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APPLICATION A LA REPRESENTATION CONFORME
DES TRANSFORMATIONS A VARIABLES SEPAREES

PAR

P. C. DerLeE~s (Le Havre).

SOMMAIRE.

I. Nous avons, dans un précédent mémoire 1, étudié systématique-
ment les procédés de formation des invariants de formes et d’équations
différentielles du 1€r ordre pour les transformations a variables
séparces

i = U (u) v = V(v (8)

et nous avons indiqué, dans les cas les plus simples, comment se
posaient, au moyen de ces invariants, les problémes d’équivalence des
systémes considérés. Nous faisons ici une application des résultats
obtenus a la représentation conforme des surfaces (ou du plan), les
variables u, ¢ jouant le role de coordonnées symétriques; dans ce
but nous modifions d’abord les procédés exposés pour montrer
I'emploi et le role des paramétres différentiels de la théorie des
surfaces. Bien qu’il apparaisse nettement que les invariants d’un
méme ordre sont les coeflicients de formes ou d’équations différen-
tielles invariantes, nous n’avons usé¢ qu’avec modération des méthodes
vectorieiles ou tensorielles dont ceci permettait I'introduction: pour
un expos¢ plus complet, nous renvoyons le lecteur a notre thése 2,

II. En considérant d’abord une forme de Pfaff @, celle-ci est
évidemment lice au faisceau des courbes intégrales de I’équation
® = 0; aux opérateurs invariants S, S, attachés a cette forme et
définissant des transformations infinitésimales le long des lignes

1 Tsquivalences de formes et d’¢quations différentielles par les transformations a
variables séparées: L’Enseignement Mathématique, X X VII, n°s 4-5-6. Référence: (Equi-
valences).

2 Mcthodes et probléemes des géométries différentielles euclidienne et conforme
(Paris, Gauthier-Villars, 1927). Référence: (Thése).
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minima, nous substituons d’abord des opérateurs agissant le long des
courbes du faisceau @ = 0 et de leurs trajectoires orthogonales: il
s’ensuit une modification correspondante des invariants obtenus par
le jeu de ces opérateurs a partir des coefficients de la forme.

I1T. Nous montrons ensuite comment se modifient les opérateurs
et les invariants d’une forme ® quand on remplace celle-ci par une
forme proportionnelle. Cette méthode, que nous avions laissée de
cOté dans notre premier mémoire, trouve dans la suite diverses
applications et mene en particulier & un nouveau procédé d’étude
pour une équation de Pfaff invariante.

Un ds* adjoint est-il & conserver par les transformations (3) en
méme temps qu'une forme @, on retrouve un probléme d’applicabilité
des surfaces; les invariants du systéme @, ds* comprennent alors des
invariants conformes de ®, des invarianis gaussiens (invariants
conformes du ds?) et des invariants mixtes ou seminvariants de .

IV. Pour une forme @, différentielle exacte, les invariants des
premiers ordres sont ainsi calculés au moyen des symboles A, O, A,,
etc. de la théorie des surfaces (symboles que nous modifions légére-
ment dans le texte); on reconnait déja les combinaisons de ces sym-
boles qui fournissent les invariants conformes. Nous trouvons des
relations utiles (formules (44), (44")) entre les parametres différentiels
d’ordre supérieur. Nous donnons aussi pour la courbure totale la
formule trés générale

A2 Ay S
K = A, log V/Af — A;; — A<f, T;) (52)

ou la fonction f des coordonnées curvilignes est arbitraire® (mais
non constante).

V. Les invariants de déformation d’'une équation @ = 0 sont ceux
d’une forme de Pfaff semi-normale @, proportionnelle & @ et normée
vis-a-vis du ds2; les invariants du 1T ordre de cette forme sont des
courbures géodésiques. Nous revenons ici sur la notion de réseau
angulaire de courbes (Thése) et du vecteur de courbure géodésique
de ce réseau, les formules vectorielles

g — — %E;VH %V log Af (63) K — divg, (65

conduisant aussitot & la formule précédente (52).

11’apparence paradoxale de ce résultat disparait si on remarque que les opérateurs
A et 3y dépendent des coefficients du ds2.
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Signalons encore la formule
g, = — ViegW 4+ JVo (61)

ot les éléments géométriques de la courbure géodésique sont parti-
culierement en évidence.

VI. A la forme @ d’une équation @ = 0 nous rattachons la forme
adjointe ®; des trajectoires orthogonales @; = 0 du premier faisceau
de courbes: les opérateurs et invariants des deux formes sont liés
trés simplement. Aux deux formes est attaché un de? canonique sur
lequel les deux formes sont semi-normales. Nous ne pouvons manquer
de revenir ici sur les éléments vectoriels, et étudions également les
notations convenables pour les opérateurs différentiels attachés
aux formes de Pffaf, en liaison avec le dg? canonique. Nous don-
nons différentes expressions d’un seminvariant I, = Ay qui preé-
sente un intérét particulier dans la représentation conforme.

VII. Un faisceau isotherme de courbes @ = O est caractérisé par
la condition invariante I =0, ou I, = 0, c’est-a-dire A9 = 0; &
un tel faisceau se rattache un réseau angulaire isotherme et plus
généralement un ensemble (I = 0) isotherme; nous rappelons rapide-
ment les propriétés d’un tel faisceau, qui ne posséde aucun invariant
conforme.

VIII. Siun faisceau @ = O n’est pas isotherme, il existe une forme
normale

w* =/l ® (99)

dont les invariants conformes sont ceux de ’équation = 0; sur un
do*? canonique a ¥, cette forme est en méme temps semi-normale;
pour les courbes d’'un méme ensemble (1) on peut introduire la notion
d’arc conforme. Le ds*? canonique peut étre utilisé pour la classi-
fication des faisceaux de courbes vis-a-vis des transformations
conformes, probléme qui se formule comme un probléme d’équivalence
avec conservation du do*2.

IX. L’interprétation géométrique des éléments introduits jusqu’ici
introduit la notion d’isoclines conformes d’'un faisceau de courbes par
rapport & un faisceau isotherme; mais les problémes de représentation
conforme ne se rameénent pas toujours aussitot a des égalités d’angles,
et la maniére dont se modifient des quantités non invariantes offre
aussi de I'intérét. Cest ainsi qu’on reconnait qu’un faisceau arbitraire
r5 = 0 peut étre représenté conformément suivant un faisceau de
géodésiques: nous montrons comme application qu’on peut compléter,
au moyen d’une représentation conforme, la solution du probléme
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des congruences de normales attachées aux points d’une surface (je
ne dis pas les normales de la surface).

Il est connu que les réseaux cerclés de courbes d’une surface se
transforment les uns dans les autres par les représentations conformes
de la surface: nous nous contentons de quelques indications sur cette
théorie récente.

X. Comme nous l’avons fait dans notre premiere Etude, nous
montrons comment les invariants et opérateurs des formes et équa-
tions quadratiques se rattachent & ceux de formes et d’équations
linéaires; au double faisceau de courbes défini par une équation
quadratique, on doit, au point de vue géométrique, joindre d’abord
la considération des faisceaux bissecteurs et du faisceau formé par
les courbes le long desquelles ’angle 24 du faisceau initial est constant.
Ici encore, on retrouve des formes normales et un d*s? canonique.
Pour l'isothermie, on peut considérer une hémi-isothermie et une
holo-isothermie.

XI. Nous sommes maintenant en présence de deux faisceaux du
2me ordre, celui des lignes minima et le faisceau «(*) = 0 & conserver;
pour les formes correspondantes ds? = W2du dv et « = C2d&dy,
il est intéressant de montrer les relations entre les invariants calculés
a partir des changements de variables portant soit sur u, ¢, soit sur
£, . Cette symétrie du probléme a déja été préparée dans les numéros
précédents: elle prépare son extension a des questions analogues, ou
ne figureraient plus nécessairement les lignes minima.

Les méthodes exposées peuvent aussi se prolonger pour I’étude de
formes et d’équations différentielles de degré supérieur.

I. NoTATiIONS — PRELIMINAIRES.

1. Le ds® d’une surface étant pris sous la forme
ds? = W2dudy = W?(dX? 4 dY?) (1)

les paramétres u, ¢ sont ceux des lignes minima de la surface, et les
variables X, Y telles que

1
guzX—[—iY X:E(u—}—v)

[

£ —a¥ Y:—%(u—v)
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sont des paramétres isothermiques (ou isométriques). Un changement
de variables

i = U(u) p = V (v) (3)

réalise une représentation conforme (directe) de la surface, autre-
ment dit une transformation conforme superficielle; de telles trans-
formations constituent une application importante de la théorie des
transformations a variables séparées, dont nous avons commence
I'étude dans un précédernt Mémoire (Lquivalences).

Nous considérons en général des variables X, Y réelles, donc des
variables u, ¢ imaginaires conjuguées (coordonnées symétriques); pour
les courbes réelles tracées sur une surface réelle, ou du moins celles
données, avec des variables réelles, par des équations a coeflicients
réels, il v a lieu de modifier les notations et les résultats déja acquis
pour mettre en évidence, autant que possible, des invariants réels.
Nous sommes ainsi amené & faire usage des parametres différentiels
de la théorie des surfaces.

D’autre part, il est parfois préférable d’établir entre les variables,
u, v, X, 1Y des relations plus symétriques que celles des formules (2),
soit

1

Vi

vo= —— (X — 1Y) Y = (@ — )
\/2

(2)

Pour ne pas charger les formules de coefficients ¢ auxquels on pour-
rait donner ensuite, suivant les cas, les valeurs 1 ou 4/2, nous en res-
terons aux notations (2), en remarquant qu’on passerait aux formules
(2') par la transformation

u
I_l — — Y = —— (3’)
V2 V2
ne modifiant pas les invariants que nous allons calculer, et introdui-
sant pour les comitants (covariants, contrevariants, etc.) des change-
ments simples.

2. Les dérivées partielles par rapport a des variables u, v, X, Y, , g,
seront indiquées par des indices inférieurs, par exemple

02 f p of 02z .
- T Z == - ) etc.,
X d g d3fdg

fu = T fuv:

L

duody
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et nous écrirons sous les formes suivantes les principaux paramétres
différentiels employés !

L,

Af—- N 2(/;ng+fuzu) _Qi(/.uzv_fuzu)

Wwe A'(f, z) — W2 ®,(f’ Z) —_— e W2

()

parametres du 1°r ordre, donnant la relation connue

N A + 071 2 = Af.az. (%)

Les paramétres du 2¢ ordre d’une fonction f sont ensuite

4
Af = TI"; A'f = AAf A'f=A(f, Af)  O"f= O'(, Af)
(6)
liés par la relation
ATf2 4 Q7[R = Af. A% . (7)

On a d’ailleurs, dans le cas W2 = 1, pour les numérateurs de cer-
taines des expressions précédentes

Aof = 4f 0, = tx+1r Dol = 4fp = fea+ fya

A;(/', 7)) = 2(f,3, + f,2,) = Ix2g + [v3 )
! ) ; .D(f, D(f.
®0(f’ 5) = — 2i{fyz, — 1,2,) = fx3y — Iy2x = — 2Ll)((uf, i; - 1)(,<‘§/, Zl))

formules qui permettent le développement des calculs et leur véri-
fication, pour les expressions indépendantes de W2 obtenues dans la
géométrie de la représentation conforme.

A coté des expressions précédentes, citons encore les suivantes,
également entiéres par rapport aux dérivées partielles des fonctions
auxquelles elles se rapportent

A2f — 2A"f. NS

Nf = A"f— 2A1.Af N = Y; (9)
et, pour W2 = 1, les développements
Orf = — 8ill,aly — fafn)  Dof = 8Ualy + file — 2fuelf,) o
Sof = 2i04(f,. 1) = — Oollx. f3)

1 A nos notations Af, A’(f,z), ©'(f,2), Af, £f correspondent les notations dp
Darboux af, A(f,z), O(f, 2), Dof, 0(f) ce dernier paramcetre ¢tant Cerit
-Agof par L. Bianchi.
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En introduisant une fonction g telle que

— (//Y gu = l(//‘u
s s = wf,

I
A
|

(1)

—
g
A

1

l

"5y
<«

la fonction ¢ est astreinte & vérifier I'équation aux dérivées partielles
A+ A, logq) = 0 (12)
et I'on a, entre autres relations
@'g = ¢Tf . (13)

Nous introduirons, chemin faisant, les expressions utiles pour la
agtométrie conforme, c’est-a-dire la géoméirie de la représentation
conforme, que nous désignerons dans la suite sous ce nom.

3. Sans développer ici les méthodes de calcul géométrique (calcul
vectoriel), nous rappellerons que si la surface considérée est décrite
par le point variable m, de masse unité, fonction des variables u, ¢
ou X, Y, une fonction géométrique (scalaire ou vectorielle) de ce
point donne naissance aux fonctions dérivées superficielles

Vi = ﬂ V2(b — & (I; etc.
dm dm-

Pour des vecteurs a, b, de la surface (a ds? donné), on peut considérer
]
les produit et carré intérieurs a x b, ax, le produit exiérieur [ab]; les
relations entre les produits intérieur et extérieur sont mises en évi-
dence au moyen du verseur J, produisant la rotation directe d’un
angle droit du vecteur qui lui est soumis.

Pour l'exploration de la surface au moyen d’un repére associé au
point m, et formé avec deux vecteurs unitarresd et t = Jd, considérons
le cas ou le vecteur d a la direction et le sens du gradient y/f d’une
fonetion scalaire f1; alors

Y= A/Ard = d—{gd
} A(f, z) = V) x V3 produit intérievr de gradients (14)
(' (f, 5 = |V/. Vi3] produit extérieur de gradicnts
A= div\y divergence de gradient.

1S8idalesens oppos¢ de Af, la détermination du radical \/—A? est & changer.

L’Enscignement mathém., 30¢ année; 1931, 7
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Dans le cas ou l'on considére deux vecteurs a et b= Ja d’un
stmilt-repére, on a d’ailleurs (les rotationnels étant superficiels)

diva = roth divh = — rota , (15)
et pour un gradient yf on a toujours la condition d’intégrabilité
rotVf = 0. (16)

On connait d’autre part (Thése) les relations entre les notations
vectorielles: produit extérieur de vecteurs, rotationnel — et celles
introduites par M. E. Cartan pour les formes de Pfaff: produit
extérieur, différentiation extérieure; elles tiennent essentiellement
aux formules

sdf:fodm
[ ® = a x dm = zdf a=aVf.

Aux formules (11) correspond, en calcul vectoriel
Vg = qIVf (11)

et (12) s’en déduit en prenant les rotationnels des deux membres.

II. INVARIANTS ET OPERATEURS DIFFERENTIELS
D'UNE FORME DE PFAFF.

4. Nous dirons que les courbes intégrales d’'une équation de Pfaff
w = o forment sur la surface un faisceau (simple); la donnée d’une
fonction f de u, ¢ (ou de la variable géométrique m) est équivalente
a celle des intégrales f = const., prises individuellement, de I’équation
df = 0; au contraire, la donnée d’une équation de Pfaff @ = adf =0,
revient seulement & celle de [’ensemble des courbes intégrales du
faisceau.

Soit & conserver, par les transformations conformes (3), une forme
de Pfaff

W = Au, v)du + B(u, v)dy (18)

a laquelle nous avons attaché deux opérateurs différentiels du
1er ordre, S, et S, donnant d’une fonction z les parameétres diffé-
rentiels

S 8= = 3,5 = — . (19)
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Nous avons montré existence, pour ces transformations conformes,
de deux invariants essentiels d’ordre deux?!

AV
(logB), = 5, logB [L= — =

1
N [ ‘ 1B B (logA), = 3, log A

(20)

a partir desquels les invariants d’ordre supérieur se forment par le jeu
des opérateurs différentiels S, et ,; l'itération de ceux-ci fournit
des opérateurs d’ordre supérieur ou des combinaisons linéaires, a
coefficients invariants, des opérateurs précédents; nous avions posé

g 5,5)=25239 —58 =543, —ad
144 ¢ [ 14

( S, =

I'opérateur linéaire du 2¢ ordre, $,,, donnant pour une fonction z

|8} ‘ |l
W
Lo
i_
tp
L
,%ﬁ
O
Lp
_[ _
R
L

& Zup .
~MupS — AB (21)

Les opérateurs S, et S, étaient des symboles de transformations
infinitésimales agissant respectivement le long des lignes minima
¢ = const. et u = const.; nous leur substituerons des symboles de
transformations agissant le long des lignes du faisceau @ = 0 et de
leurs trajectoires orthogonales, en posant

(&IL T '9v> ( § = (D — 0

n

‘\cD:_i)

i S o= 0) +i0

Nous prendrons aussi pour invariants essentiels du second ordre

l 5 =D 4T

/ 1 .
5 D =5(=+7 2= 1D — T
P T = L(x— 5 | -

1 Contrairement & ce que nous avons fait précédemment (Equivalences), 1’ordre
attribué¢ aux invariants d’une forme ou ¢quation différentielle du 1er ordre est I’ordre de
dérivation, augmenté d’une unité; cette modification s’impose ici ot nous avons parfois &
consideérer les invariants de formes finies (d’ordre zéro).



100 P. C. DELENS

5. Aux formules (21) correspondent

(PG) = PG — B = 10 — DG

! (24)
. L2 = 2+ G+ DA + 16
avec
i 4
(OD%) = 5(3‘”5’0) L= '91¢v ; (24)

mais nous introduirons trois opérateurs distincts du 2¢ ordre, £, I,
IL et un quatriéme opérateur © identiquement nul, avec les relations

L =02 +T 4D+ 1T6= %(ausv-;- S,9,+ 63, +ad)
M =@ —F +DD—1T = (5, + 5 + a5, + 53,
25)
. = 03‘5+‘503+T69—[—D‘@:%(3i—&i + a%, — §39,) |
O=@RG—-%A —TA + D6 = ﬂ-;;w-”sv«s—vsu—(;sw +ag)=0.

En posant, pour le produit et le quotient des coefficients de la
forme @

A
P — AB Q=7 (26)
les invariants du 2€ ordre s’expriment maintenant par

D = — (M logP + iG log Q)

S |
~—

r11 —

ol &~ |~

(® logP — i) log Q) .

Les quatre invariants distincts du 3¢ ordre précédemment introduits
(et désignés alors par o = Sya, 6 = Suf5, ¢ = Jyu, $ = 35) s'ex-
priment par

[ 9 a=@D—BT—i(AT+TD) 3,6= @D +TT 4 (DT —TD) %)

; 9,0 = @D + ST —i (AT —TD) 9,6=@AD—TT + (DT 4+ ED) B
d’ou
1 Q m ‘ o n
BDD = —(3,6+ 3,04 3,2+ 3,5 BT =—(3,5—32—35,2+3.0
(28')

: ' oy .
TD = (9,6 — 3,0+ 9,2— 3,0 BT = £ (3,64 5,2— 5,2 —3,5)
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dont les combinaisons les plus utiles sont

!

— 1= DT —BD = — — (3,6 — 3,3
~ 1
— k= @D + BT + D? + T2 = (5,5 + 2+ 2af)
) (29)
idd b ) o /-l D} rn9
— b = (D — Il + D* — T? = 5(3141 T suie + o7 + L;‘)
| — = @T+ %D +2DT = %(Sua — 8,8 4 of — )
soit, en fonction de P et Q et des opérateurs £, I, I
Pa
— I = — §,L/, log Q
J 5
— k= 5 £logP
(30)
1 ~ . A
— h = T)(J]L log P + i9T log Q)

1, 4 A
— ] = 7;(9L log P — iJ log Q) .

Les deux premiers de ces invariants, I et &, sont particuliérement
intéressants; nous ne formerons pas ici les invariants et opérateurs
d’ordre supérieur.

ITI. ForMES DE PFAFF PROPORTIONNELLES. — EQUATION
DE PFAFF. — ADJONCTION D'UN ds2.

6. St au lieu d’une forme w on veut conserver, par les transforma-
tions conformes, une équation de Pfaff w = 0, les invariants de cette
équation sont compris dans ceux de la forme w, et on peut les consi-
dérer comme communs a toutes les formes proportionnelles @ =
xrw,, c’est-a-dire indépendants du facteur arbitraire x. On pourra
choisir pour @, une forme @ particuliére, et nous le ferons dans la
suite; pour I'instant, laissant aux formes @ et @, toute leur généralité,
nous allons établir les relations entre les opérateurs différentiels de
ces formes w et w,, puis entre les invariants de ces formes.

Soient donc les formes de Pfaff

w, = A,du -+ B,dy W = Adu + Bdv = z@, (31)
A = zA, B = B, P = 2%P, Q== 0.
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Les expressions relatives & @, étant affectées de lindice 0, on a
évidemment, d’aprés (19) et (22)

@ = %ODO G = 1%0 (32)

x

et les formules (27) donnent, pour les invariants du 2me ordre

D I
X x X
T T (33)

T=24+ 7T logz = 22— ?50 <1> )
X X x

De méme, pour les opérateurs du 2me ordre, on obtient
1 1 N 1 .
L= ?L’O N = ?:mo I = -x-g(%o (34)

tandis que
(DT) = (DT + Tloga. B — D logz. T =
L2(6‘)0%0)_ 1%L@o<i> ODO - OD()(}—)'%O% ' (35)
x x X X
on remarquera qu’en par‘iculier
(PG) log x = ;—2(090‘60) log z (35%)

et que la formule (34) pour £ résulte aussitot, d’aprés (21°) et (24),
de

z
Pz =8 7= — .

En tenant compte des relations précédentes, les invariants du
| 3me ordre sont donnés par

, I
k k 1 1
| , L (36)
? ! o
| h:ﬁ—mﬂwx:ﬁ+;m%6>
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La premiére des formules (36), qui dérive immédiatement de (30)
et (34), donne ce résultat important: le facteur x s’exprime au moyen
des invariants du 3me ordre 1 et 1, de w et w,. Ceci est conforme aux
prévisions qu’on pouvait faire; pour obtenir les invariants de I'équa-
tion @ = 0, on devait éliminer z et ses dérivées partielles entre les
expressions des invariants de la forme w en fonction de ceux de @,
afin d’arriver aux invariants indépendants de z. Jusqu’a I'ordre 3
inclus existaient 6 invariants distincts de la forme @, contenant les
6 quantités x, 2y, Ty, T2, Ty, T2 I'élimination des dérivées de x donne
donc z en fonction des invariants de w et w,; les invariants de 'équa-
tion @ = 0 n’apparaissent qu’ensuite, et le nombre de ces invariants
distincts des différents ordres, ainsi calculés, coincide bien avec celul
que nous avons déja obtenu autrement.

7. Si les transformations (3) doivent conserver, en méme temps
qu'une forme w, le ds® de la surface, on retombe sur un probléeme
d’applicabilité (sans déformation superficielle). Les invariants se
partagent alors en trois catégories: 1° les invariants conformes de w,
indépendants du ds?, que nous appellerons simplement ses invariants;
20 les invariants conformes du ds?, qui ne sont autres que les nva-
riants gaussiens de ce ds?; 3¢ les invariants mixtes de m et du ds?,
que nous appellerons semingariants (conformes) de @w. De méme, sl
Pon adjoint aux précédentes de nouvelles formes différentielles v,
de Pfaff ou non, & coté des invariants propres de ces formes figureront
des invariants mixtes, entre @ et i par exemple. Une fois obtenus
les invariants essentiels du systéme considéré, les invariants d’ordre
supérieur s’obtiendront par le jeu de deux opérateurs différentiels,
pour lesquels on pourra choisir les opérateurs 2 et © attachés a la
forme w; un changement d’opérateurs se ferait ensuite facilement.
Nous venons en outre d’indiquer un procédé pour passer des formes
a des équations w = 0.

IV. INVARIANTS D’UNE DIFFERENTIELLE TOTALE ET DU ds2.

8. Nous envisageons d’abord le cas d’une forme w, différentielle
exacte et considérons le systéme

ds? = W2dudv

o , (37)
wy, = df = [, du + f dv Ay =1, Be=F, .

La forme w, n’étant pas générale, les régles relatives & une forme »
quelconque ne permettent pas de prévoir le nombre des invariants
distincts des différents ordres du systéme et leur répartition en
mvariants gaussiens, invariants et seminvariants de @, (ou f). Mais
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on doit considérer f comme un invariant donné d’ordre zéro, et
reprendre le calcul pour ce cas; on trouve ainsi qu'on doit prévoir,
en général, jusqu'a 'ordre n inclus:

n 1) (n 2 n{n — 1) : ;
n + )_,( +2) —2n = —(——)——)— + 1 invariants de f, dont n — 1
nouveaux pour lordre n;
nn J) nin — 3) . . ;
L—;—l —2n = ——<—Z—O)— invariants gaussiens, dont n—2
nouveaux;

(n + 1)2>—2n = n?2 4+ 1 invariants du systéeme (37), dont
2n — 1 nouveaux;

done, par différence, 2n seminvariants de f, dont 2 nouveaux pour
Pordre n.

En fait, on a d’abord, pour I'ordre zéro, I'invariant f; pour I’ordre
un, le seminvariant

Sy = Af = = 3. (38)

Les opérateurs différentiels attachés & w,: ), et G, donnent d’une
fonction z les parameétres

1 /3, z,\ _ A(f. 3) o~ L[z, 3 @ (. 2)

(39)
et pour I'opérateur £, du second ordre, on ‘rouve
- z _“X 3 N
fom = == D (20)
Pour le second ordre, on obtient un invariant de w,
1 r “ o 4 /
D, = ?(“o + B0 = ag = Gy = Ly (%1)

pour lequel, en introduisant un symbole Q d’opérateur conforme,
nous poserons

/.I/v 1\/
= Qf (el
A Vi e

cependant que T, = 0; on a en méme temps deux seminvariants
d’ordre deux

NS A g A VAN O
\p T ap = =57 (1

B, A\f = ) Vi

auxquels on peut substituer A”'f et O"'f.
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9. Les relations (25) sont ici réduites a

l|

S 13 = @Dy + G, + DA,

N, R — Ty + D, R,

(53)
?%_—_7 o G, @, + DG,
\ (90:(“0@0)""10(‘)0:O
la premiére et la derniére s’exprimant encore par
N7
/ (44)

gx Fo ‘~)%+®’§f',%f_’:”)+Qf'-A’(f’5):AZ

)
?
A’%/ i Z)é—“@’gﬁ > (i}.i)? + Qf.O(f. 5) =0

relations entre paramétres différentiels d’ordres supérieurs des fone-
tions f, z: si en particulier on applique ces formules & f et Af, on obtient

(AN O O) = N ALAT = AFAAS
(A, 7)) — &/ (f, N'f) + AfOf=0.

G4

En appliquant au contraire a f les formules (24) sous leur forme
générale, et tenant compte de

_ M > o O )

on trouvait directement

,LDO /.

D, = = Qf
0 (DO/U Qf

T, = 0 .

Pour le 5me ordre, on obtlent les deux invariants de @,

DD, = AI(/'A,;u/') B, D, = G,(foQ/_) (45)

sous forme de rapports de seminvariants, mais évidemment indépen-
dants du ds?. Pour former les seminvariants, on peut, au lieu de
Dz et Gyz, utiliser les paramétres différentiels A'(f, z) et O (f, z).
Quant aux invariants gaussiens, on sait qu'on arrive pour le
ome ordre & la courbure totale K du ds?, donnée par

t(log W),

O - G .
h We

= AlogW = Af. £, log W . (46)
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10. Nous ne poursuivrons pas plus loin le calcul, sans difficulté,
des Invariants, mais remarquerons que les invariants du 3™me ordre
des formules (30) se réduisent ici &

~ Iy = — ¥,D, = —%BolOgQ
2 1 rJ
— ky = P, D, + D, = ?,L‘o log P,
(47)
1 Ay
— by = ODODO — Di = g(gno log Py + ’960 log Q)
. 1 4 ;
B Jo = ®,D, = —2—(9(0 log P, — iJ1, log Q)
donc en particulier
= O 9f) _iAlgQ AL Qf)  gpa  AldosPy
Af N Y, RN
(48)

En introduisant I'angle ¢, que nous interpréterons plus loin, donné
par

— Q =—¢ % log Q = — 2iv (49)

AP, = WIAS (387)

il vient
> A“? Iy =0
Io:Lo?ZA—f Ao = O'(f, Qf) (50)

K Aloglf

i 1 - .
—A.O = ﬁO ]Og‘/\/ +7£0 l()gAf = —A—/+ QA/

Les formules (50) et (51) sont, comme on le constatera, des cas
particuliers de (36). En comparant la seconde formule (48) a (51),
-on trouve pour la courbure totale

K = AlogA/Af — Af.Qf— A (f. Qf) (52)
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formule trés générale & laquelle on peut donner bien des formes,
par exemple!

AAf—2AF2 — 20 (f, Af) — 43S

K = Y]

V. FORMES DE PFAFF SEMI-NORMALES.

11. Dans la géométrie euclidienne des surfaces (c’est-a-dire la
géométrie des surfaces pourvues de la connexion euclidienne induite
de P'espace ambiant, soit I'ordinaire géométrie riemannienne sur la
surface), on a avantage a considérer, plutot que la forme @, = df,
la forme
df 1

D, — xlwo CCI =
\VAf

Vevis

(53)

Le systeme formé d’une équation © = 0 et du ds® est en effet
équivalent, pour les transformations conformes, a cette seule forme
3;, normée vis-a-vis du ds2, de sorte que les invariants de cette forme
soient ceux du systéme indiqué. Nous dirons que la forme 23, est
canonique pour le ds?, ou semi-normale (on pourrait encore dire
unitaire); le facteur z;, la normant ainsi & partir de la forme #,, a
pour effet de ramener & I'unité le seminvariant du 1¢r ordre S; de
la forme ;. Les invariants de %, indépendants de x; sont les inva-
riants de 'équation 3 = 0; les autres invariants de &, sont des semi-
invariants ou des invariants gaussiens.

Les opérateurs différentiels du 1¢r ordre de @, sont

0-‘)1 = \/3_10690 651 = '\/El CC;O (54)
et pour 'opérateur £2, du 2me ordre, on a

B = ALL . (55)

1 Au moyen des formules
ANAf AZf A2f — 2AMF Ny

AL N AT . -
Y 372 A log Af_a—f_ff? of = Y

M, Qf) =

Pour un faisceau de lignes paralléles, avec Af = 1, on retrouve la formule connue
K =— X2 — 31, o)
Pour un faisceau isotherme, avec Af = Qf = 0

K = Alog Var.
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Par suite, si on introduit les vecteurs unitaires

N t = Jd (56)
— — == 9
VAV |

on obtient pour les paramétres différentiels les expressions suivantes

d

A(f, 3 d
3,z = U >: L —dxVz

VAP ds
o Q' (f. z) - dz _
O,z = \/A—f = o, = [d.Vz] =t x Vz (

2 d2 d
ﬁlz":l\z:(—2+d—2+r) +'1‘1(76l—>z:di\'Vz
't

! ds, s,

(B2 1
N~
~—

et aussi

- d? ki d d
3, 6)z = — z = (T — D, —
(02,¢,) ds, ds, ds, ds, lldsd Dldst %

d? d d

ds; ds]. T dsj dsi '

12. I’on a en particulier

— df .
@D.f = V& = L Br=

dsd

d/':0

dsc

et les invariants du 2m¢ ordre, D, et T,, de la forme semi-normale,
sont donnés par les formules (24) ou (33) suivant

azf Lodf azf df
— = T, ' AN = — 4+ D
ds,ds, tds, ! d’“fl Yds,
soit
] T . A, (f‘v VA—f) 1 ‘-), (/.' \/A—f) -4
. — Q —_ _ —— o8
! D1 '\/Af Qf Af 11 Y, (.')5’)
; ou encore
A"fF—2A1.Af Iy . (" f o)
I)1 — e f if — e /;_ 11 — — /i . (;)8)
20/2 2777 21/7

On reconnait en D; et T, les courbures géodésiques des courbes
% = 0 et de leurs trajectoires orthogonales, mesurées respectivement
suivant les normales (—d) et (—t) & ces courbes; en considérant au
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contraire t et d comme les tangentes positives & ces courbes, g; et gg
étant les courbures mesurées suivant les normales (—d) et t, on aurait

Dl = 8 T, = — gd . (59)

Par les formules (27), on obtenait, en utilisant (49) et (38’)

A (f log W) + ©/(f, 9)
VAf
| dsd ds[
\ “(f, log W A (60)
T, = By log W — @, — 2 1os W) = AT )
VAS
d lOg \\v (‘Z@

= — - L = Vilog W — Vo.
s oty t X og d x Ve

t

D, = (Dl log W 4 CC;lgo =

On reconnait dans ces formules le role des deux vecteurs (formant
simili-repére).

f, = Ve + IV log W g, = Jf, = — VlogW + JVo (61)

qui permettent d’écrire

[ h=—"Td+Dt g =—Dd—Tt (62)
[ D, = —d x g T, = —t X g ;
en particulier
ng_Q/',Vf+%VlogAf. (63)

13. Nous avons en effet indiqué (Thése) qu’a un faisceau simple
de courbes est associé le réseau angulaire des courbes coupant celles
du faisceau sous des angles constants et montré que les propriétés
de courbure céodésique de ce réseau sont résumées en ces vecteurs;
@ est. comme le montre la formule (49), langle de la normale d d’une
courbe du faisceau @5 == 0 avec la courbe du faisceau isotherme dY = 0
qui la coupe au point considéré, donc avec la normale au méme
point & la courbe du faisceau isotherme dX = 0.

Les formules (61) mettent bien en évidence deux ¢éléments géo-
metriques importants: d’une part, le module W de la représentation
conforme entre le (ds® euclidien) di? = dX? 4+ dY? suivant lequel
on peut représenter le ds® considéré, et ce ds?; d’autre part, I'angle ¢

qui caractérise le faisceau en question, et par suite aussi le réseau
angulaire associo.
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Sans insister pour le moment sur les opérateurs du 2¢ ordre
Iy et Iy, nous donnons, en tenant compte de

P Vv2
p,o— 0

0
TN T
les expressions des invariants du 3¢ ordre de la forme semi-normale &,

I:-

1

O (f, Qf) = Ao = divi, = rot g, (64)
kl == K = —A log W = — rot fl = div g (65)

ce qui correspond aux formules (50) et (51) ou a expression (52)
de K au moyen des parameétres différentiels de f; puis

— by = I, log W + I,y —Jji = I, log W — Mot (66)

Nous avons done retrouvé la courbure totale K du ds? comme
invariant du 3¢ ordre d’une forme semi-normale, et 'application des

s wpans .. 4
formules (29) avec les opérateurs différentiels i Eci— donne en-
Sq t

core, pour I, et K, des résultats connus.

14. A coté des formes déja étudiées @, et 3, on pourrait considérer
la forme

df H
= -— == Gj e —
(O V. Ty Wy Y Y

pour laquelle les parametres différentiels du 1¢r ordre d’une fonction z

sont N '
32,z = A(f, 2) G,z = O'(f, 3)

et qui est telle que
Wtz == W

] ] o
Pyz.Ryz = D,z Gyz. Gz = 6,2 Lz . 855 = 25 ete.

Plus généralement on peut associer a toute forme @ une forme

- = 2 hY " 4 ° ’ 1
inverse @ telle que % = @1, les paramétres différentiels attachés &
ces formes satisfaisant aux derniéres des relations précédentes.

Dans le cas d’une forme & quelconque, la théorie générale montre

2 2
1 Les invariants Iy, ki, ha, j1sont les composantes du tenseur Vg, + f —g/, de sorte

que y
9 9 - td—dt 2 3 B d?— > . td + dt
ver+ i —g =h—p— th—p— Fhh—— Fh—p
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que jusqu’a Pordre n ineclus, on doit réguliérement! prévoir n(n—2)
invariants, dont 2 (n-1) nouveaux d’ordre n; si un ds? est adjoint, le

. . . 927 . n{83n—1
nombre des invariants du systéme s’éléve a M—%“‘)> dont 3n—2

nouveaux d’ordre n; par suite les seminvariants sont au nombre de
3n, dont 3 nouveaux pour chaque ordre. Cette régularité n’est

d’ailleurs as acquise our les remiers ordres; c’est ainsi ue
)
4

. . : AP
pour 'ordre un existe le seul seminvariant S = 77 » Ue nous avons

réduit & 'unité pour les formes semi-normales.

V1. ForMES DE PFAFF ADJOINTES — OPERATEURS ET INVARIANTS —
dg? CANONIQUE A UNE FORME.

15. Dans le réseau angulaire attaché a un faisceau simple de
courbes, nous avons déja eu & considérer le faisceau simple des
trajectoires orthogonales des courbes de la premiére famille. Entre
les invariants et les opérateurs appartenant & ces deux faisceaux,
des rapprochements intéressants sont & faire. Pour simplifier le
langage, nous dirons que des formes de Pfaff & et y sont orthogonales
s1 les courbes intégrales des deux équations w5 = 0 et v = 0 sont deux
faisceaux de trajectoires orthogonales; en outre, & toute forme 73
nous assoclerons plus particuliérement une des formes orthogonales ;,
que nous dirons adjointe posilive de @ (% étant Uadjointe négative
de r3;), telle que

67)
; w; = ydg = i(— Adu 4 Bdy) = A, du + B, dy (67)

& w = xdf = Adu 4 Bdy

et nous affecterons de l'indice i les expressions relatives a cette
forme #;; on aura les relations

P, = P Q =—0Q
et comme
A=af, =g,  B=u, =—uys
on voib, en posant
x
) = Y ¢ = — (68
I 1= (68)

1 Quand il y a k équations de conditions pour exprimer la conservation d’un systeme
par les transformations (3), le nombre des invariants & prévoir jusqu’a Pordre n inclus

1
est /{ﬂ"?i—) — 9n. (CL. 1a note du ne° 4).



112 P. C. DELENS

que les fonctions f, g, ¢ satisfont aux relations établies aux no 2 et 3
par les formules (11), (11'), (12) et (13). On a aussi

20du = zdf + iydg = © + iw,

. . . (69)
2Bdv = xdf — zydg = 15 — ify;

ce qui établit une symétrie intéressante entre les variables u, ¢ et
7, g et entre les formes Adu, Bdv et 3, ;.

16. Les formules
. - e
i 1,9“ 305 = —1J,

donnent aussitot pour les opérateurs du 1er ordre et les invariants
du 2¢ ordre

@D, =% G, =— 0 (70)
D, =T T, = —0D. (71)

On a ensuite, pour les opérateurs du 2¢ ordre et la parenthése du
1er ordre.

£=£  M=—-IM 9, =N
(@,T) = (D)

puis pour les invariants du 3¢ ordre

I =1 b= hy = — h jo=— . (

12 2

N1
2
~=

Les relations intimes qui se poursuivent entre les opcrateurs et
les invariants de formes adjointes @ et #; — et se généraliseraient
pour des formes @, = cos #.m -+ sin#.w; — ont leur origine dans
les expressions vectorielles, invariantes ou comitantes, du réseau
angulaire attaché a ces formes. Cela était déja apparent pour les
formes semi-normales, et nous reviendrons sur le point de vue vectoriel.
Mais nous remarquerons d’abord qu’a toute forme @ est attachée
une forme quadratique comitante dg2, que nous dirons canoniqie
pour w, et liée & cette forme @ comme le ds® I'est & une forme semi-
normale; en posant en effet

2 2

ds® = 4 Pdudv = w3 -+ t;j; (

~ 1
-
~—

et considérant do? comme un ds? donné, le seminvariant S d’ordre
un de @ par rapport & ce ds? est réduit a I'unité; entre autres conse-
quences, linvariant du 3¢ ordre £ de @ est la courbure totale de la
forme dg2 Si une forme @ est d’abord considérée en liaison avee
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un ds* donné, on pourra, par des transformations conformes appro-
priées, conserver cette forme et ramener le ds? & la forme dg¢?, pour
laquelle @ est canonique. Les expressions vectorielles interprétées
pour une forme semi-normale, par rapport au ds?, donneront donc
lieu & une interprétation analogue pour une forme quelconque, par
rapport au dg? canonique.

17. Reprenons le cas d’un ds? donné, c’est-a-dire d’un étalon de
longueur invariant fixé en tout point m d’une surface. Soient

B =axdm  ds— (dm)* (75)
la forme w et le ds? donnés, et la forme adjointe
B, = b X dm b= Ja . (76)
En se reportant aux formes (67), ou encore
a=2xVf b=uaVg (67
et aux formules (32) et (39), les opérateurs de m et m; fourniront les

parameétres différentiels d’une fonction z, que nous écrirons, avec les
vecteurs inverses de a et b

a—2 p=2= (77)
ax b><
sous les formes
¥ _ -
@Z:axzzzaxvz %z:bX2Vz:b><vz. (78)
ax b >

Par l'effet de la parenthése
(PT)z =a x V(b x Vz) —b x V(a x Vz)
_ = (Vb xa—Va x b) x Vz
le vecteur comitant
—f=Vbxa—Vaxh (79)

et la forme de Pfaff correspondante — f % dm sont mis en évidence.

18. Pour une forme semi-normale w, et les vecteurs

- \Y —
alza:d:__f‘;“‘ bl:blzt:l]d
Vay
— 5 =V xd—Vd xt (79")

L'Enseignement mathém., 30¢ année; 1931.
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f, est le vecteur de la formule (61) et 'on a aussi

(le: '\/A—/ %1f: 0

B, =—Dug=0  Tg= D;g=+/Ag
_f1><vf:(@1‘(”91)/‘:'1‘1\/:\—/. I =—fixd=—g xt
-flxvg:(col%l)g:——Dlx/Z&—éy Di=1f xt=—g x4d

comme cela a été établi; par suite, puisque

d X Vd=txVt=0

Vd = tf, Vt= — df
D, = divd T, =divt —g = (divd)d - (dive)t .

(80)

Les formules (78) montrent bien que les opérateurs (@ et G sont
indépendants du ds? utilisé seulement comme intermédiaire, et les
formules (80) donneront, pour une forme @, des expressions analogues
a celles obtenues pour une forme semi-normale si au ds? est substitué
le do? canonique a cette forme, et si les opérations (multiplication
intérieure, gradient, divergence, etc.) sont effectuées vis-a-vis de ce dg2.

d e :
On peut alors, aux symboles jds—’ N utilisés aux no 11 et suivants,
d t

substituer des symboles a%—, ai— , bien qu’ils n’aient pas une signifi-
a b

cation absolue comme les précédents, la forme dg? étant attachée a
la forme w.

On obtient une autre notation convenable pourles opérateurs (0 et ©
en portant des formes différentielles exactes df et dg; d’apres les
formules (32) du n° 6 et (39) du n® 9, en tenant compte de

Vz=2Vf+2,Vg Vg = -S—JV/’
1l vient
F,z = Zr
Bz = = ou (0D.)2 = 2z
voz pomm— ng 7'0 == g-

et par suite
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d’ou la notation symbolique

D=" T=m = (82)
(@)

les 0 rappelant 'accouplement des formes de Pfaff @ et ;.

Une notation voisine est atteinte en partant de la relation identique
entre trois formes de Pfaff & deux variables (analogue a celle entre
trois vecteurs du plan), et choisissent pour une de ces formes une
différentielle exacte dz

[57]dz = — [1.ds]ws + [wdz]y, (83)
iz — ['/vdz] [ dz] )
[1.6] [57] "

puis convenant de I'écriture symbolique

- [£]o+[2]

de sorte qu'une réduction au dénominateur commun [@ y1, effectuée
suivant les régles de la multiplication extérieure, rétablisse la signi-

Z

: . : dz .
fication de I'expression; la notation [a a avantage d’une analogie

avec celle du quotient entier. Dans le cas particulier X = @i, On
trouve ainsi
)z = [%Z:l Gz = D,z = [éz_] (85)
i

notation voisine de (82).

19. Nous allons étendre I'analogie, déja signalée a la fin du n° 15,
entre les variables u, v et f, g, entre les formes Adu, Bdv et w, w;, com-
mencée par les formules (67) et (69) entre autres. Nous rapprochons
pour cela les formules (19) et (81)

Dz = L Gz =% (81)
x y
zlt ZV

J,3 = Y 8,2 = B (19)

puis les invariants du 1¢€r ordre obtenus par I’emploi de ces paramétres
différentiels; en appliquant en effet les formules (33) a partir de
wy, = df et (w;), = dg, on obtient

D=—T, = —0 logy = () logy T = Glogz (86)

1

o = 3,logB g = 3,6 logA (20)

L



116 P.C. DELENS

et on compléte les formules déja obtenues par

D = 3 (M logP + i log Q) = 2 () log p — O log q)
1 (87)
I :5(%10gp—i@10gQ) %(@logp+%logq)
1 1
o = §(su logp — 3, loggq) = E(S logP — & log Q)
(88)

ity

B = 22, logp — 3, logg) = +(5, log P + 3, log Q) -

tol

Les relations entre opérateurs du 2¢ ordre et parenthéses ont été
données par les formules (24') et (25), mais en remarquant 'analogie
des formes

2= (33+53~ + B3, + 29

I = DG+ AR +~TOE DG

on voit en particulier qu’a
thV
£z = 'Suvz = p

correspond

2
Nz = ;fg . (89)

Pour les invariants du 3¢ ordre, on compléte les formules (30) par

1
— 1 :——;ﬁlogQ::-Zg(,logq
_/.~:—;—ﬁlogP:%(flogp——D]zlogq)
(90)
- h:%(ﬂn log P + 19T log Q) :-Z-(JTL log p — £ logq)
e %(91 logP — I log Q) = %9‘6 logp .

20. Revenons encore sur certaines expressions vectorielles intéres-
santes; les trajectoires orthogonales g = const. des courbes f = const.
correspondant a la relation

Vg = qIVf (117)
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on en déduit, comme nous avons vu

Af= —Vfx Viegyg Ag = Vg x Vlogyg (12')

d’ou le vecteur
Vlog(]_—:———Q/Vf—I— Qg.Vg (91)

et en prenant les rotationnels (condition d’intégrabilité), on obtient

V7. VQf] = [Vg.VQg] (92)
L =0(f Qf) = 6' (g, Qg) ; (64) (927)
on vérifie encore que le seminvariant I, n’est pas altéré si on substitue

a f, par exemple, une fonction quelconque F (f) de cette variable 1.
Mais, a partir des formules (80), on obtient aussi

2 2

Ad=ILt— (D +19d At=—1Id—(D+ THt (93)
I =tx Ad=—dx At =[d.Ad] = [t. At (94)

autre expression de ce seminvariant fondamental.

Nous allons montrer la relation entre les formes [V/.VQf] et [d.Ad]
en supposant la forme w, = df réalisée sur un ds? égal & son do?
canonique; on a alors

A=Y Af=1 g =
Vd =tf, = V2f  [tf,] = 0 divd =t x f;, = Af = Qf

donec
f, = Qf.t Vd = Qf.

Vid = ©2VQf — QF°(dt + td)t
Ad = (t x VOt —Qfd = VQf— @ x VQf + Q/)d

le coefficient de d dans la derniére expression étant la courbure
totale du ds2, d’ou enfin

[d.Ad] =t x VQf = [V/.VQ[f] .

1 Nous rappelons les relations

vF = F'vf AF = F23f ©2F = F/vf° + F/v2f AF = F/Af + F'\f
B 1 1\ 1\’ 1
S S S e O RR ORI RS A

les accents indiquant les dérivées par rapport 4 7.
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(Vest 1& I'invariant I, de w,; c’est aussi le seminvariant I, pour

ds® = dg), mais pour un autre ds?, soit ds'2, pour lequel les symboles
seraient accentués, on aurait

21. Résumons, en modifiant un peu leur forme, certains des résultats
précédemment ohtenus; si’on part d’une forme de Pfaff quelconque w,
on peut lui associer, au moyen d’un facteur intégrant y,, la forme

intégrable
a laquelle est associée le dg’ canonique

. 1
dog = 4f, [, duds = w, + (@) = df? + s’
avec ’
g = —iqfy 8, =14/,

Sur ce dg:, les intégrales f = const. sont des courbes paralléles
et I'on a, pour les premiers invariants de @,

Dy = Qf = — @, logq = g <1>

YAV
_ 2 2O (1 95
“"O~ODOD°+D°—‘1a/‘2<q> 9
o? log ¢
——-—IO_‘::‘ —C@OD():(]W

5 1 ‘ooz ,
en accord avec les formules (87) et (99), ou p = V2 Différentes consé-

quences, d’ailleurs connues, peuvent en étre déduites, suivant la
nature de la fonction ¢ de f, g.

Dans le cas ou, & coté de la forme w, est donné un ds?, on peut
associer & g, au moyen d’un facteur semi-normant v, la forme semi-

normale
A%

SV

pour laquelle le dg? canonique se confond avec le ds?

2 2 2
d0'1 = ds? = w;_‘{“ a)'].i .
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Comme nous Pavons établi, les invariants de la forme @, sont les
invariants euclidiens (géodésiques) de I'équation w = 0. Avec les
notations

/_IL_ — (2 — e—?’i'; \_V — ew (49/)

lo 2

on peut écrire une forme semi-normale
W [ / f, > . 5
@, = - — du + Yodo) = eV Wdu 4 eV Tdp . (96)
T <\// V',

VII. FAISCEAUX ISOTHERMES.

22. Il est bien connu, dans la représentation conforme des surfaces,
qu'a coté des deux faisceaux formés par les deux séries de lignes
minima, du = 0 et dv = 0, les faisceaux isothermes de courbes sont
aussi conservés; 'équation différentielle @ = 0 d’un tel faisceau du
premier ordre est en effet caractérisée par la condition invariante

I =0

et I'équation @ == 0 n’a alors aucun invariant conforme. Nous avons
donné bien des formes & 'invariant I de w; considérons en particulier
une forme semi-normale w; sur un ds? et rappelons diverses interpré-
tations de I'équation I, = 0. D’aprés

I = 5AlogQ =0 (97)

2% log Q

A (v)
= ) T e T ————
du oy 0 Q B

le rapport gﬁ des coefficients de I'équation @ = 0 est le quotient de

deux fonctions arbitraires, I'une de u, 'autre de ¢; le facteur intégrant

a b . . 192 . -
5A — gp rameéne alors a I'équation intégrable

1
®, = E{a(u)du + blo)de} =0
et les courbes intégrales sont données par

1
/':§{U(u)du+v(0)do}:const. U=a, YV =10,
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lgs accents mdiquant, pour les fonctions d’une seule variable, les
dérivées par rapport & celle-ci; une transformation (3) donne alors

N A (P
& f une forme réduite X = E(u + ¢). L’on a en méme temps

donc la condition {97') exprime aussi que les courbes ¢ = const.
forment un faisceau isotherme, @ élant varvable isothermique, et cette
propriété est caractéristique; nous nous étions d’ailleurs ramené a
des fonctions f pour lesquelles Af ou Qf est nul: ¢’est ce qu’exprime,
a un phangement de fonction f preés, la forme suivante de I’équation
Invariante

L=0( Q) =0 Qf=F() (98)

ou F est une fonction arbitraire, qu’on peut choisir pour avoir QF = 0.
En revenant alors a la notation / pour la fonction choisie, et choi-
sissant de méme la fonction g pour que Qg = 0 puisqu'on a aussi

I, = ©'(g, Qg) = 0

il en résulte, d’apres (91), ylog ¢ = 0, et 'on peut par suite prendre
g = 1 x =y B == 22
ds? = W2(dX? + dY?) = 2?(df? + dg®) .
On a encore
D, = (D, logz T, = 6, logz

g, = — ViegW + JVo = — Vlogux
toutes formules qui sont hien d’accord avec
I, = rotg, = — (M,®,) logz = 0

et les formes particuliéres que prennent alors les formules déja
établies.

23. En résumé, ce qui caractérise un faisceau isotherme, ¢’est d’étre
associé a un faisceau également isotherme de trajectoires orthogonales,
et plus généralement d’étre incorporé dans un réseau angulaire iso-
therme, toutes les courbes d’un tel réseau pouvant éire représentées
par des intégrales f = const., g = const., etc. pourvues en un méme

. . A 1 .
point m de vecteurs gradients de méme module —5 ces gradients

forment en tout point de la surface une simili-éloile, se ramenant
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& celle attachée & un autre réseau angulaire isotherme X = const.,
Y = const., etc. par une similitude dont I’angle et le rapport sont
liés par la relation

W
E

\ log = JVo

-

de sorte que ¢ et log\éi sont deux solutions conjuguées de I’équation

Az = 0. Cest par le choix de ces solutions que se différencient les
divers réseaux angulaires isothermes constituant Iensemble des
faisceaux isothermes de la surface — briévement l'ensemble tsotherme.

Si I'on suppose aussi qu'on effectue, en chaque point m, un change-
ment de Vétalon de longueur, de sorte que la simili-étoile de repeére
du réseau isotherme considéré devienne une étoile de vecteurs uni-
taires, cecl revient 4 une représentation sur le dg) canonique de @

doy = df? + dg® = dUdV

et, selon qu'on opérera sur un étalon de longueur ou 'autre, on consi-
dérera les repéres et simili-repéres attachés a ds* et dg) comme de

modules 1 et %, ou x et 1.

VIII. FAISCEAUX NON ISOTHERMES.

24. Soit Iéquation @ = o d’un faisceau non isotherme; par le
moyen d’un facteur normant y* == 4/T, on donnera au premier membre
de I’équation la forme normale

B* = 4/1 6 (99)

dont les invariants seront ceux de I’équation ¢ = o0; en particulier,
s1 on part des formes 73, = df, ou &, on aura

-t & (f QFf . Y =Y
e — \/"(/_\f/) if = VO QN %, .

Il résulte de la premiére formule (36) que la forme normale * est
caractérisée par son invariant [* ramené & I'unité

I* = 1

cependant qu’en général les ordres des opérateurs et des invariants
(dont les symboles portent des astérisques) sont majorés de deux
unités par rapport & ceux qui leur correspondent pour une forme
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quelconque. Nous avons établi que, jusqu’a ’ordre 7 inclus, équation
nin — 3) . y , i

( 5 = invariants, soit en général (pour n > 3) n — 2 nou-
veaux invariants d’ordre n; ces invariants, considérés comme ceux
de la forme &*, sont d’ailleurs donnés par les formules déja établies,

ainsi que les opérateurs différentiels attachés a ©*; ainsi

W =0 a

1 1

1 1
@*=1,2P, =1, * A, Gr=1,26, =1, 26, et

|

1 1 1

1 / 1 T2 — —— ——
Dr =1, T af— 2 <f'A/‘.°+2)— =1, 7D, —Kf Tl 1 7)

1
(r 1 2 L L i
T =— : </A/]0 2) =1, T, —Af °® ®,<f7 I, 2) etc.

avec les expressions déja données

L= 0, Qf) = Ae I, = L/ 1o,

Le ds? utilisé pour la formation des paramétres différentiels précé-
dents étant arbitraire, on peut en particulier le fixer suivant le dg*?
canonique a ©*, de sorte que cette forme soit a la fois normale et
semi-normale. A I'équation @ = 0 on peut associer I’équation diffé-
rentielle du 2¢ ordre wdw; — w;dw = 0 des courbes constituant avec
le faisceau donné le réseau angulaire déja signalé. L’on peut plus
généralement considérer Uensemble (1) des courbes de méme Ag par
rapport a un faisceau isotherme arbitraire et un ds* arbitrairement
fixé, ensemble formé de faisceaux pour lesquels les seminvariants I,
seront simultanément ramenés & 'unité quand on passera de @, & w*;
un tel ensemble a méme généralité que I'’ensemble isotherme (I; = 0),
et les faisceaux qui le constituent sont donnés par I’équation générale

L \/f‘- e dy = 0
g 3

E(u), n(v) étant des fonctions arbitraires de leurs arguments. L’arc
conforme dg* n’est attaché qu’aux courbes d’un méme ensemble (I,).

Nous avons déja indiqué (Equivalences) certaines formes parti-
culiéres de Iéquation @ = 0; par exemple dans les cas ou le dg*?2
canonique & w* serait & courbure totale £* nulle ou constante, on
aurait

_ el zwme) e g
V= 3m° =
V[ CZlw) =M (9)° )
Q = a(u i k* = G, conslante.
b(a)i 2% M



REPRESENTATION CONFORME 123

25. Le probléme de la classification des faisceaux de courbes
vis-4-vis des transformations conformes est celui de la conservation
des ¢équations 5 = 0, ou des formes normales z*; si nous avons
¢tudié auparavant la formation des invariants des formes générales o,
et des formes particuliéres 3, 7;, c’est d’abord parce que les
méthodes applicables & ces formes nous menaient aux résultats
cherchés pour les formes ©* ou les équations; mais on doit aussi
considérer que les invariants des équations sont des fonctions f inva-
riantes, ou conduisent a de nouvelles formes de Pfaff invariantes,
auxquelles s’appliquent les calculs précédemment faits.

Quant aux relations suffisantes entre invariants pour assurer
I'équivalence conforme d’équations © = 0, ou la conservation de
formes ©* — le probléme relatif aux formes % quelconques offrant
ici moins d’intérét — nous nous contentons de rappeler que pour les
formes normales 75* possédant des invariants conformes, nous avons
distingué trois classes principales avec:

10 le cas général ou les invariants D* et T* du 4¢ ordre sont
distincts:

20 Je cas ou il v a entre ces deux invariants une relation identique,
mais ou les invariants du 5¢ ordre sont distincts de I'invariant du
4e ordre conservé;

30 le cas ou les invariants du 4¢ ordre sont fonctions d’un seul
d’entre eux.

On peut interpréter ces trois cas en les ramenant & des problémes
d’applicabilité, en prenant pour ds? le dg*? canonique normal sur
lequel

1* = I1 = A\Y’ = rotg, = 1
les invariants essentiels D* et T* étant alors les courbures géodésiques
du faisceau considéré et du faisceau orthogonal; avec les notations
de la formule (96) on a alors

\ B = A/c (7 du + et do)

' ds® = do*? = b¢, dudp

uy

LY

g W
W2 = 4P* = 4o e‘”:—) '\/Qp

nwy

les invariants de la forme &* s expmmant au moyen de g et de ses
dérivées, et les formes ©3* d’'un méme ensemble différant par le choix
de l’angle ¢ solution de I'équation 4¢ = W2

Dans le cas général, ’ensemble considéré, qui se conserve dans la
déformation, est astreint seulement a la condition précédente 1* =
dans le second cas, le faisceau # = 0 appartient & un réseau angulaire
déficient, les lignes z = const. suivant lesquelles les courbures géodé-
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siques restent constantes étant différentes des lignes %* = const.;
dans le dernier cas, tous les invariants du faisceau m = 0 restent
constants le long des mémes lignes z = const.

IX. PROBLEMES OU INTERVIENT LA REPRESENTATION CONFORME.

26. A un faisceau de courbes donné, d’équation 5 = 0, se rattachent
naturellement de facon invariante les courbes z = const., z étant
un invariant quelconque de I’équation, et les invariants des courbes
ainsi introduites facilitent 'interprétation géométrique des invariants
d’ordre supérieur de I’équation donnée. D’autres familles de courbes,
se rattachant & des invariants relatifs, invariants brisés, etc., sont
également intéressantes & considérer; la plus simple est la famille de
courbes ¢ = const., et les relations de ce nouveau faisceau avec le
faisceau donné interviennent souvent dans les propriétés géomé-
triques: ces courbes ¢ == const. sont en effet les isoclines conformes
du faisceau donné par rapport au systéme isotherme de lignes
coordonnées X = const., Y = const.

Les courbes W = const. sur un ds? donné sont aussi intéressantes,
mais elles se rapportent seulement & une représentation plane du ds2
Considérons plus généralement une équation @ = 0, et introduisons
les formes semi-normales pour deux ds? en correspondance

ds? — Widude  ds' — W'2dudp (101)
W
R V4
® =y w S = WV

1 1 1 2\/p

v WI
P o= (102)

\)1

On a donc w, == rw;, et en appliquant les formules relatives aux
formes proportionnelles (Chap. I1I), on obtient sans peine les modifi-
cations que subissent les invariants euclidiens attachés aux courbes
se correspondant dans une représentation conforme entre deux
surfaces. Les courbes r = const. interviendront ici & coté des courbes
¢ = const.; nous allons en donner quelques exemples: les courbures
géodésiques des courbes w = 0 sur les deux surfaces en question sont
liées par la relation

(D, + D)) = _,1:(1)1 + @, log 1) (103)

’ 1
D, = —
1 -
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qu’on obtient encore en utilisant les formules

D, = 0), log W + (EX Di = OD; log W’ + %iﬁp
I3 1 ‘\~/ 1 oo v
3, = - 09, G, = - 6, W = rW .
r r

On déduit en particulier de la formule (103): il est toujours possible
de représenter conformément un faisceau de courbes non géodésiques
suivant un faisceau de géodésiques, et pour mettre en correspondance
conforme deux faisceaux de géodésiques, il est nécessaire et suffisant que
ces faisceaux sorent ceux des courbes r = const., suivant lesquelles le
module de la représentation reste constant. On peut aussi, pour les
relations entre invariants euclidiens, faire appel aux formules
vectorielles.

g = g — Vlogr (104)

/

4
d, = rd, t, = rt; V/'logr = Vlogr
ou l'on suppose les deux ds? représentés sur une méme surface.

27. Nous modifierons légérement ici les notations précédentes pour
reprendre celles de notre Thése; au point courant m d’une surface
est attaché un repére euclidien ma, a, n, de sorte que

dm = o,a; + ©,a,
wy = Ay (e, o)day wy = Ay(ay, %y)day ;
Pindice s étant affecté aux opérations superficielles, nous posons

d(I) — (1)1(01 + (bz())z VS(D == (blal + (I)zaz

pour une fonction scalaire ®(ay, «,) déterminée sur la surface. Le
covariant bilinéaire o, de », introduit la forme de Pfaff a,, et les
vecteurs f, g, par

7
0y = [w, w,] rot a;, = lfa'zls = g X 3,
f = g3, + g3, g =1t = —ga + ga, .

Soit une premiére application au probléme des congruences de nor-
males, traité par Beltrami, Laguerre, etc.; les droites [mu], u étant le
vecteur unitaire

U = sinl.a, + cosf.n

forment une congruence de normales s’il existe un point

P = m } Au
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tel que le déplacement dp soit orthogonal & u, donc
uXxdp=uxdm-+di =0 (105)

équation qui exprime que u X dm est une differentielle exacte, donc
u un gradient (spatial)

U= —VA=VF(a)

V = sinf.a, = VSF(°‘1) .

La condition d’intégrabilité de I'équation précédente

sinf.o, +drA =0 (105")

s’écrit
sin 6w, w,] 4 [d(sin0).w,] = 0 . (106)

En écartant la solution sin @ = 0, correspondant aux normales
a la surface, et posant
log sin = ©

il vient

[fa’z]s + [Vs®'a’1]s = (g_— Vs‘@)) X a‘2 = gl — ®2 - O ¢ (107)

28. Une solution bien connue est obtenue quand les lignes du
champ projeté, de tangentes a,, forment un faisceau de géodésiques
g, =0; on a alors ® = G(«,), fonction arbitraire (# == const. en

particulier).
Revenons au cas général, et soit O0 une solution particuliére de (107);

alors
0 = 0, + G(a) sin§ = ¢ sin 0, (108)

est la solution générale; 1l suffit donc de connaitre une solution
particuliére &, de
(g —V,0) X a, =0.
Si les lignes du champ projeté, a, = const., sont isothermes et si

le ds?, rapporté a ces lignes et leurs trajectoires orthogonales, a la

forme
. ds? = W2(dX2 4 dY?)

la formule (61) montre qu’il suffit de prendre

C , w
B, = —w -+ ¢ sin90=—w—- <9“=7>

¢, G étant des constantes.
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La méme solution est valable si la forme précédene du ds? est
rapportée & un systéme isotherme que les lignes «, = const. coupent
sous angle ¢ permanent (constant le long de ces lignes) puisquon
a alors

g =—Vu 4+ JVo JVo x a, = 0 o = H{(a,) ;

une représentation conforme de la surface suivant le di? = da? 4 dy?
fait alors correspondre un faisceau de droites aux lignes du champ
projeté.

Enfin, dans le cas général, il suffit de méme d’effectuer une repre-
sentation conforme transformant en géodésiques les lignes du champ
projeté; g = g — V;log r étant alors porté par a,, il reste a satisfaire a

(Vs lOg‘?’———VS@) X 8y = 0

d’ou la solution particuliére

sin 60 = CI‘ ¥

En résumé, les transformations conformes permettent de déduire
la solution générale du probleme du cas particulier ou les lignes du
champ projeté sont des géodésiques, le vecteur v du champ projeté

participant & la transformation conforme (superficielle) qui raméne

le faisceau de géodésiques aux lignes de ce champ; le vecteur u se
déduit ensuite de sa projection v.

29. Comme seconde application, nous donnerons quelques indica-
tions sur une théorie nouvellement développée; celle des réseaux
cerclés (zyklische Kurvennetze)l; un tel réseau est formé par les
courbes d'un surface dont les cercles osculateurs sont, en un méme
point m, cosphériques a un cercle orthogonal & la surface en ce point,
et est défini par une équation différentielle du 2me ordre. Soit u le
vecteur unitaire suivant le diameétre de ce cercle, issu de m, tangent
a la surface; le cercle, de rayon p, est défini en chaque point par le

u . .
vecteur w = — ou par le vecteur perpendiculaire v = — Jw.

Un repeére sﬁperﬁciel arbitraire ma,a, étant choisi en tout point de
la surface, soient t et q les tangente et normale unitaires aux lignes
du réseau cerclé, g la courbure géodésique (suivant q) d’une ligne
d’un faisceau contenu dans ce réseau

I

fxt=¢g xq.

o
o

1'W. BLAscHKE, J. Rapon: Ueber konforme Geometrie, Abh, Hamb., 4, 5 (1925,
1926). Exposé de T. Takasu: Differentialkugelgeometrie, Tokohu Sc. Rep., 17 (1928).
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Soit ® I'angle d’une ligne du réseau avec la premiére ligne coor-
donnée, & laquelle sont attachés les vecteurs f,, g, = Jf,; d’aprés la
formule (61), on a

f=f +Vd. (109)
La propriété géométrique indiquée se traduit aussitot par
§=WX(qg=vVv Xt

donc I'équation différentielle cherchée est

dm

(fp + V,®) Xt =v X t t:'&? (110)
ou, avec les‘ formes de Pfaff
w, = f;, X dm y =V X dm
gE_____"’w;dq’:_;;. (111)

Sous forme entiére, cette équation s’écrit encore

G—ryds® =0 (1117)
avec
G = ds? (wy, + dD) = (wi - m:)wlz + o dw, — w,dw, .

L’équation G = 0 est I'équation du réseau des géodésiques (eucli-
diennes) de la surface: c’est un cas particulier de réseau cerclé
avec y = 0.

30. La transformation conforme

_ — 1 (dlogr).
d32 o 1‘2 ds2 g = - ( B _______1
g+ — >

~
>

donne a I'équation (111) la forme

7.+ (d logr);
ds

Il

[

(112)

SOl

2.
d

v/

ce qui montre que toute transformation conforme change un réseau cerclé
en un autre de méme espéce, ou conserve ’ensemble de ces réseaux.
Si y; est une différentielle exacte — & covariant bilinéaire y; = 0,
ou l'invariant D de y nul — on peut annuler g, donc le réseau cerclé
est un réseau de géodésiques conformes pour le ds? convenable.
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D’autre part, dans (111), si y améme covariant bilinéaire que w;,

’

7= wyy = — Ko, w,] ou divw = divg = K (113)
K étant la courbure totale du ds2 on a
Y= v, + d‘iﬁ
et 'équation du réseau cerclé se réduit a

a0 — ¥ = 0 ou ds*>. d(d — W) = 0 ; (l14)
ds

par suite ce réseau est alors un réseau angulaire (celui défini par les
lignes coordonnées dans le cas W = const.); cette forme de I'équation
suffit & montrer que la condition (113) est invariante par transfor-
mation conforme. On peut évidemment établir une classification
des réseaux cerclés au point de vue des transformations conformes
superficielles, mais la théorie de ces réseaux peut aussi se baser sur la
géométrie conforme spatiale (géométrie des sphéres), ce qui en facilite
I'étude; aussi nous ne donnons pas d’autres applications 1.

X. INVARIANTS DES FORMES ET EQUATIONS QUADRATIQUES.

31. Soit une forme quadratique
o® = Ldu® + 2Mdudy + Ndo? (115)

qu’on peut considérer comme décomposable d’une infinité de facons
en un produit de deux formes linéaires

w; = z(A,du + B, dy) w, = — (A,du + B,dv)

K| =

x étant un facteur arbitraire, A;, B;, A,, B, solutions des équations
A A, = L AB, - A, B, = 2M B,B, = N .

Nous avons indiqué (Equivalences) la formation réguliére des inva-
riants de la forme «(?) et les relations de ceux-ci avec les invariants des
formes @, et @w,, et nous avons vu alors qu’on se trouvait amené, en
posant

L. = A? N = B? (1'16)

111 est, d’autre part, intéressant de rapprocher cette théorie de celle des changements
de connexion (avec torsion) des surfaces. Cf. Thése, Note terminale.

[’Enseignement mathém., 30e année, 1931. 9
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a introduire la forme de Pfaff

w = Adu + Bdo (117)

a laquelle nous joindrons son adjointe positive

w, = i(— Adu + Bdy)

1
La forme quadratique
9 = — i(Ldu? — Ndo?) = o w; (118)

peut étre appelée, comme on s’en rend aisément compte, forme
bissectrice de la forme () et les formes linéaires dont elle est le produit
seront aussi considérées comme des formes de Pfaff bissectrices
(1re ou 2me) de @), Sans reprendre, pour les formes quadratiques, les
calculs faits pour les formes de Pfaff des invariants de formes propor-
~ tionnelles, nous allons nous contenter de mettre en évidence I'interpré-
tation géométrique des invariants. Les indices 1 et 2 étant affectés
respectivement aux formes @, et @,, en posant

A : A ;
— 1 pRin — 2 R
Q=5 =¢ Q= 3,
nous prendrons pour les formes @ et @;
O T 9 =
¢ = —1"2—? =9+ 3

et ceci justifie les noms donnés aux formes @, ®@;, 5®.

32. La forme «(» posséde un invariant du 1€r ordre

U § A EAY ’ ,
H:LN:7;< 2. " Va,/) = (22 — %4 (119)

qui est aussi invariant de I'équation «(*) = 0, et ne s’annule que si
«(?) est un produit de formes de Pfaff orthogonales; il sera commode

de poser

— 0
v = 2 2 M — AB cos2wm TR cos? 2w

P —. A%du® 1~ 2AB cos 2w .dude + B2do?
— P {e"?i? du? 4 (e%" -+ 8—21‘")du dy -+ P dvg} )

Le cas des formes quadratiques «(? a invariant u. constant présente
peu d’intérdt, Uétude de telles formes se ramenant aussitot a celle
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d’une seule forme de Pfaff, @ ou w; par exemple, et les facteurs
linéaires des formes «(® et (52 entrant dans un méme réseau angu-
laire. Cependant l'introduction de la forme bissectrice S attache
a une forme quadratique quelconque une forme del’espéce prédédente,
dont l'invariant du 1T ordrco est nul.

A partir d’un ds? arbitraire

ds? = W2dudp

on pourra comme précédemment traduire les invariants et les opéra-
teurs de la forme o(®» avec les parametres différentiels de ce ds? par
le moyen de seminvariants. La forme () sera semi-normale pour le
ds? si 4P = W2; autrement dit on pourra lui attacher un dg? cano-
nique: ds? = 4P du do.

Les opérateurs différentiels les plus simples de la forme () sont
ceux de sa forme bissectrice w, soit I, 3, ou ceux que nous en avons

déduit &), G; les quatre invariants du 2me ordre ainsi formés sont
D, T, et '

p= I, 0
ou 5 (121)
g = .
S = Gu =%(9-—6) 4
composantes de la forme invariante
dp:@p.w—}—%p.wi. (122)

Nous ne poussons pas plus loin le calcul des invariants, et ne
revenons pas sur le cas particulier des formes «{(¥ = 2M du dy.

33. Nous avons vu quon peut ramener le cas d’une équation
invariante «(?) = 0 & celui d’une forme invariante normée. En nous
en tenant au cas général, nous prenons pour facteur normant

Q =R? 4+ §? = go (123)
ou, par l'intermédiaire d’un ds?

Pulty W2 )
Q= —F—=q¢p ¢ (123")

d’ou la forme normale
0P = Qa® (124)
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qu'accompagne la forme de Plaff pseudo-normale *w = \/Q , le
facteur normant n’étant pas défini & partir de la forme @ seulement.
Considérons alors les formes

du = \/y.u U, (e“w du + et do)

\

(125)

\

o= Ao, (67 du + € do)

et les opérateurs *3,, *3, ou *@, *& attachés & *w, et de méme
Ou, 0p Oou &L, Y attachés & dy, de sorte que

. N g _ 0. )
Lz = A Yz = Ay

d’aprés les formules (39). On peut alors, pour former les invariants
de *«(), suivre deux voies légérement divergentes (Equivalences, nos
26 et 28). Dans le premier cas, on emploie les opérateurs attachés a
dp.; on rencontre d’abord I'invariant du 2me ordre

Pu B vy _ P )
v= o=y = £ (126)

qu’on retrouve de méme avec les opérateurs attachés & *@; puis 'on
obtient les invariants du 4me ordre

_ Ap _ Al —9) _ g _ |
=%, "= iy i ES ® = Y (127)

\

8::@%).

et I'on poursuit d e méme le calcul pour les invariants d’ordre supérieur.
Dans le second cas, on utilise les opérateurs de la forme *@; pour la
forme normale *¢(*), on a

_ 1
*Q:*P*G:*R2+*SZZ1 *p:’\/t *g = e

\/

et en posant
*R = cos 0 N *S == sinf

on retrouve l'invariant
0 =4¢—0 (126°)

d’ou les invariants suivants, qui s’expriment aussitdt avec ceux
précédemment calculés. Entre les opérateurs de dyp. et *w, on a d’ail-
leurs les relations

*3, = e“iﬂ‘au *¥0) = cos 0. &L — sinl. Yy 128)
¥ — o3 *© = sin0.L 4 cosl. Yy

14 ¢
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Pour une forme *»®?) générale, pour laquelle ® =40, ou O'(w, ) 720,
nous avons montré que les invariants wu, =, ®, © sont suffisants pour
la conservation de Iéquation «® = 0.

34. Au point de vue géométrique, nous considérons que I'équation
a(®) = 0 définit un double faisceau, ou faisceau du second ordre, de
lignes tracées sur une surface; Péquation B®) = 0 définit le double
faisceau bissecteur du précédent, et @ =: 0 est I'équation d’un faisceau
simple, considéré comme premier bissecteur. Le faisceau d’équation
du = 0 est celui le long duquel I'angle d’ouverture 2, du faisceau
initial est permanent: # est I'inclinaison du faisceau dy. = 0 sur le
faisceau bissecteur @ = 0; dans le cas général © %0, les lignes

= const. et les lignes # = const. forment des faisceaux différents.

Il sera d’autre part naturel d’utiliser la représentation sur un
d*s? canonique défini par

*W? — 4y

o, = 4*P (129)

sur lequel les formes *@® et dyp. sont semi-normales, donc le faisceau
dp. = 0 un faisceau de courbes paralléles, avec Ay = 1.

Au point de vue de lisothermie, on pourra distinguer les cas
suivants:

1o L’mvariant I de la forme @ est nul, ou Ag = 0; le double faisceau
bissecteur est alors isotherme, et nous pourrons dire que le double
faisceau o) = 0 est hémi-isotherme.

20 Aw = 0; avec p = cos? 2w, ¢ = Qu, on traduit facilement cette
condition avec les invariants de I'équation () = 0. Ceci exprime que
les deux faisceaux simples appartenant & «® = 0 font partie d’un
méme ensemble (I,).

3° On a simultanément

Ao =0 Ao = 0 ; (130)

alors les faisceaux simples de I'équation »(® = 0 font partie d’un
méme ensemble isotherme, comprenant aussi les faisceaux de 5 = 0;
nous dirons que ces conditions (130) sont celles d’holo-isothermie
de «¥ = 0.

XI. DEUX FAISCEAUX QUADRATIQUES DE LIGNES.

35. Nous avons, au Chapitre VI, considéré implicitement un double
faisceau orthogonal avec les formes adjointes @ et @;, et montré les
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relations entre les opérateurs attachés a ces formes: 3, &, et @, G.
En particulier, 'expression (90) de 1

N

Llog Q == I logyq

2ol =

rappelait que, dans le cas d’isothermie des formes

® = zdf = Adu + Bdo (67)
w; = ydg = i(— Adu + Bd)
A x
on avait simultanément
a(u) X (f)
Q = 77 4 = <
() N

d’ou la possibilité de réduction simultanée des équations dudy = 0
et df dg = 0 a des formes df2—dg? = 0 et du? + dv? = 0.

Considérons plus généralement deux formes quadratiques ds* et
o) et pour montrer la symétrie des opérations vis-a-vis de ces formes,
imaginons une transformation générale des variables u, ¢ en &, ,
telle que

0¥ = Ldu® + 2Mdude + Ndo? = C2d:dy

ds?® = W2dude = BEdf? + 21 dédn + Gdn? .

Le déterminant de la transformation étant A = w:¢0, — u,¢:, on
a les identités

CZ
T2 — Rk —_— =
W2y, = E Az Yy = L
C2
79 — — —u. = N
Woy o = G AT ¥,
C3
WHuzo, + u,0) = 2F - 5= (u0, + u o) = 2M .

Aux transformations (3) des variables u, ¢ conservant les équations
«® =0, ds? =0, correspondent des transformations de méme
espéce en £, ». On retrouve aussitot Uinvariant du 17 ordre

M2 Jo2
b= IN

K= 6= cos? 2w
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et par suite la forme invariante dp. Pour la jacobienne des formes
+) et ds?, on a ensuite l'identité

[y

® — —i(Ldu? — Ndv*) = s

qui résulte de la syzygie entre deux formes quadratiques et leur

jacobienne
(W2a® — 2Mds?)? — 4 LN (ds?9)? = WipP* .

I’équation B = 0 et la forme dp étant invariantes, 'emploi des
opérateurs attachés a dy (n°33) permet de poursuivre le calcul aussi

bien avec les variables £, n qu'avec u, ¢. Ainsi, & I'invariant  de la
formule (126) correspond, en variables £, » I'invariant

_ e G . 1 1\ 2
:.—:‘-L;‘:-\/-(EI:L::C avec (c%—;) = b4y

¢’est-a-dire ou ¢ est la quantité

. 1 ‘Z’i,u)
—_— == e
\/Q2

de la formule (119), donec

- _ cos(w—90 0= d¢—o) .

"~ cos (w -+ 9)

36. Les méthodes analytiques précédentes ne nécessitent évidem-
ment pas I'introduction des lignes minima et de la représentation
conforme; elles s’appliqueront de méme aux théories géométriques
ou un faisceau quadratique de lignes particuliéres jouera un rdle
primordial (lignes asymptotiques, lignes de courbure, etc.), et le
dernier probléme que nous avons indiqué est celui de la conservation
de deux faisceaux quadratiques de lignes; on sait qu’a ce probléme
se rattache aussi celui de la permutation de deux faisceaux quadra-
tiques, les faisceaux du 1¢r ordre constituants de deux faisceaux
quadratiques pouvant étre répartis autrement que dans le groupement
primitif. Nous n’entrerons pas dans le détail de ces problémes.
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