x Vz

le vecteur comitant
— f Vb x a — Vâ x b (79)

et la forme de Pfafï correspondante — f x dm sont mis en évidence.

18. Pour une forme semi-normale us1 et les vecteurs

Vf
ax a d —Lr bx — bx t Jd

V V
_ f1 Vtxd — Vdxt (79')

L'Enseignement mathém., 30e année; 1931. g
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fj est le vecteur de la formule (61) et l'on a aussi

<£>i f=V±f 0

C01 g - %iig o <iïlig V^g

— fi x Xf ïj -y/A/' Tj - fj x d - gt x t

— fi X Y g- (t£> !©!>§ — Dj-y/À# Dj X t - gl x d

Dx divd rI\ divt — gx — (divd)d + (divt)t

Les formules (78) montrent bien que les opérateurs CO et % sont
indépendants du ds2, utilisé seulement comme intermédiaire, et les
formules (80) donneront, pour une forme ru, des expressions analogues
à celles obtenues pour une forme semi-normale si au ds2 est substitué
le dv2 canonique à cette forme, et si les opérations (multiplication
intérieure, gradient, divergence, etc.) sont effectuées vis-à-vis de ce d<j2.

On peut alors, aux symboles utilisés aux nos 11 et suivants,
dsd dst

substituer des symboles bien qu'ils n'aient pas une signification

absolue comme les précédents, la forme drj2 étant attachée à

la forme ru.
On obtient une autre notation convenable pour les opérateurs CO et %

en portant des formes différentielles exactes df et dg; d'après les
formules (32) du n° 6 et (39) du n° 9, en tenant compte de

comme cela a été établi; par suite, puisque

d x Vd t x Vt 0

Yd tf2 Yt - df.
(80)

Vz ZfVf+z^g
il vient

COqZ — Zf

ou (03{)0z zg

et par suite

(8!)
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d'où la notation symbolique

C0, ± «. - ± m

les 6 rappelant l'accouplement des formes de Pfafï us et US{.

Une notation voisine est atteinte en partant de la relation identique
entre trois formes de Pfafï à deux variables (analogue à celle entre
trois vecteurs du plan), et choisissent pour une de ces formes une
différentielle exacte ciz

[GS'/} dz — fydz\ tù + [us dz\ y (83)j._i dz~wiö + w
puis convenant de l'écriture symbolique

'• - [t]ß+[f]1 ,si)

de sorte qu'une réduction au dénominateur commun effectuée
suivant les règles de la multiplication extérieure, rétablisse la

signification de l'expression; la notation i J a l'avantage d'une analogie

avec celle du quotient entier. Dans le cas particulier % on
trouve ainsi

a>. - [I] <B,, - [|] (85)

notation voisine de (82).

19. Nous allons étendre l'analogie, déjà signalée à la fin du n° 15,
entre les variables u, v et /, g, entre les formes Adu, B dv et ccr, ctfj,
commencée par les formules (67) et (69) entre autres. Nous rapprochons
pour cela les formules (19) et (81)

CD z — %z - — (81)
* y

K* x V % (19)

puis les invariants du 1er ordre obtenus par l'emploi de ces paramètres
différentiels; en appliquant en effet les formules (33) à partir de

uj0 df et (uSi)0 — dg, on obtient

D — rl\ — log y CD log 2/ T log X (86)

a — l°g B ß ^logA (20)
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et on complète les formules déjà obtenues par

D - (CD log P -f i% log Q) (CD log p — CD log q)

T log P — iCD log Q) !(© log/? 4- log ^r)

a ** 2^"l0g/? ~~ 5,log?) 2 Pu lo£P — *u 1°SQ)

ß 353 log/? — log?) i(^ logP + log Q)

Les relations entre opérateurs du 2e ordre et parenthèses ont été
données par les formules (24') et (25), mais en remarquant l'analogie
des formes

£ — 2 i
Dl CD% + %CD + TCD + D©

on voit en particulier qu'à

& y
2 zf91 z —^

• (89)

correspond

91 z -

P

Pour les invariants du 3e ordre, on complète les formules (30) par

— I — ~£log Q J01log <7

— * j £l°gp \ (£ logp— Jlllog q)

(%)

— h — (Jll log P + Ollog Q) - Oïl l"g/' — log

— j 1 (01 log P — OU log Q) log

20. Revenons encore sur certaines expressions vectorielles intéressantes;

les trajectoires orthogonales g const, des courbes / const,
correspondant à la relation

Vg - qWf (11')



REPRÉSENTATION CONFORME 117

on en déduit, comme nous l'avons vu

Af — Sfx Y log q A g V g x V log q (12')

d'où le vecteur
V log q - Qf.Vf+ QgNg (91)

et en prenant les rotationnels (condition d'intégrabilité), on obtient

[Y/\YQ/] - [Vg.VQg] (92)

I, « W(f, Qf) S'(g, Qg) ; (64) (92')

on vérifie encore que le seminvariant n'est pas altéré si on substitue
à /, par exemple, une fonction quelconque F (/) de cette variable F

Mais, à partir des formules (80), on obtient aussi

Ad I.t — (Dl + Ti) d At - Fd - (Dj + T2)t (93)

F t x Ad — d x At [d. A d] [t. At] (94)

autre expression de ce seminvariant fondamental.
Nous allons montrer la relation entre les formes [Y/.VÛ/] et [d.Ad]

en supposant la forme w0 df réalisée sur un ds2 égal à son d^
canonique; on a alors

d Y/' \f 1 co0 ^
Yd tF vY [tfj 0 divd t x F Af Qf

donc

F Qf. t Yd Qf. t2

Y2d t2 Y Qf — Ô/'2(dt + t d) t

Ad (t x V Qf) t - U/'2d VU/'-- (d X VU Û72)d

le coefficient de d dans la dernière expression étant la courbure
totale du ds2,d'où enfin

[d.Ad] t x VU/'= [V/WU/1]

1 Nous rappelons les relations

rF F'v/ aF F72 A/ v2F F "Vf2 + F ' v2/ AF F" A/ + F'A/

!iF - W + vof j - (p)"+ (p)'°/1 + ^7 va/

les accents indiquant les dérivées par rapport à /.
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C'est là l'invariant I0 de cet0; c'est aussi le seminvariant Ij pour

ds2 dcr2^ mais pour un autre ds2, soit ds'2, pour lequel les symboles
seraient accentués, on aurait

_ [vy.v'Q/*! __0 ~ ay ~~ Ay

21. Résumons, en modifiant un peu leur forme, certains des résultats
précédemment obtenus; si l'on part d'une forme de Pfafï quelconque e?r,

on peut lui associer, au moyen d'un facteur intégrant y0, la forme
intégrable

fx>o v0 Cû df

à laquelle est associée le d<s\ canonique

da\ 4 fu fv du dv CtTo ~\r (wfjl df2 + Kdg2
H

avec su----- igfu „

Sur ce da\,^es intégrales / const, sont des courbes parallèles
et l'on a, pour les premiers invariants de asa

(95)

D0 Qf—

Û?log— k0 COo'Do + D0

1
en accord avec les formules (87) et (90), où p — Différentes

conséquences, d'ailleurs connues, peuvent en être déduites, suivant la
nature de la fonction q de /, g.

Dans le cas où, à côté de la forme u$, est donné un ds2, on peut
associer à us, au moyen d'un facteur semi-normant vx, la forme semi-

normale
W

m, v, eu Vj
2VP

pour laquelle le da\canoniquese confond avec le ds2

da\ ds2 cen + OTij •
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Comme nous l'avons établi, les invariants de la forme us1 sont les

invariants euclidiens (géodésiques) de l'équation us ~ 0. Avec les
notations

j Q e-n' ^ e'" (49')
' V

on peut écrire une forme semi-normale

~ (^/f~ ^u ^ eW~l? eW+l?

VII. Faisceaux isothermes.

22. Il est bien connu, dans la représentation conforme des surfaces,
qu'à côté des deux faisceaux formés par les deux séries de lignes
minima, du — 0 et dv 0, les faisceaux isothermes de courbes sont
aussi conservés; l'équation différentielle us 0 d'un tel faisceau du
premier ordre est en effet caractérisée par la condition invariante

I 0

et l'équation us 0 n'a alors aucun invariant conforme. Nous avons
donné bien des formes à l'invariant I de us; considérons en particulier
une forme semi-normale usx sur un ds2 et rappelons diverses interprétations

de l'équation I-, 0. D'après

I, « |AlogQ 0 (97)

ft2 log Q _ 0 Q
A

__
g(u)

ö u ô v B b (v)

A
le rapport — des coefficients de l'équation us 0 est le quotient de

deux fonctions arbitraires, l'une de u, l'autre de c; le facteur intégrant
2^ ramène alors à l'équation intégrable

| a (u) du + b(v)dv} 0

et les courbes intégrales sont données par

I
/ ~2 { ^ {u) du -f- Y (v) dv j- const. U' a Y' b
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