Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 30 (1931)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: APPLICATION A LA REPRÉSENTATION CONFORME DES

TRANSFORMATIONS A VARIABLES SÉPARÉES

Autor: Delens, P. C.

Kapitel: IV. Invariants d'une différentielle totale et du \$ds^2\$.

DOI: https://doi.org/10.5169/seals-23887

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

La première des formules (36), qui dérive immédiatement de (30) et (34), donne ce résultat important: le facteur x s'exprime au moyen des invariants du 3^{me} ordre I et I_0 de ϖ et ϖ_0 . Ceci est conforme aux prévisions qu'on pouvait faire; pour obtenir les invariants de l'équation $\varpi=0$, on devait éliminer x et ses dérivées partielles entre les expressions des invariants de la forme ϖ en fonction de ceux de ϖ_0 , afin d'arriver aux invariants indépendants de x. Jusqu'à l'ordre 3 inclus existaient 6 invariants distincts de la forme ϖ , contenant les 6 quantités x, x_u , x_v , x_{u^2} , x_{uv} , x_{v^2} : l'élimination des dérivées de x donne donc x en fonction des invariants de ϖ et ϖ_0 ; les invariants de l'équation $\varpi=0$ n'apparaissent qu'ensuite, et le nombre de ces invariants distincts des différents ordres, ainsi calculés, coïncide bien avec celui que nous avons déjà obtenu autrement.

7. Si les transformations (3) doivent conserver, en même temps qu'une forme ϖ , le ds^2 de la surface, on retombe sur un problème d'applicabilité (sans déformation superficielle). Les invariants se partagent alors en trois catégories: 1º les invariants conformes de ω, indépendants du ds2, que nous appellerons simplement ses invariants; 2° les invariants conformes du ds^2 , qui ne sont autres que les invariants gaussiens de ce ds^2 ; 3º les invariants mixtes de ϖ et du ds^2 , que nous appellerons seminvariants (conformes) de w. De même, si l'on adjoint aux précédentes de nouvelles formes différentielles χ , de Pfaff ou non, à côté des invariants propres de ces formes figureront des invariants mixtes, entre ϖ et χ par exemple. Une fois obtenus les invariants essentiels du système considéré, les invariants d'ordre supérieur s'obtiendront par le jeu de deux opérateurs différentiels, pour lesquels on pourra choisir les opérateurs \mathcal{O} et \mathcal{E} attachés à la forme ϖ ; un changement d'opérateurs se ferait ensuite facilement. Nous venons en outre d'indiquer un procédé pour passer des formes ϖ à des équations $\varpi = 0$.

IV. Invariants d'une différentielle totale et du ds^2 .

8. Nous envisageons d'abord le cas d'une forme ϖ_0 différentielle exacte et considérons le système

$$ds^{2} = W^{2} du dv$$

$$\boldsymbol{\varpi}_{0} = df = f_{u} du + f_{v} dv \qquad \mathbf{A}_{0} = f_{u} \quad \mathbf{B}_{0} = f_{v} . \tag{37}$$

La forme ϖ_0 n'étant pas générale, les règles relatives à une forme ϖ quelconque ne permettent pas de prévoir le nombre des invariants distincts des différents ordres du système et leur répartition en invariants gaussiens, invariants et seminvariants de ϖ_0 (ou f). Mais

on doit considérer f comme un invariant donné d'ordre zéro, et reprendre le calcul pour ce cas; on trouve ainsi qu'on doit prévoir, en général, jusqu'à l'ordre n inclus:

$$\frac{(n+1)(n+2)}{2} - 2n = \frac{n(n-1)}{2} + 1 \text{ invariants de } f, \text{ dont } n-1$$
nouveaux pour l'ordre n ;

$$\frac{n(n+1)}{2} - 2n = \frac{n(n-3)}{2} \text{ invariants gaussiens, dont } n-2$$
 nouveaux;

$$(n+1)^2 - 2n = n^2 + 1$$
 invariants du système (37), dont $2n - 1$ nouveaux;

donc, par différence, 2n seminvariants de f, dont 2 nouveaux pour l'ordre n.

En fait, on a d'abord, pour l'ordre zéro, l'invariant f; pour l'ordre un, le seminvariant

$$S_0 = \Delta f = \frac{4 f_u f_v}{W^2} = \frac{4 P_0}{W^2} . \tag{38}$$

Les opérateurs différentiels attachés à ϖ_0 : \mathcal{O}_0 et \mathcal{E}_0 , donnent d'une fonction z les paramètres

$$\mathcal{D}_0 z = \frac{1}{2} \left(\frac{z_u}{f_u} + \frac{z_v}{f_v} \right) = \frac{\Delta'(f, z)}{\Delta f} \qquad \mathcal{E}_0 z = \frac{i}{2} \left(\frac{z_u}{f_u} - \frac{z_v}{f_v} \right) = \frac{\Theta'(f, z)}{\Delta f}$$
(39)

et pour l'opérateur \mathcal{L}_0 du second ordre, on prouve

$$\mathcal{L}_0 z = \frac{z_{uv}}{f_u f_v} = \frac{\Lambda z}{\Delta f} . \tag{40}$$

Pour le second ordre, on obtient un invariant de ϖ_0

$$D_0 = \frac{1}{2}(\alpha_0 + \beta_0) = \alpha_0 = \beta_0 = \mathcal{L}_0 f$$
 (41)

pour lequel, en introduisant un symbole Ω d'opérateur conforme, nous poserons

$$D_0 = \frac{f_{nv}}{f_n f_v} = \frac{\Lambda f}{\Delta f} = \Omega f \tag{41'}$$

cependant que $T_0=0$; on a en même temps deux seminvariants d'ordre deux

$$\mathcal{O}_0 \Delta f = \frac{\Delta'(f, \Delta f)}{\Delta f} = \frac{\Delta''f}{\Delta f} \qquad \mathfrak{F}_0 \Delta f = \frac{\Theta'(f, \Delta f)}{\Delta f} = \frac{\Theta''f}{\Delta f} \quad (42)$$

auxquels on peut substituer $\Delta^{\prime\prime}f$ et $\Theta^{\prime\prime}f$.

9. Les relations (25) sont ici réduites à

$$\mathcal{L}_{0} = \mathcal{O}_{0}^{2} + \mathcal{E}_{0}^{2} + D_{0} \mathcal{O}_{0}$$

$$\mathcal{M}_{0} = \mathcal{O}_{0}^{2} - \mathcal{E}_{0}^{2} + D_{0} \mathcal{O}_{0}$$

$$\mathcal{H}_{0} = \mathcal{O}_{0}^{2} - \mathcal{E}_{0}^{2} + D_{0} \mathcal{O}_{0}$$

$$\mathcal{H}_{0} = \mathcal{O}_{0} \mathcal{E}_{0} + \mathcal{E}_{0} \mathcal{O}_{0} + D_{0} \mathcal{E}_{0}$$

$$\mathcal{O}_{0} = (\mathcal{O}_{0} \mathcal{E}_{0}) - T_{0} \mathcal{O}_{0} = 0$$

$$(43)$$

la première et la dernière s'exprimant encore par

$$\left\{ \begin{array}{l} \Delta' \left\{ f, \frac{\Delta' \left(f \cdot z \right)}{\Delta f} \right\} + \Theta' \left\{ f, \frac{\Theta' \left(f, z \right)}{\Delta f} \right\} + \Omega f \cdot \Delta' \left(f, z \right) = \Lambda z \\ \Delta' \left\{ f, \frac{\Theta' \left(f \cdot z \right)}{\Delta f} \right\} - \Theta' \left\{ f, \frac{\Delta' \left(f \cdot z \right)}{\Delta f} \right\} + \Omega f \cdot \Theta' \left(f, z \right) = 0 \end{array} \right.$$
(44)

relations entre paramètres différentiels d'ordres supérieurs des fonctions f, z; si en particulier on applique ces formules à f et Δf , on obtient

En appliquant au contraire à f les formules (24) sous leur forme générale, et tenant compte de

$$\mathcal{O}_{0}f = \frac{\Delta f}{\Delta f} = 1$$
 $\mathcal{E}_{0}f = \frac{\Theta'(f \cdot f)}{\Delta f} = 0$

on trouvait directement

$$D_0 = \frac{\mathcal{L}_0^0 f}{\mathcal{O}_0 f} = \Omega f \qquad T_0 = 0 .$$

Pour le 3^{me} ordre, on obtient les deux invariants de ϖ_0

$$\mathcal{O}_{0} D_{0} = \frac{\Delta'(f, \Omega f)}{\Delta f} \qquad \mathcal{C}_{0} D_{0} = \frac{\Theta'(f, \Omega f)}{\Delta f}$$
 (45)

sous forme de rapports de seminvariants, mais évidemment indépendants du ds^2 . Pour former les seminvariants, on peut, au lieu de \mathcal{O}_0z et \mathcal{E}_0z , utiliser les paramètres différentiels $\Delta'(f, z)$ et $\Theta'(f, z)$. Quant aux invariants gaussiens, on sait qu'on arrive pour le 3^{me} ordre à la courbure totale K du ds^2 , donnée par

$$-K = \frac{4(\log W)_{uv}}{W^2} = \Lambda \log W = \Delta f \cdot \mathcal{L}_0 \log W. \tag{46}$$

10. Nous ne poursuivrons pas plus loin le calcul, sans difficulté, des invariants, mais remarquerons que les invariants du 3^{me} ordre des formules (30) se réduisent ici à

$$-I_{0} = -\mathcal{E}_{0}D_{0} = -\frac{i}{2}\mathcal{L}_{0}\log Q$$

$$-k_{0} = \mathcal{O}_{0}D_{0} + D_{0}^{2} = \frac{1}{2}\mathcal{L}_{0}\log P_{0}$$

$$-h_{0} = \mathcal{O}_{0}D_{0} - D_{0}^{2} = \frac{1}{2}(\mathcal{M}_{0}\log P_{0} + i\mathcal{H}_{0}\log Q)$$

$$-j_{0} = \mathcal{E}_{0}D_{0} = \frac{1}{2}(\mathcal{H}_{0}\log P_{0} - i\mathcal{M}_{0}\log Q)$$

$$(47)$$

donc en particulier

$$I_{0} = \frac{\Theta'(f, \Omega f)}{\Delta f} = \frac{i\Lambda \log Q}{2\Delta f} - k_{0} = \frac{\Delta'(f, \Omega f)}{\Delta f} + \overline{\Omega f^{2}} = \frac{\Lambda \log P_{0}}{2\Delta f}.$$
(48)

En introduisant l'angle φ , que nous interpréterons plus loin, donné par

$$\frac{f_u}{f_u} = Q = e^{-2i\varphi} \qquad \log Q = -2i\varphi \tag{49}$$

et tenant compte aussi de (38), ou

$$4 P_0 = W^2 \Delta f \tag{38'}$$

il vient

$$I_{0} = \mathcal{L}_{0} \varphi = \frac{\Lambda \varphi}{\Delta f} \qquad \Lambda \varphi = \Theta'(f, \Omega f)$$
 (50)

$$-k_0 = \mathcal{L}_0 \log W + \frac{1}{2} \mathcal{L}_0 \log \Delta f = -\frac{K}{\Delta f} + \frac{\Lambda \log \Delta f}{2\Delta f} . \quad (51)$$

Les formules (50) et (51) sont, comme on le constatera, des cas particuliers de (36). En comparant la seconde formule (48) à (51), on trouve pour la courbure totale

$$K = \Lambda \log \sqrt{\Delta f} - \Lambda f \cdot \Omega f - \Delta'(f, \Omega f)$$
 (52)

formule très générale à laquelle on peut donner bien des formes, par exemple 1

$$K = \frac{\Lambda \Delta f - 2 \overline{\Lambda f^2} - 2 \Delta'(f, \Lambda f) - 4 \Sigma f}{2 \Delta f}.$$

V. Formes de Pfaff semi-normales.

11. Dans la géométrie euclidienne des surfaces (c'est-à-dire la géométrie des surfaces pourvues de la connexion euclidienne induite de l'espace ambiant, soit l'ordinaire géométrie riemannienne sur la surface), on a avantage à considérer, plutôt que la forme $\varpi_0 = df$, la forme

$$\overline{\omega}_1 = \frac{df}{\sqrt{\Delta f}} = x_1 \overline{\omega}_0 \qquad x_1 = \frac{1}{\sqrt{\Delta f}}$$
(53)

Le système formé d'une équation $\varpi = 0$ et du ds^2 est en effet équivalent, pour les transformations conformes, à cette seule forme ϖ_1 , normée vis-à-vis du ds^2 , de sorte que les invariants de cette forme soient ceux du système indiqué. Nous dirons que la forme ϖ_1 est canonique pour le ds^2 , ou semi-normale (on pourrait encore dire unitaire); le facteur x_1 , la normant ainsi à partir de la forme ϖ_0 , a pour effet de ramener à l'unité le seminvariant du $1^{\rm er}$ ordre S_1 de la forme ϖ_1 . Les invariants de ϖ_1 indépendants de x_1 sont les invariants de l'équation $\varpi = 0$; les autres invariants de ϖ_1 sont des semi-invariants ou des invariants gaussiens.

Les opérateurs différentiels du 1er ordre de ø, sont

$$\mathcal{O}_{1} = \sqrt{\Delta f} \, \mathcal{O}_{0} \qquad \mathcal{E}_{1} = \sqrt{\Delta f} \, \mathcal{E}_{0} \qquad (54)$$

et pour l'opérateur \mathcal{L}_1 du 2^{me} ordre, on a

$$\mathcal{L}_1 = \Delta f \cdot \mathcal{L}_0 . \tag{55}$$

$$\Delta'(f, \Omega f) = \frac{\Delta'(f, \Lambda f)}{\Delta f} - \frac{\Delta''(f, \Lambda f)}{\overline{\Delta f}^2} - \Lambda \log \Delta f = \frac{\Lambda \Delta f}{\Delta f} - \frac{\Delta^2 f}{\overline{\Delta f}^2} - \Sigma f = \frac{\Delta^2 f - 2\Delta''(f, \Lambda f)}{4 \Delta f}$$

Pour un faisceau de lignes parallèles, avec $\Delta f = 1$, on retrouve la formule connue

$$K = - \frac{1}{\Lambda f^2} - \Delta'(f, \Lambda f) .$$

Pour un faisceau isotherme, avec $\Lambda f = \Omega f = 0$

$$K = \Lambda \log \sqrt{\Delta f}$$
.

¹ Au moyen des formules