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98 P. C. DELENS

Dans le cas ou l'on considére deux vecteurs a et b= Ja d’un
stmilt-repére, on a d’ailleurs (les rotationnels étant superficiels)

diva = roth divh = — rota , (15)
et pour un gradient yf on a toujours la condition d’intégrabilité
rotVf = 0. (16)

On connait d’autre part (Thése) les relations entre les notations
vectorielles: produit extérieur de vecteurs, rotationnel — et celles
introduites par M. E. Cartan pour les formes de Pfaff: produit
extérieur, différentiation extérieure; elles tiennent essentiellement
aux formules

sdf:fodm
[ ® = a x dm = zdf a=aVf.

Aux formules (11) correspond, en calcul vectoriel
Vg = qIVf (11)

et (12) s’en déduit en prenant les rotationnels des deux membres.

II. INVARIANTS ET OPERATEURS DIFFERENTIELS
D'UNE FORME DE PFAFF.

4. Nous dirons que les courbes intégrales d’'une équation de Pfaff
w = o forment sur la surface un faisceau (simple); la donnée d’une
fonction f de u, ¢ (ou de la variable géométrique m) est équivalente
a celle des intégrales f = const., prises individuellement, de I’équation
df = 0; au contraire, la donnée d’une équation de Pfaff @ = adf =0,
revient seulement & celle de [’ensemble des courbes intégrales du
faisceau.

Soit & conserver, par les transformations conformes (3), une forme
de Pfaff

W = Au, v)du + B(u, v)dy (18)

a laquelle nous avons attaché deux opérateurs différentiels du
1er ordre, S, et S, donnant d’une fonction z les parameétres diffé-
rentiels

S 8= = 3,5 = — . (19)
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Nous avons montré existence, pour ces transformations conformes,
de deux invariants essentiels d’ordre deux?!

AV
(logB), = 5, logB [L= — =

1
N [ ‘ 1B B (logA), = 3, log A

(20)

a partir desquels les invariants d’ordre supérieur se forment par le jeu
des opérateurs différentiels S, et ,; l'itération de ceux-ci fournit
des opérateurs d’ordre supérieur ou des combinaisons linéaires, a
coefficients invariants, des opérateurs précédents; nous avions posé

g 5,5)=25239 —58 =543, —ad
144 ¢ [ 14

( S, =

I'opérateur linéaire du 2¢ ordre, $,,, donnant pour une fonction z
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Les opérateurs S, et S, étaient des symboles de transformations
infinitésimales agissant respectivement le long des lignes minima
¢ = const. et u = const.; nous leur substituerons des symboles de
transformations agissant le long des lignes du faisceau @ = 0 et de
leurs trajectoires orthogonales, en posant

(&IL T '9v> ( § = (D — 0

n

‘\cD:_i)

i S o= 0) +i0

Nous prendrons aussi pour invariants essentiels du second ordre

l 5 =D 4T

/ 1 .
5 D =5(=+7 2= 1D — T
P T = L(x— 5 | -

1 Contrairement & ce que nous avons fait précédemment (Equivalences), 1’ordre
attribué¢ aux invariants d’une forme ou ¢quation différentielle du 1er ordre est I’ordre de
dérivation, augmenté d’une unité; cette modification s’impose ici ot nous avons parfois &
consideérer les invariants de formes finies (d’ordre zéro).
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5. Aux formules (21) correspondent

(PG) = PG — B = 10 — DG

! (24)
. L2 = 2+ G+ DA + 16
avec
i 4
(OD%) = 5(3‘”5’0) L= '91¢v ; (24)

mais nous introduirons trois opérateurs distincts du 2¢ ordre, £, I,
IL et un quatriéme opérateur © identiquement nul, avec les relations

L =02 +T 4D+ 1T6= %(ausv-;- S,9,+ 63, +ad)
M =@ —F +DD—1T = (5, + 5 + a5, + 53,
25)
. = 03‘5+‘503+T69—[—D‘@:%(3i—&i + a%, — §39,) |
O=@RG—-%A —TA + D6 = ﬂ-;;w-”sv«s—vsu—(;sw +ag)=0.

En posant, pour le produit et le quotient des coefficients de la
forme @

A
P — AB Q=7 (26)
les invariants du 2€ ordre s’expriment maintenant par

D = — (M logP + iG log Q)

S |
~—

r11 —

ol &~ |~

(® logP — i) log Q) .

Les quatre invariants distincts du 3¢ ordre précédemment introduits
(et désignés alors par o = Sya, 6 = Suf5, ¢ = Jyu, $ = 35) s'ex-
priment par

[ 9 a=@D—BT—i(AT+TD) 3,6= @D +TT 4 (DT —TD) %)

; 9,0 = @D + ST —i (AT —TD) 9,6=@AD—TT + (DT 4+ ED) B
d’ou
1 Q m ‘ o n
BDD = —(3,6+ 3,04 3,2+ 3,5 BT =—(3,5—32—35,2+3.0
(28')

: ' oy .
TD = (9,6 — 3,0+ 9,2— 3,0 BT = £ (3,64 5,2— 5,2 —3,5)
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dont les combinaisons les plus utiles sont

!

— 1= DT —BD = — — (3,6 — 3,3
~ 1
— k= @D + BT + D? + T2 = (5,5 + 2+ 2af)
) (29)
idd b ) o /-l D} rn9
— b = (D — Il + D* — T? = 5(3141 T suie + o7 + L;‘)
| — = @T+ %D +2DT = %(Sua — 8,8 4 of — )
soit, en fonction de P et Q et des opérateurs £, I, I
Pa
— I = — §,L/, log Q
J 5
— k= 5 £logP
(30)
1 ~ . A
— h = T)(J]L log P + i9T log Q)

1, 4 A
— ] = 7;(9L log P — iJ log Q) .

Les deux premiers de ces invariants, I et &, sont particuliérement
intéressants; nous ne formerons pas ici les invariants et opérateurs
d’ordre supérieur.

ITI. ForMES DE PFAFF PROPORTIONNELLES. — EQUATION
DE PFAFF. — ADJONCTION D'UN ds2.

6. St au lieu d’une forme w on veut conserver, par les transforma-
tions conformes, une équation de Pfaff w = 0, les invariants de cette
équation sont compris dans ceux de la forme w, et on peut les consi-
dérer comme communs a toutes les formes proportionnelles @ =
xrw,, c’est-a-dire indépendants du facteur arbitraire x. On pourra
choisir pour @, une forme @ particuliére, et nous le ferons dans la
suite; pour I'instant, laissant aux formes @ et @, toute leur généralité,
nous allons établir les relations entre les opérateurs différentiels de
ces formes w et w,, puis entre les invariants de ces formes.

Soient donc les formes de Pfaff

w, = A,du -+ B,dy W = Adu + Bdv = z@, (31)
A = zA, B = B, P = 2%P, Q== 0.
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