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APPLICATION A LA REPRÉSENTATION CONFORME

DES TRANSFORMATIONS A VARIARLES SÉPARÉES

PAR

P. G. Delens (Le Hâxre).

Sommaire.

I. Nous avons, dans un précédent mémoire 1, étudié systématiquement

les procédés de formation des invariants de formes et d'équations
différentielles du 1er ordre pour les transformations à variables
séparées

il — U (u) f V (f) (3)

et nous avons indiqué, dans les cas les plus simples, comment se

posaient, au moyen de ces invariants, les problèmes d'équivalence des

systèmes considérés. Nous faisons ici une application des résultats
obtenus à la représentation conforme des surfaces (ou du plan), les
variables u, v jouant le rôle de coordonnées symétriques; dans ce
but nous modifions d'abord les procédés exposés pour montrer
l'emploi et le rôle des paramètres différentiels de la théorie des
surfaces. Bien qu'il apparaisse nettement que les invariants d'un
même ordre sont les coefficients de formes ou d'équations différentielles

invariantes, nous n'avons usé qu'avec modération des méthodes
vectorielles ou tensorielles dont ceci permettait l'introduction: pour
un exposé plus complet, nous renvoyons le lecteur à notre thèse 2.

II. En considérant d'abord une forme de Pfafî w, celle-ci est
évidemment liée au faisceau des courbes intégrales de l'équation
a* 0; aux opérateurs invariants 3"u, attachés à cette forme et
définissant des transformations infinitésimales le long des lignes

1 Equivalences de formes et d'équations différentielles par les transformations à
variables séparées: L'Enseignement Mathématique, XXVII, nos 4-5-6. Référence:
(Equivalences).

2 Méthodes et problèmes des géométries différentielles euclidienne et conforme
(Paris, Gauthier-Villars, 1927). Référence: (Thèse).
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minima, nous substituons d'abord des opérateurs agissant le long des
courbes du faisceau et de leurs trajectoires orthogonales: il
s'ensuit une modification correspondante des invariants obtenus par
le jeu de ces opérateurs à partir des coefficients de la forme.

III. Nous montrons ensuite comment se modifient les opérateurs
et les invariants d'une forme us quand on remplace celle-ci par une
forme proportionnelle. Cette méthode, que nous avions laissée de
côté dans notre premier mémoire, trouve dans la suite diverses
applications et mène en particulier à un nouveau procédé d'étude
pour une équation de Pfafî invariante.

Un ds2 adjoint est-il à conserver par les transformations (3) en
même temps qu'une forme us, on retrouve un problème d'applicabilité
des surfaces; les invariants du système us, ds2 comprennent alors des

invariants conformes de us, des invariants gaussions (invariants
conformes du ds2) et des invariants mixtes ou seminvariants de us.

IV. Pour une forme différentielle exacte, les invariants des

premiers ordres sont ainsi calculés au moyen des symboles A, C), A2,
etc. de la théorie des surfaces (symboles que nous modifions légèrement

dans le texte); on reconnaît déjà les combinaisons de ces
symboles qui fournissent les invariants conformes. Nous trouvons des

relations utiles (formules (44), (44')) entre les paramètres différentiels
d'ordre supérieur. Nous donnons aussi pour la courbure totale la
formule très générale

où la fonction / des coordonnées curvilignes est arbitraire 1 (mais
non constante).

V. Les invariants de déformation d'une équation us 0 sont ceux
d'une forme de Pfafî semi-normale ust proportionnelle à us et normée
vis-à-vis du ds2; les invariants du 1er ordre de cette forme sont des

courbures géodésiques. Nous revenons ici sur la notion de réseau

angulaire de courbes (Thèse) et du vecteur de courbure géodésique
de ce réseau, les formules vectorielles

(52)

g! ~^jvr + V i°sv <63> K divgj (65')

conduisant aussitôt à la formule précédente (52).

1 L'apparence paradoxale de ce résultat disparaît si on remarque que les opérateurs
a et &2 dépendent des coefficients du ds2.
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Signalons encore la formule

& — Y log W + JYcp (61)

où les éléments géométriques de la courbure géodésique sont
particulièrement en évidence.

VI. A la forme m d'une équation w — 0 nous rattachons la forme
adjointe oai des trajectoires orthogonales wi 0 du premier faisceau
de courbes; les opérateurs et invariants des deux formes sont liés
très simplement. Aux deux formes est attaché un de2, canonique sur
lequel les deux formes sont semi-normales. Nous ne pouvons manquer
de revenir ici sur les éléments vectoriels, et étudions également les

notations convenables pour les opérateurs différentiels attachés
aux formes de Piïaf, en liaison avec le ha-2 canonique. Nous
donnons différentes expressions d'un seminvariant Ix A2tp qui
présente un intérêt particulier dans la représentation conforme.

VII. Un faisceau isotherme de courbes ça 0 est caractérisé par
la condition invariante 1 0, ou ïa 0, c'est-à-dire A2<p 0; à

un tel faisceau se rattache un réseau angulaire isotherme et plus
généralement un ensemble (I 0) isotherme; nous rappelons rapidement

les propriétés d'un tel faisceau, qui ne possède aucun invariant
conforme.

VIII. Si un faisceau os 0 n'est pas isotherme, il existe une forme
normale

os* <\/ 1 os (99)

dont les invariants conformes sont ceux de l'équation ro 0; sur un
ha-*2 canonique à U*, cette forme est en même temps semi-normale;
pour les courbes d'un même ensemble (Ix) on peut introduire la notion
d'arc conforme. Le ho-*2 canonique peut être utilisé pour la
classification des faisceaux de courbes vis-à-vis des transformations
conformes, problème qui se formule comme un problème d'équivalence
avec conservation du ha*2.

IX. L'interprétation géométrique des éléments introduits jusqu'ici
introduit la notion d'isoclines conformes d'un faisceau de courbes par
rapport à un faisceau isotherme; mais les problèmes de représentation
conforme ne se ramènent pas toujours aussitôt à des égalités d'angles,
et la manière dont se modifient des quantités non invariantes offre
aussi de l'intérêt. C'est ainsi qu'on reconnait qu'un faisceau arbitraire
ö 0 peut être représenté conformément suivant un faisceau de
géodésiques: nous montrons comme application qu'on peut compléter,
au moyen d'une représentation conforme, la solution du problème
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des congruences de normales attachées aux points d'une surface (je
ne dis pas les normales de la surface).

Il est connu que les réseaux cerclés de courbes d'une surface se
transforment les uns dans les autres par les représentations conformes
de la surface: nous nous contentons de quelques indications sur cette
théorie récente.

X. Gomme nous l'avons fait dans notre première Etude, nous
montrons comment les invariants et opérateurs des formes et équations

quadratiques se rattachent à ceux de formes et d'équations
linéaires; au double faisceau de courbes défini par une équation
quadratique, on doit, au point de vue géométrique, joindre d'abord
la considération des faisceaux bissecteurs et du faisceau formé par
les courbes le long desquelles l'angle 2&i du faisceau initial est constant.
Ici encore, on retrouve des formes normales et un d*a2 canonique.
Pour l'isothermie, on peut considérer une hémi- isothermie et une
holo-isothermie.

XI. Nous sommes maintenant en présence de deux faisceaux du
2me ordre, celui des lignes minima et le faisceau a(2) 0 à conserver;
pour les formes correspondantes ds2 W2 clu dv et a(2) C2d£dyj,

il est intéressant de montrer les relations entre les invariants calculés
à partir des changements de variables portant soit sur w, c, soit sur
£, -f). Cette symétrie du problème a déjà été préparée dans les numéros
précédents: elle prépare son extension à des questions analogues, où
ne figureraient plus nécessairement les lignes minima.

Les méthodes exposées peuvent aussi se prolonger pour l'étude de
formes et d'équations différentielles de degré supérieur.

I. Notations — Préliminaires.

1. Le ds2 d'une surface étant pris sous la forme

ds2 W*dudv W2{d\2 f dY2) (1)

les paramètres w, c sont ceux des lignes minima de la surface, et les

variables X, Y telles que

uX + iY X
"2

(2)
l > =X-'Y V
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sont des paramètres isothermiques (ou isométriques). Un changement
de variables

i7 U (it) m V {0 (3)

réalise une représentation conforme (directe) de la surface, autrement

dit une transformation conforme superficielle; de telles
transformations constituent une application importante de la théorie des
transformations à variables séparées, dont nous avons commencé
l'étude dans un précédent Mémoire (Equivalences).

Nous considérons en général des variables X, Y réelles, donc des
variables h, v imaginaires conjuguées (coordonnées symétriques) ; pour
les courbes réelles tracées sur une surface réelle, ou du moins celles
données, avec des variables réelles, par des équations à coefficients
réels, il y a lieu de modifier les notations et les résultats déjà acquis
pour mettre en évidence, autant que possible, des invariants réels.
Nous sommes ainsi amené à faire usage des paramètres différentiels
de la théorie des surfaces.

D'autre part, il est parfois préférable d'établir entre les variables,
h, v, X, iY des relations plus symétriques que celles des formules (2),
soit

«.-L(x + m s ^(« + ;>

(iY-
Pour ne pas charger les formules de coefficients £ auxquels on pourrait

donner ensuite, suivant les cas, les valeurs 1 ou nous en
resterons aux notations (2), en remarquant qu'on passerait aux formules
(2') par la transformation

u - ¥

V2 V2

ne modifiant pas les invariants que nous allons calculer, et introduisant

pour les comitants (covariants, contrevariants, etc.) des changements

simples.

2. Les dérivées partielles par rapport à des variables », e, X, Y, /, g7
seront indiquées par des indices inférieurs, par exemple
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et nous écrirons sous les formes suivantes les principaux paramètres
différentiels employés 1

Af — A ' (f „)
2Vu** + f*zu)

f ~ ^i{tuZv ~ fvZu)- -yyï A (/ Z) - ^@ (A *) ^
(^)

paramètres du 1er ordre, donnant la relation connue

A'(/\ *)2 + 0'(A z)2 Af.Az (5)

Les paramètres du 2e ordre d'une fonction / sont ensuite

Af=V̂f W A'fVif. Af) ©"/• ©'(/', A/")

(ß)

liés par la relation
Ä77/'2 + W/2 « A/-. AY (7)

On a d'ailleurs, dans le cas W2 1, pour les numérateurs de
certaines des expressions précédentes

*of 4 fa A — fx + ^ Y Ao/' 'lfuv /X2 + /'y 2

^(A *) 2 (A A + A2«) ~ /'xzx + /y^Y

/r \ o ; /y / n _ r y o; D (A *) _ D (A *)
®0(A ^ ~~ %l(fuZV fVZu) /x^Y A*X D(m, r| D (X Y)

formules qui permettent le développement des calculs et leur
vérification, pour les expressions indépendantes de W2 obtenues dans la
géométrie de la représentation conforme.

A côté des expressions précédentes, citons encore les suivantes,
également entières par rapport aux dérivées partielles des fonctions
auxquelles elles se rapportent

y2/-_ 2 A" f. Afrf= A" f — 2 AAA/" Alf f —jL l (9)

et, pour W2 1, les développements

©;v « - 8 i [f 2 f2 - f,2fl) V0f 8 (fu2fl + - 2 fuJufv)
m

Al0f 2i0o(A, Q - 00(/x. fY)

1A nos notations a/, a'(/, z), c-)'(/, z), Af, tf correspondent les notations de
Darboux a/, a(/, z), (-)(/. z), a2/, o(/) ce dernier paramètre étant écrit
" A22/ par L. Bianchi.
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En introduisant une fonction g telle que

)?x -<y/Y | *u -"Jfu
(|1)

I gY M <7/'xI
la fonction q est astreinte à vérifier l'équation aux dérivées partielles

À/'-f A'(A log 7) 0 (12)

et l'on a, entre autres relations

U"g q*Tf (13)

Nous introduirons, chemin faisant, les expressions utiles pour la
géométrie conforme, c'est-à-dire la géométrie cle la représentation
conforme, que nous désignerons dans la suite sous ce nom.

3. Sans développer ici les méthodes de calcul géométrique (calcul
vectoriel), nous rappellerons que si la surface considérée est décrite
par le point variable m, de masse unité, fonction des variables «, v

ou X, Y, une fonction géométrique (scalaire ou vectorielle) de ce

point donne naissance aux fonctions dérivées superficielles

d<fi _2_ d^1)
V <]> —— V «s —5 etc.

cm d m-

Pour des vecteurs a, b, de la surface (à ds2 donné), on peut considérer

les produit et carré intérieurs a X b, ax, le produit extérieur [ab]; les
relations entre les produits intérieur et extérieur sont mises en
évidence au moyen du verseur J, produisant la rotation directe d'un
angle droit du vecteur qui lui est soumis.

Pour l'exploration de la surface au moyen d'un repère associé au
point m, et formé avec deux vecteurs unitaires d et t Jd, considérons
le cas où le vecteur d a la direction et le sens du gradient y/ d'une
fonction scalaire f1; alors

I w-Vïr-t-jt.t
j I' (/', z) V f x V £ produit intérieur de gradients OY

I <-)'(/', z) [T /'. V z] produit extérieur de grad ienl s

A/'= divV/' divergence de gradient.

1 Si d a le sens opposé de a/, la détermination du radical Csf est à changer.

I/Cnsei^neinent malhéni30e année; 11)31.
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Dans le cas où l'on considère deux vecteurs a et b Ja d'un

simili-repère, on a d'ailleurs (les rotationnels étant superficiels)

diva rot b div b — rota (15)

et pour un gradient y/ on a toujours la condition d'intégrabilité

rot Vf 0 (16)

On connaît d'autre part (Thèse) les relations entre les notations
vectorielles: produit extérieur de vecteurs, rotationnel — et celles
introduites par M. E. Gartan pour les formes de Pfaff: produit
extérieur, difïérentiation extérieure; elles tiennent essentiellement
aux formules

df V f x dm
l "

(17)
l m & x dm xdf a xVf

Aux formules (11) correspond, en calcul vectoriel

V* q3 Vf (11

et (12) s'en déduit en prenant les rotationnels des deux membres.

II. Invariants et opérateurs différentiels
d'une forme de Pfaff.

4. Nous dirons que les courbes intégrales d'une équation de Pfaff
us o forment sur la surface un faisceau (simple); la donnée d'une
fonction / de u1 c (ou de la variable géométrique m) est équivalente
à celle des intégrales / const., prises individuellement, de l'équation
df 0; au contraire, la donnée d'une équation de Pfaff us xdf 0,
revient seulement à celle de Vensemble des courbes intégrales du
faisceau.

Soit à conserver, par les transformations conformes (3), une forme
de Pfaff

m À (u v) du -f- ß (u v) dv (18)

à laquelle nous avons attaché deux opérateurs différentiels du
1er ordre, S*w et donnant d'une fonction z les paramètres
différentiels
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Nous avons montré l'existence, pour ces transformations conformes,
de deux invariants essentiels d'ordre deux 1

x ä=4('°Sb>« 5«io§'B <s ^ ïï(i°sA)« 5"logA

(20)

à partir desquels les invariants d'ordre supérieur se forment par le jeu
des opérateurs différentiels Su et By; l'itération de ceux-ci fournit
des opérateurs d'ordre supérieur ou des combinaisons linéaires, à

coefficients invariants, des opérateurs précédents; nous avions posé

(5,A) e^a - A
I

(21)

AA A + A)

l'opérateur linéaire du 2e ordre, 3«r> donnant pour une fonction 2

AB (2iq

Les opérateurs 5Xi et 5^ étaient des symboles de transformations
infinitésimales agissant respectivement le long des lignes minima
e const, et 11 — const.; nous leur substituerons des symboles de
transformations agissant le long des lignes du faisceau m 0 et de
leurs trajectoires orthogonales, en posant

7 (K + K)

^ 4 -5,.)

i s., cO i D

a) + i%
(22)

Nous prendrons aussi pour invariants essentiels du second ordre

D

T 0 (» - r?)

D — j'T

D + 4 I
(23)

1 Contrairement à ce que nous avons fait précédemment (Equivalences), l'ordre
attribué aux invariants d'une forme ou équation différentielle du 1er ordre est l'ordre de
dérivation, augmenté d'une unité; cette modification s'impose ici où nous avons parfois à
considérer les invariants de formes finies (d'ordre zéro).
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5. Aux formules (21) correspondent

(03%) 03% — %63 TÛ3 — D%
(24)

I i? (©2 + <g8 _|_ D(^ _g

avec

(<©«) =-1(7,3,) (24')

mais nous introduirons trois opérateurs distincts du 2e ordre, XX «ffil,
ÛC et un quatrième opérateur (9 identiquement nul, avec les relations

r CV2+ ©' + D(® + T« + 3„3tf + + «S,)

Jll *= C02 - îi2 + DC© - T© i(^ + g + «3,, + |5^)
(•25)

.91 ÖD© + + TÖ? + m !($'„- g + «$„ - ß3„)

(9 03© — ^<X) — T<© + — j($u Sv — 5(,3m — ß^ -f a^) 0

En posant, pour le produit et le quotient des coefficients de la
forme <x>

P AB Q A (26)

les invariants du 2e ordre s'expriment maintenant par

D log P + log- Q)

(27)

ï i (-5 log P — log Q)

Les quatre invariants distincts du 3e ordre précédemment introduits
(et désignés alors par co $ua, 0 $uß% (p ß $vß) s'ex_

priment par

5 a= Ö3D—©T-i(Ö3T + ©D) BJ « CDD +©rf-f—©D)
(28)

<©D + ©T - i (<®T - ©D) 3t, ß CÎ>D- ©T + i (d?T + ©D)

'où

èQD + «^wa + ${, ß) 09 1 7^ (^,i C 3va — Su a g- 3t,p|

(28')

©d -7 (7, -v + V-V î;t T (5«'5 + v -5«*-V)
•i "*
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dont les combinaisons les plus utiles sont

cPT — % I) — y (Bu 3 —

CO D -f- "(o 1 D~ -j- l2 ~ A A ^ a c)

; (29)

tPD - ÇT + D- - T2 ipB« + 3„ß + «2 + (0

<Â)T + f?D + 2 DT j{Sn* — + a2 —

soit, en fonction de P et Q et des opérateurs J?, 511, 51

- j.£ log Q

4-C ]°gp
(30)

-pjll logP + i5l log Q)

1(51 logP — î Jll log Q)

Les deux premiers de ces invariants, I et &, sont particulièrement
intéressants; nous ne formerons pas ici les invariants et opérateurs
d'ordre supérieur.

III. Formes de Pfaff proportionnelles. — Equation
de Pfaff. — Adjonction d'un ds2.

6. Si au lieu d'une forme us on veut conserver, par les transformations

conformes, une équation de Pfaff us 0, les invariants de cette
équation sont compris dans ceux de la forme us, et on peut les considérer

comme communs à toutes les formes proportionnelles us

xm0, c'est-à-dire indépendants du facteur arbitraire x. On pourra
choisir pour us0 une forme us particulière, et nous le ferons dans la
suite; pour l'instant, laissant aux formes us et us0 toute leur généralité,
nous allons établir les relations entre les opérateurs différentiels de
ces formes us et os0, puis entre les invariants de ces formes.

Soient donc les formes de Pfaff

us0 — A0du -j- BQdv US — Ada -j- B dv x&S0 (31)

A 5iA0 B xB0 V AP0 Q Q0



(33)
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Les expressions relatives à ccr0 étant affectées de l'indice 0, on a
évidemment, d'après (19) et (22)

® (32)

et les formules (27) donnent, pour les invariants du 2me ordre

T_L+ T .oS«=T---

De même, pour les opérateurs du 2me ordre, on obtient

£ jâA 5ii ~ m. 15i. (34)

tandis que

(<©??) —g (éD0^0) + ^ log x. CO — éD log x.%

on remarquera qu'en particulier

(<£>®) log a; log a: (35')

et que la formule (34) pour £ résulte aussitôt, d'après (21') et (24'),
de

£* Zf •

En tenant compte des relations précédentes, les invariants du
3me ordre sont donnés par

i i»
X2

'il- £ log a 1 + 1 C0 (1)Xxu X \x)

» _ ij - an log» £ +
(36)
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La première des formules (36), qui dérive immédiatement de (30)
et (34), donne ce résultat important: le facteur x s'exprime au moyen
des invariants du 3me ordre I et I0 de us et us0. Ceci est conforme aux
prévisions qu'on pouvait faire: pour obtenir les invariants de l'équation

us 0, on devait éliminer x et ses dérivées partielles entre les

expressions des invariants de la forme as en fonction de ceux de us0,
afin d'arriver aux invariants indépendants de x. Jusqu'à l'ordre 3

inclus existaient 6 invariants distincts de la forme us, contenant les
6 quantités x, xu, xVr xui, xuv, xvz : l'élimination des dérivées de x donne
donc x en fonction des invariants de us et us0: les invariants de l'équation

us 0 n'apparaissent qu'ensuite, et le nombre de ces invariants
distincts des différents ordres, ainsi calculés, coïncide bien avec celui

que nous avons déjà obtenu autrement.

7. Si les transformations (3) doivent conserver, en même temps
qu'une forme us, le ds2 de la surface, on retombe sur un problème
d'applicabilité (sans déformation superficielle). Les invariants se

partagent alors en trois catégories: 1° les invariants conformes de us,

indépendants du ds2, que nous appellerons simplement ses invariants ;
2° les invariants conformes du ds2, qui ne sont autres que les
invariants gaussiens de ce ds2; 3° les invariants mixtes de us et du ds2,

que nous appellerons seminvariants (conformes) de us. De même, si

l'on adjoint aux précédentes de nouvelles formes différentielles
de Pfaff ou non, à côté des invariants propres de ces formes figureront
des invariants mixtes, entre us et ^ par exemple. Une fois obtenus
les invariants essentiels du système considéré, les invariants d'ordre
supérieur s'obtiendront par le jeu de deux opérateurs différentiels,
pour lesquels on pourra choisir les opérateurs 6? et % attachés à la
forme us; un changement d'opérateurs se ferait ensuite facilement.
Nous venons en outre d'indiquer un procédé pour passer des formes us

à des équations us — 0.

IV. Invariants d'une différentielle totale et du ds2.

8. Nous envisageons d'abord le cas d'une forme us0 différentielle
exacte et considérons le système

l ds* » W2 du dv

j
WQ dffadu + f„dt' A0 B0 /;,

(37'

La forme cö0 n'étant pas générale, les règles relatives à une forme us

quelconque ne permettent pas de prévoir le nombre des invariants
distincts des différents ordres du système et leur répartition en
invariants gaussiens, invariants et seminvariants de us0 (ou /). Mais
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on doit considérer / comme un invariant donné d'ordre zéro, et
reprendre le calcul pour ce cas; on trouve ainsi qu'on doit prévoir,
en général, jusqu'à l'ordre n inclus:

~1 ^}n + ^ — 2n n
-—— + 1 invariants de /, dont n — 1

nouveaux pour l'ordre n;
n(ii -f )| n u(n — o) 0
—-—I

1 — In ——-—- invariants gaussiens, dont n — 2

nouveaux;
(n + l)2 —- 2n n2 + 1 invariants du système (37), dont

2n — 1 nouveaux ;

donc, par différence, 2n seminvariants de /, dont 2 nouveaux pour
l'ordre n.

En fait, on a d'abord, pour l'ordre zéro, l'invariant /; pour l'ordre
un, le seminvariant

4 f f 4 p
So Ar=yy w|. (38,

Les opérateurs différentiels attachés à öu0: CD0 et ©0, donnent d'une
fonction 2 les paramètres

cvoZ=Nzjl + E) Î 4 <''•

7„ + 7T;
(39) •

et pour l'opérateur du second ordre, on trouve

CaZ « V3 (40)0 a/-
1 '

Pour le second ordre, on obtient un invariant de ax0

11
o — "y (ao + ?o) ao ?o 2> o/ (41)

pour lequel, en introduisant un symbole Ü d'opérateur conforme,
nous poserons

cependant que T0 0; on a en même temps deux seminvariants
d'ordre deux

a<• A'V _ A"/' Î; Ar_«'(C A0 - w"/' /,«ty0A/_——- A/. o0A/- A/. - A/.

auxquels on peut substituer A"/ et 0"/-
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9. Les relations (25) sont ici réduites à

1

,C0 cO
o + (P0 + D01Q0

«211
o — tO'J — "L0 + ' )o cOo

«91
o 0

LL0 + L(S0 CD
o + Do S0

(?0 (tOo©o)-ToC0o o

(43)

la première et la dernière s'exprimant encore par

j A'j /',
s)

j + 0' j f,j+ Of. X(f.z) Az

j - 0' | /'• ^Ï7" i + ®' V •
0

relations entre paramètres différentiels d'ordres supérieurs des fonctions

/, j; si en particulier on applique ces formules à / et A/, on obtient

j A'(/\ A"f) + 0' (ft 0"/') - A2/' + A/-.AV- A/". A A/"
1 A' (/", 0"/') - ©'(/', A"/) + A/1. 0"/' — 0

(44,)

En appliquant au contraire à / les formules (24) sous leur forme
générale, et tenant compte de

<-£)„/• =- ~-J. i ©„/• 0'({/./i o

on trouvait directement

D» - m Qf T° =0

Pour le 3me ordre, on obtient les deux invariants de

«P.O. - s.o. - ««,

sous forme de rapports de seminvariants, mais évidemment indépendants

du rA'2. Pour former les seminvariants, on peut, au lieu de
i00z et £^3, utiliser les paramètres différentiels À'(/, z) et ©'(/, 2).
Quant aux invariants gaussiens, on sait qu'on arrive pour le
3me ordre à la courbure totale K du ds2, donnée par

4 (log W)- K « ^-22 A log W A f. X* log W (46)
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10. Nous ne poursuivrons pas plus loin le calcul, sans difficulté,

des invariants, mais remarquerons que les invariants du 3me ordre
des formules (30) se réduisent ici à

- ®0D0

û?0T)0 + D* jA log P0

(4-7)

Ô?0D0— D0 -pîl0log P0 + i£*l0 log Q)

®oDo \ (^o ]oS Po — <VfL0 log Q)

donc en particulier

_ ©'(/-, Ü f)iAlogQ A'(A —2 __
A log P0

0 Af~ 2A f0A/' + A '

(A

En introduisant l'angle ®, que nous interpréterons plus loin, donné

par

4 Q =e-2i? logQ - 2i? (49)
' f

et tenant compte aussi de (38), ou

4 P0 W2A f (38')

il vient

A? e'(f,ûf) (so)

_ A log w + I J?0 log A/- - A +
A ^A/' (51)

Les formules (50) et (51) sont, comme on le constatera, des cas

particuliers de (36). En comparant la seconde formule (48) à (51),

on trouve pour la courbure totale

K « A log \/A/'—Af.Qf—A'(f, Qf) (52)
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formule très générale à laquelle on peut donner bien des formes,
par exemple 1

A \f— 2 A/'2 — 2A'(/', Af)— 42?K

V. Formes de Pfaff semt-normales.

11. Dans la géométrie euclidienne des surfaces (c'est-à-dire la
géométrie des surfaces pourvues de la connexion euclidienne induite
de l'espace ambiant, soit l'ordinaire géométrie riemannienne sur la
surface), on a avantage à considérer, plutôt que la forme to0 d-f,

la forme

df 1 /t_.&1 « —= x1us0 Xl —=- (53)
VA/ y/\f

Le système formé d'une équation to 0 et du ds2 est en effet
équivalent, pour les transformations conformes, à cette seule forme
to1? normée vis-à-vis du ds2, de sorte que les invariants de cette forme
soient ceux du système indiqué. Nous dirons que la forme tox est
canonique pour le ds2. ou semi-normale (on pourrait encore dire
unitaire); le facteur xv la normant ainsi à partir de la forme t30, a

pour effet de ramener à l'unité le seminvariant du 1er ordre S1 de
la forme to-^ Les invariants de tn1 indépendants de xx sont les
invariants de l'équation to 0; les autres invariants de tn1 sont des semi-
invariants ou des invariants gaussiens.

Les opérateurs différentiels du 1er ordre de t5x sont

CD,VvtfA V VVV, (54)

et pour l'opérateur du 2me ordre, on a

A A f.£a(55)

1 Au moyen des formules

AIOgV ^_AVA/ àf 1f A/ 4 Af

Pour un faisceau de lignes parallèles, avec àf ** 1, on retrouve la formule connue

k - Ä?2 - a '(f, An
Pour un faisceau isotherme, avec a/ CJf 0

K A log VI? •
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Par suite, si on introduit les vecteurs unitaires

on obtient pour les paramètres différentiels les expressions suivantes

im

Az) dz
Oc\z — -y— d x

a/a/' dsd

"[d T*)"'xV* |K|

et aussi

(cd^z - j^y »ljry
d2

_ d d

ds. ds. ds • ds-
1 J J 1

12. L'on a en particulier

(DJVa7 - »

et les invariants du 2me ordre, D1 et Tv de la forme semi-normale,
sont donnés par les formules (24) ou (33) suivant

EL jALA/-=V/ ±
*>aà*t ld°d r 'd'à

soit

Dt VA/'. Qf - Ti _ VVjé(58)
ou encore

n A'Y —- 2A/*. A/' r/- <~)" fD1 ^ 1, T (.j8

2Ä/F 2l/,2~ 2A/'2"

On reconnaît en D2 et Tx les courbures géodésiques des courbes
ti 0 et de leurs trajectoires orthogonales, mesurées respectivement
suivant les normales (—d) et (—t) à ces courbes; en considérant au
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contraire t et d comme les tangentes positives à ces courbes, gt et gd

étant les courbures mesurées suivant les normales (—- d) et t, on aurait

»1 St T1 - fd • <59>

Par les formules (27), on obtenait, en utilisant (49) et (38')

AlogW) + 0'(/\?)
Dx Ch)1 log W +

d log W d z t~?

-- h -p d x V log W + t x Vo
dsd ds£

Vv
<

(60)

r, ,v ^©'(Alog W) -A'(/-,?)
\1 — Jog W — \/\r

[ d log \Y d o _ t. r t-f t X V log \A — d X Y cp

dst dsd

On reconnait dans ces formules le rôle des deux vecteurs (formant
simili-repère).

fx Y? + JY log W g1 Jf, — Y log W + JYcp (61)

qui permettent d'écrire

fj — lxd + t)1t gL s- Did lxt
(62

i Dx — — d X gj rl\ -txgx;
en particulier

gl - -0/-.V/ + IviogAf (63)

13. Nous avons en effet indiqué (Thèse) qu'à un faisceau simple
de courbes est associé le réseau angulaire des courbes coupant celles
du faisceau sous des angles constants et montré que les propriétés
de courbure géodésique de ce réseau sont résumées en ces vecteurs;
(p est, comme le montre la formule (49), l'angle de la normale d d'une
courbe du faisceau w ~ 0 avec la courbe du faisceau isotherme dY 0

qui la coupe au point considéré, donc avec la normale au môme
point à la courbe du faisceau isotherme clX 0.

Les formules (61) mettent bien en évidence deux éléments
géométriques importants: d'une part, le module W de la représentation
conforme entre le (ds2 euclidien) dl2 dX2 + dY2 suivant lequel
on peut représenter le ds2 considéré, et ce ds2; d'autre part, l'angle <p

qui caractérise le faisceau en question, et par suite aussi le réseau
angulaire associé.
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Sans insister pour le moment sur les opérateurs du 2e ordre

DTi1 et DZV nous donnons, en tenant compte de

P - ijL _1 A/' 4

les expressions des invariants du 3e ordre de la forme semi-normale tà-,

P ©'(/*» Qf) — Aç ciiv fx rot gx (64)

k1 — K — A log W — rot fx div gx (65)

ce qui correspond aux formules (50) et (51) ou à l'expression (52)
de K au moyen des paramètres différentiels de /; puis

— hx DM± log W + dll9 —j1 Dl1 log W — DTil9 i. (66)

Nous avons donc retrouvé la courbure totale K du ds2 comme
invariant du 3e ordre d'une forme semi-normale, et l'application des

formules (29) avec les opérateurs différentiels ^ - et ~ donne

encore, pour Ix et K, des résultats connus.
dsd dst

14. A côté des formes déjà étudiées td0 et rôl7 on pourrait considérer
la forme

df _ * _ 1

t02 X,
A /'

2 2 2 A/'

pour laquelle les paramètres différentiels du 1er ordre d'une fonction 2

sont
A7 (A 3) ©a* =« ©'(/, *)

et qui est telle que
,2

wo t02 —- tOi

fl)0Z.(®22 — ?90JZ.?S>2Z ^2 .C02.XP22 etc.

Plus généralement on peut associer à toute forme to une forme

inverse tu telle que tdtd toi, les paramètres différentiels attachés à

ces formes satisfaisant aux dernières des relations précédentes.
Dans le cas d'une forme to quelconque, la théorie générale montre

1 Les invariants Ii, h1} hi, ji sont les composantes du tenseur Y g, -f q — gp de sorte

qUe
2 2 T td — dt d2 + t2 d2 - t2 td + dt

vgi + q — g; ii—g—i- + 2—h 01 ~ j— '
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que jusqu'à l'ordre n inclus, on doit régulièrement1 prévoir n(n-2)
invariants, dont 2 (n-1) nouveaux d'ordre n; si un ds2 est adjoint, le

nombre des invariants du système s'élève à ——-1- dont 3n-2
nouveaux d'ordre n; par suite les seminvariants sont au nombre de
3n, dont 3 nouveaux pour chaque ordre. Cette régularité n'est
d'ailleurs pas acquise pour les premiers ordres; c'est ainsi que

4P
pour l'ordre un existe le seul seminvariant S ^- que nous avons

réduit à l'unité pour les formes semi-normales.

VI. Formes de Pfaff adjointes — Opérateurs et invariants —-
d(72 CANONIQUE A UNE FORME.

15. Dans le réseau angulaire attaché à un faisceau simple de
courbes, nous avons déjà eu à considérer le faisceau simple des
trajectoires orthogonales des courbes de la première famille. Entre
les invariants et les opérateurs appartenant à ces deux faisceaux,
des rapprochements intéressants sont à faire. Pour simplifier le
langage, nous dirons que des formes de Pfaff to et ^ sont orthogonales
si les courbes intégrales des deux équations to 0 et y 0 sont deux
faisceaux de trajectoires orthogonales; en outre, à toute forme A
nous associerons plus particulièrement une des formes orthogonales
que nous dirons adjointe positive de to (to étant Y adjointe négative
de zoi), telle que

to xdf Ada 4- B <2e

(67)
?'H ~ y ^4' 1 (— A du N F do) À. du + B;àv>

et nous affecterons de l'indice i les expressions relatives à cette
forme ttf; on aura les relations

P. P Q. « - Q

et comme
A xfa lys« B xfj — — îygv

on voit, en posant

p 3=3 xv q ~ (68)

1 Quand il y a h équations de conditions pour exprimer la conservation d'un système
par les transformations (3), le nombre des invariants à prévoir jusqu'à l'ordre n inclus

fi(n -f-1
est k— 2n. (Cf. la note du n° 4).
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que les fonctions /, g, q satisfont aux relations établies aux nos 2 et 3

par les formules (11), (11'), (12) et (13). On a aussi

2 Adu — mdf + lV dg îo + itàé
< (69)

xdf — lydg ta — *56,

ce qui établit une symétrie intéressante entre les variables u1 v et
/, g et entre les formes Adu, B dv et 56,

16. Les formules

*ui i5a $vi —

donnent aussitôt pour les opérateurs du 1er ordre et les invariants
du 2e ordre

® i ^ — & (70)

D, T T. -D. (7J)

On a ensuite, pour les opérateurs du 2e ordre et la parenthèse du
1er ordre.

j et ff DM, - DM <91, - - 91

I (cV^)(iï>©)
(72)

puis pour les invariants du 3e ordre

I. i i /, ^ _ j
Les relations intimes qui se poursuivent entre les opérateurs et

les invariants de formes adjointes ta et nSi — et se généraliseraient
pour des formes as<} =« cos m + sin i. — ont leur origine dans
les expressions vectorielles, invariantes ou comitantes, du réseau

angulaire attaché à ces formes. Cela était déjà apparent pour les

formes semi-normales, et nous reviendrons sur le point de vue vectoriel.
Mais nous remarquerons d'abord qu'à toute forme as est attachée
une forme quadratique comitante do-2, que nous dirons canonique

pour us. et liée à cette forme us comme le ds2 l'est à une forme semi-

normale; en posant en effet

da2 4Pdudv rp -f- iô\ {>'»)

et considérant ch2 comme un eis2 donné, le seminvariant S d'ordre
un de us par rapport à ce ds2 est réduit à l'unité; entre autres
conséquences, l'invariant du 3e ordre h de tu est la courbure totale de la
forme da2. Si une forme ta est d'abord considérée en liaison avec
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un ds2 donné, on pourra, par des transformations conformes appropriées,

conserver cette forme et ramener le ds2, à la forme d<j2, pour
laquelle m est canonique. Les expressions vectorielles interprétées
pour une forme semi-normale, par rapport au ds2, donneront donc
lieu à une interprétation analogue pour une forme quelconque, par
rapport au da2 canonique.

17. Reprenons le cas d'un ds2 donné, c'est-à-dire d'un étalon de
longueur invariant fixé en tout point m d'une surface. Soient

rd a x dm ds2 (dm)* (75)

la forme m et le ds2 donnés, et la forme adjointe

tit — b x tf'm b Ja (76)

En se reportant aux formes (67), ou encore

a xYf b xVg (67')

et aux formules (32) et (39), les opérateurs de w et ccq fourniront les
paramètres différentiels d'une fonction z, que nous écrirons, avec les
vecteurs inverses de a et b

a - 4 S (")
a* b*

sous les formes

=àxv, -b-_l£ b X V ; (78)
a* b*

Par l'effet de la parenthèse

(CDtyz äxV(bxVz)-bxV(axVz)
(Vb xa-Vaxb) x Vz

le vecteur comitant
— f Vb x a — Vâ x b (79)

et la forme de Pfafï correspondante — f x dm sont mis en évidence.

18. Pour une forme semi-normale us1 et les vecteurs

Vf
ax a d —Lr bx — bx t Jd

V V
_ f1 Vtxd — Vdxt (79')

L'Enseignement mathém., 30e année; 1931. g
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fj est le vecteur de la formule (61) et l'on a aussi

<£>i f=V±f 0

C01 g - %iig o <iïlig V^g

— fi x Xf ïj -y/A/' Tj - fj x d - gt x t

— fi X Y g- (t£> !©!>§ — Dj-y/À# Dj X t - gl x d

Dx divd rI\ divt — gx — (divd)d + (divt)t

Les formules (78) montrent bien que les opérateurs CO et % sont
indépendants du ds2, utilisé seulement comme intermédiaire, et les
formules (80) donneront, pour une forme ru, des expressions analogues
à celles obtenues pour une forme semi-normale si au ds2 est substitué
le dv2 canonique à cette forme, et si les opérations (multiplication
intérieure, gradient, divergence, etc.) sont effectuées vis-à-vis de ce d<j2.

On peut alors, aux symboles utilisés aux nos 11 et suivants,
dsd dst

substituer des symboles bien qu'ils n'aient pas une signification

absolue comme les précédents, la forme drj2 étant attachée à

la forme ru.
On obtient une autre notation convenable pour les opérateurs CO et %

en portant des formes différentielles exactes df et dg; d'après les
formules (32) du n° 6 et (39) du n° 9, en tenant compte de

comme cela a été établi; par suite, puisque

d x Vd t x Vt 0

Yd tf2 Yt - df.
(80)

Vz ZfVf+z^g
il vient

COqZ — Zf

ou (03{)0z zg

et par suite

(8!)
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d'où la notation symbolique

C0, ± «. - ± m

les 6 rappelant l'accouplement des formes de Pfafï us et US{.

Une notation voisine est atteinte en partant de la relation identique
entre trois formes de Pfafï à deux variables (analogue à celle entre
trois vecteurs du plan), et choisissent pour une de ces formes une
différentielle exacte ciz

[GS'/} dz — fydz\ tù + [us dz\ y (83)j._i dz~wiö + w
puis convenant de l'écriture symbolique

'• - [t]ß+[f]1 ,si)

de sorte qu'une réduction au dénominateur commun effectuée
suivant les règles de la multiplication extérieure, rétablisse la

signification de l'expression; la notation i J a l'avantage d'une analogie

avec celle du quotient entier. Dans le cas particulier % on
trouve ainsi

a>. - [I] <B,, - [|] (85)

notation voisine de (82).

19. Nous allons étendre l'analogie, déjà signalée à la fin du n° 15,
entre les variables u, v et /, g, entre les formes Adu, B dv et ccr, ctfj,
commencée par les formules (67) et (69) entre autres. Nous rapprochons
pour cela les formules (19) et (81)

CD z — %z - — (81)
* y

K* x V % (19)

puis les invariants du 1er ordre obtenus par l'emploi de ces paramètres
différentiels; en appliquant en effet les formules (33) à partir de

uj0 df et (uSi)0 — dg, on obtient

D — rl\ — log y CD log 2/ T log X (86)

a — l°g B ß ^logA (20)
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et on complète les formules déjà obtenues par

D - (CD log P -f i% log Q) (CD log p — CD log q)

T log P — iCD log Q) !(© log/? 4- log ^r)

a ** 2^"l0g/? ~~ 5,log?) 2 Pu lo£P — *u 1°SQ)

ß 353 log/? — log?) i(^ logP + log Q)

Les relations entre opérateurs du 2e ordre et parenthèses ont été
données par les formules (24') et (25), mais en remarquant l'analogie
des formes

£ — 2 i
Dl CD% + %CD + TCD + D©

on voit en particulier qu'à

& y
2 zf91 z —^

• (89)

correspond

91 z -

P

Pour les invariants du 3e ordre, on complète les formules (30) par

— I — ~£log Q J01log <7

— * j £l°gp \ (£ logp— Jlllog q)

(%)

— h — (Jll log P + Ollog Q) - Oïl l"g/' — log

— j 1 (01 log P — OU log Q) log

20. Revenons encore sur certaines expressions vectorielles intéressantes;

les trajectoires orthogonales g const, des courbes / const,
correspondant à la relation

Vg - qWf (11')
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on en déduit, comme nous l'avons vu

Af — Sfx Y log q A g V g x V log q (12')

d'où le vecteur
V log q - Qf.Vf+ QgNg (91)

et en prenant les rotationnels (condition d'intégrabilité), on obtient

[Y/\YQ/] - [Vg.VQg] (92)

I, « W(f, Qf) S'(g, Qg) ; (64) (92')

on vérifie encore que le seminvariant n'est pas altéré si on substitue
à /, par exemple, une fonction quelconque F (/) de cette variable F

Mais, à partir des formules (80), on obtient aussi

Ad I.t — (Dl + Ti) d At - Fd - (Dj + T2)t (93)

F t x Ad — d x At [d. A d] [t. At] (94)

autre expression de ce seminvariant fondamental.
Nous allons montrer la relation entre les formes [Y/.VÛ/] et [d.Ad]

en supposant la forme w0 df réalisée sur un ds2 égal à son d^
canonique; on a alors

d Y/' \f 1 co0 ^
Yd tF vY [tfj 0 divd t x F Af Qf

donc

F Qf. t Yd Qf. t2

Y2d t2 Y Qf — Ô/'2(dt + t d) t

Ad (t x V Qf) t - U/'2d VU/'-- (d X VU Û72)d

le coefficient de d dans la dernière expression étant la courbure
totale du ds2,d'où enfin

[d.Ad] t x VU/'= [V/WU/1]

1 Nous rappelons les relations

rF F'v/ aF F72 A/ v2F F "Vf2 + F ' v2/ AF F" A/ + F'A/

!iF - W + vof j - (p)"+ (p)'°/1 + ^7 va/

les accents indiquant les dérivées par rapport à /.
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C'est là l'invariant I0 de cet0; c'est aussi le seminvariant Ij pour

ds2 dcr2^ mais pour un autre ds2, soit ds'2, pour lequel les symboles
seraient accentués, on aurait

_ [vy.v'Q/*! __0 ~ ay ~~ Ay

21. Résumons, en modifiant un peu leur forme, certains des résultats
précédemment obtenus; si l'on part d'une forme de Pfafï quelconque e?r,

on peut lui associer, au moyen d'un facteur intégrant y0, la forme
intégrable

fx>o v0 Cû df

à laquelle est associée le d<s\ canonique

da\ 4 fu fv du dv CtTo ~\r (wfjl df2 + Kdg2
H

avec su----- igfu „

Sur ce da\,^es intégrales / const, sont des courbes parallèles
et l'on a, pour les premiers invariants de asa

(95)

D0 Qf—

Û?log— k0 COo'Do + D0

1
en accord avec les formules (87) et (90), où p — Différentes

conséquences, d'ailleurs connues, peuvent en être déduites, suivant la
nature de la fonction q de /, g.

Dans le cas où, à côté de la forme u$, est donné un ds2, on peut
associer à us, au moyen d'un facteur semi-normant vx, la forme semi-

normale
W

m, v, eu Vj
2VP

pour laquelle le da\canoniquese confond avec le ds2

da\ ds2 cen + OTij •
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Comme nous l'avons établi, les invariants de la forme us1 sont les

invariants euclidiens (géodésiques) de l'équation us ~ 0. Avec les
notations

j Q e-n' ^ e'" (49')
' V

on peut écrire une forme semi-normale

~ (^/f~ ^u ^ eW~l? eW+l?

VII. Faisceaux isothermes.

22. Il est bien connu, dans la représentation conforme des surfaces,
qu'à côté des deux faisceaux formés par les deux séries de lignes
minima, du — 0 et dv 0, les faisceaux isothermes de courbes sont
aussi conservés; l'équation différentielle us 0 d'un tel faisceau du
premier ordre est en effet caractérisée par la condition invariante

I 0

et l'équation us 0 n'a alors aucun invariant conforme. Nous avons
donné bien des formes à l'invariant I de us; considérons en particulier
une forme semi-normale usx sur un ds2 et rappelons diverses interprétations

de l'équation I-, 0. D'après

I, « |AlogQ 0 (97)

ft2 log Q _ 0 Q
A

__
g(u)

ö u ô v B b (v)

A
le rapport — des coefficients de l'équation us 0 est le quotient de

deux fonctions arbitraires, l'une de u, l'autre de c; le facteur intégrant
2^ ramène alors à l'équation intégrable

| a (u) du + b(v)dv} 0

et les courbes intégrales sont données par

I
/ ~2 { ^ {u) du -f- Y (v) dv j- const. U' a Y' b
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les accents indiquant, pour les fonctions d'une seule variable, les
dérivées par rapport à celle-ci; une transformation (3) donne alors
a / une forme réduite X — (u-|»v). L'on a en même temps

L A® 0 (97')

\logQ-^(log] -logi) -^{<b(w) -TW}
donc la condition (97') exprime aussi que les courbes <p const,
forment un faisceau isotherme, cp étant variable isothermique, et cette
propriété est caractéristique; nous nous étions d'ailleurs ramené à
des fonctions / pour lesquelles A/ ou Q,f est nul: c'est ce qu'exprime,
à un changement de fonction / près, la forme suivante de l'équation
invariante

h &(f. an =0 af= F (/') (98)

où F est une fonction arbitraire, qu'on peut choisir pour avoir ÛF 0.
En revenant alors à la notation / pour la fonction choisie, et
choisissant de même la fonction g pour que Qg 0 puisqu'on a aussi

I, ®'(g, Qg) 0

il en résulte, d'après (91), vl°g Ç ~ 0, et l'on peut par suite prendre

q I x — y p — x2

ds2 W2(dX2 + dY2) x2(df2 + dg2)

On a encore
Dx CD1 log^ C&1 logic

gL — V log W -j- JV<p — V log ic

toutes formules qui sont bien d'accord avec

Il — rot gx — ((©!©!> log X — 0

et les formes particulières que prennent alors les formules déjà
établies.

23. En résumé, ce qui caractérise un faisceau isotherme, c'est d'être
associé à un faisceau également isotherme de trajectoires orthogonales,
et plus généralement d'être incorporé dans un réseau angulaire
isotherme, toutes les courbes d'un tel réseau pouvant être représentées
par des intégrales / — const., g const., etc. pourvues en un même

\
point m de vecteurs gradients de même module—; ces gradients

forment en tout point de la surface une simili-étoile, se ramenant
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à celle attachée à un autre réseau angulaire isotherme X const.,
Y const., etc. par une similitude dont l'angle et le rapport sont
liés par la relation

V log^ JY?

de sorte que <p et log ~ sont deux solutions conjuguées de l'équation

A- o. C'est par le choix de ces solutions que se différencient les
divers réseaux angulaires isothermes constituant l'ensemble des
faisceaux isothermes de la surface -—< brièvement Vensemble isotherme.

Si l'on suppose aussi qu'on effectue, en chaque point m, un changement

de l'étalon de longueur, de sorte que la simili-étoile de repère
du réseau isotherme considéré devienne une étoile de vecteurs
unitaires, ceci revient à une représentation sur le dv20 canonique de

diq df- -f dg2 dE d\

et, selon qu'on opérera sur un étalon de longueur ou l'autre, on
considérera les repères et simili-repères attachés à ds2, et de2 comme de

modules 1 et - ou x et 1.
«ç

VIII. Faisceaux non isothermes.

24. Soit l'équation 50 — o d'un faisceau non isotherme; par le

moyen d'un facteur norman t y* — -y/F, on donnera au premier membre
de l'équation la forme normale

50* yT 50 (99)

dont les invariants seront ceux de l'équation 50 o: en particulier,
si on part des formes 5o0 df, ou 5ox, on aura

ss. df v©'(/'. Of) Ö,

Il résulte de la première formule (36) que la forme normale 50* est
caractérisée par son invariant I* ramené à l'unité

I* 1

cependant qu'en général les ordres des opérateurs et des invariants
(dont les symboles portent des astérisques) sont majorés de deux
unités par rapport à ceux qui leur correspondent pour une forme 50
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quelconque. Nous avons établi que, jusqu'à l'ordre n inclus, l'équation
td — o a

n^n
2—— invariants, soit en général (pour n > 3) n — 2

nouveaux invariants d'ordre n; ces invariants, considérés comme ceux
de la forme td*, sont d'ailleurs donnés parles formules déjà établies,
ainsi que les opérateurs différentiels attachés à td*; ainsi

_2- _L _J_ __1
<0* J0

2 CD0 \ YCQ1 etc.

D* 10~¥Q/~- d. j~T J,, — A/'-~ A'(/", If-)
A/

®'(7 j") -- -- / --NT* - U
V/A/.° - b 2

Tx - A/1 2 ®'(/\ 1, 2) etc.

avec les expressions déjà données

Ix ®'(/\ Q/') A? I0 i etc.

Le ds2 utilisé pour la formation des paramètres différentiels précédents

étant arbitraire, on peut en particulier le fixer suivant le da*2
canonique à td*, de sorte que cette forme soit à la fois normale et
semi-normale. A l'équation td 0 on peut associer l'équation
différentielle du 2e ordre tdcfcà — td^ùtd 0 des courbes constituant avec
le faisceau donné le réseau angulaire déjà signalé. L'on peut plus
généralement considérer Vensemble (It) des courbes de même Ay par
rapport à un faisceau isotherme arbitraire et un ds2 arbitrairement
fixé, ensemble formé de faisceaux pour lesquels les seminvariants Ix
seront simultanément ramenés à l'unité quand on passera de tdx à td*;
un tel ensemble a même généralité que l'ensemble isotherme (IT 0),
et les faisceaux qui le constituent sont donnés par l'équation générale

y/l e-^du+ y/| ei? 0

£(w), yj(c) étant des fonctions arbitraires de leurs arguments. L'arc
conforme da* n'est attaché qu'aux courbes d'un même ensemble (Ij).

Nous avons déjà indiqué (Equivalences) certaines formes
particulières de l'équation td 0; par exemple dans les cas où le da*2
canonique à td* serait à courbure totale h* nulle ou constante, on
aurait

Q eZ[u)U[v)o
b(v)

1

oM{ A- C consume.v b(v) 1 2 V M' J
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25. Le problème de la classification des faisceaux de courbes
vis-à-vis des transformations conformes est celui de la conservation
des équations to 0, ou des formes normales to*; si nous avons
étudié auparavant la formation des invariants des formes générales to,
et des formes particulières to0, c'est d'abord parce que les
méthodes applicables à ces formes nous menaient aux résultats
cherchés pour les formes to* ou les équations; mais on doit aussi
considérer que les invariants des équations sont des fonctions /
invariantes, ou conduisent à de nouvelles formes de Pfaff invariantes,
auxquelles s'appliquent les calculs précédemment faits.

Quant aux relations suffisantes entre invariants pour assurer
l'équivalence conforme d'équations to 0, ou la conservation de
formes to* le problème relatif aux formes to quelconques offrant
ici moins d'intérêt — nous nous contentons de rappeler que pour les
formes normales to* possédant des invariants conformes, nous avons
distingué trois classes principales avec:

1° le cas général où les invariants D* et T* du 4e ordre sont
distincts;

2° le cas où il y a entre ces deux invariants une relation identique,
mais où les invariants du 5e ordre sont distincts de l'invariant du
4e ordre conservé;

3° le cas où les invariants du 4e ordre sont fonctions d'un seul
d'entre eux.

On peut interpréter ces trois cas en les ramenant à des problèmes
d'applicabilité, en prenant pour ds2 le dor*2 canonique normal sur
lequel

I* a Ix Aç rot gx 1

les invariants essentiels D* et T* étant alors les courbures géodésiques
du faisceau considéré et du faisceau orthogonal; avec les notations
de la formule (96) on a alors

i to* — \/cUi> (e~Vi du + eiz dv)
(10°)

ds- da*- 4 zHVdudv

W2 4P* ew — ~= Vfnv

les invariants de la forme to* s'exprimant au moyen de <p et de ses

dérivées, et les formes to* d'un même ensemble différant par le choix
de l'angle cp solution de l'équation 4<p

v
W2.

Dans le cas général, l'ensemble considéré, qui se conserve dans la
déformation, est astreint seulement à la condition précédente I* 1;
dans le second cas, le faisceau to — 0 appartient à un réseau angulaire
déficient, les lignes 3 const, suivant lesquelles les courbures géodé-
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siques restent constantes étant différentes des lignes k* const.;
dans le dernier cas, tous les invariants du faisceau co 0 restent
constants le long des mêmes ligfres z const.

IX. Problèmes où intervient la représentation conforme.

26. A un faisceau de courbes donné, d'équation tà 0, se rattachent
naturellement de façon invariante les courbes z — const., z étant
un invariant quelconque de l'équation, et les invariants des courbes
ainsi introduites facilitent l'interprétation géométrique des invariants
d'ordre supérieur de l'équation donnée. D'autres familles de courbes,
se rattachant à des invariants relatifs, invariants brisés, etc., sont
également intéressantes à considérer; la plus simple est la famille de
courbes <p — const., et les relations de ce nouveau faisceau avec le
faisceau donné interviennent souvent dans les propriétés
géométriques: ces courbes <p const, sont en effet les isoclines conformes
du faisceau donné par rapport au système isotherme de lignes
coordonnées X const., Y const.

Les courbes W const, sur un ds2 donné sont aussi intéressantes,
mais elles se rapportent seulement à une représentation plane du ds2.

Considérons plus généralement une équation w — 0, et introduisons
les formes semi-normales pour deux ds2 en correspondance

ds2 W*dudv ds'2 W'2 du dv (101)

W
Vl ~ 2VP

_ W
2 VH

W.. v. ûET

üö v öif
1 1

On a donc rcsv et en appliquant les formules relatives aux
formes proportionnelles (Chap. III), on obtient sans peine les
modifications que subissent les invariants euclidiens attachés aux courbes
se correspondant dans une représentation conforme entre deux
surfaces. Les courbes r — const, interviendront ici à côté des courbes

y const.; nous allons en donner quelques exemples: les courbures
géodésiques des courbes m 0 sur les deux surfaces en question sont
liées par la relation

Dt — — (ö1 -j- cDx f) — — (L>i + C01 log / (103)
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qu'on obtient encore en utilisant les formules

Û?1log W + ®1? d[ log W +

c7[- 07,^- W rW
r 1 r

On déduit en particulier de la formule (103): il est toujours possible
de représenter conformément un faisceau de courbes non géodésiques
suivant un faisceau de géodésiques, et pour mettre en correspondance
conforme deux faisceaux de géodésiques, il est nécessaire et suffisant que
ces faisceaux soient ceux des courbes r const., suivant lesquelles le
module de la représentation reste constant. On peut aussi, pour les
relations entre invariants euclidiens, faire appel aux formules
vectorielles.

gi gi ~ V Jog f (104)

di rdi t[ V' log r pü V log r

ou Von suppose les deux ds2 représentés sur une même surface.

27. Nous modifierons légèrement ici les notations précédentes pour
reprendre celles de notre Thèse; au point courant m d'une surface
est attaché un repère euclidien maj a2 n, de sorte que

d m wicii + w2 a2

tol ==: hK ^2) d ^1 w2 ^2(^1 » a2)^a2 '

l'indice s étant affecté aux opérations superficielles, nous posons

«Iy^ + <h2w2 + d>2a2

pour une fonction scalaire $(«!, a2) déterminée sur la surface. Le
covariant bilinéaire de (f)1 introduit la forme de Pfafï &)12 et les
vecteurs f, g, par

tOl K2w2] rot^ai {fa2]5 g X a2

f £18-! + 02^2 g Jf 02^1 "h 01^2 •

Soit une première application au problème des congruences de
normales, traité par Beltrami, Laguerre, etc.; les droites [mu], u étant le
vecteur unitaire

U sin 0. aL + cosö.n

forment une congruence de normales s'il existe un point

p m + Xu
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tel que le déplacement dp soit orthogonal à u, donc

U X dp u X dm + dX 0 (105)

équation qui exprime que u X dm est une différentielle exacte, donc
u un gradient (spatial)

u — Va VF (oq)

V sin 6 ax V^F (oq)

La condition d'intégrabilité de l'équation précédente

sin 6 (jdx -j- d~k — 0 (105')

s'écrit
sin 6 [o)12 w2] -f- [d (sin 0) oq] 0 (108)

En écartant la solution sin 9 0, correspondant aux normales
à la surface, et posant

log sin 6 ©

il vient

[f a2], -f [V5@. aj, (g — Vç@) x a2 gx — ©2 -*= 0 (107)

28. Une solution bien connue est obtenue quand les lignes du
champ projeté, de tangentes at, forment un faisceau de géodésiques
g1 0 ; on a alors 0 — G(ai) fonction arbitraire (9 — const, en
particulier).

Revenons au cas général, et soit 0O une solution particulière de (107) ;

alors
© 0O -f- G(oq) sin 6 =2 eG sin 0o ('08)

est la solution générale; il suffît donc de connaître une solution
particulière 0O de

(g — V5©) x a2 o

Si les lignes du champ projeté, a2 — const-, sont isothermes et si
le ds2, rapporté à ces lignes et leurs trajectoires orthogonales, a la
forme

ds2 W2(dX2 + dY2)

la formule (61) montre qu'il suffît de prendre

©0 — # + c sin 90 (e'" -y)

c, C étant des constantes.
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La même solution est valable si la forme précédente du ds2 est

rapportée à un système isotherme que les lignes oc2 — const, coopent
sous angle <p permanent (constant le long de ces lignes) puisqu'on
a alors

g — Y m -f J Y © JVcpxa2 0 cp H (a2) ;

une représentation conforme de la surface suivant le dl2 dx2 + dy2
fait alors correspondre un faisceau de droites aux lignes du champ
projeté.

Enfin, dans le cas général, il suffît de même d'effectuer une
représentation conforme transformant en géodésiques les lignes du champ
projeté ; g' g — Vs log r étant alors porté par ax, il reste à satisfaire à

(V, log r — Y#0) X a2 0

d'où la solution particulière
sin 0O O

En résumé, les transformations conformes permettent de déduire
la solution générale du problème du cas particulier où les lignes du
champ projeté sont des géodésiques, le vecteur v du champ projeté
participant à la transformation conforme (superficielle) qui ramène
le faisceau de géodésiques aux lignes de ce champ; le vecteur u se
déduit ensuite de sa projection v.

29. Gomme seconde application, nous donnerons quelques indications

sur une théorie nouvellement développée; celle des réseaux
cerclés (zyklische Kurvennetze)1; un tel réseau est formé par les
courbes d'un surface dont les cercles osculateurs sont, en un même
point m, cosphériques à un cercle orthogonal à la surface en ce point,
et est défini par une équation différentielle du 2me ordre. Soit u le
vecteur unitaire suivant le diamètre de ce cercle, issu de m, tangent
à la surface; le cercle, de rayon p, est défini en chaque point par le

vecteur w ï ou par le vecteur perpendiculaire v — Jw.

Un repère superficiel arbitraire ma1a2 étant choisi en tout point de
la surface, soient t et q les tangente et normale unitaires aux lignes
du réseau cerclé, g la courbure géodésique (suivant q) d'une ligne
d'un faisceau contenu dans ce réseau

g f x t g x q

1 W. Blaschke, J. Radon: Ueber konforme Geometrie, Abh. Hamb., 4, 5 (1925,
1926). Exposé de T. Takasu : Differentialkugelgeometrie, Tôkohu Sc. Rep., 17 (1928).
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Soit <b l'angle d'une ligne du réseau avec la première ligne
coordonnée, à laquelle sont attachés les vecteurs f0, g0 Jf0; d'après la
formule (61), on a

f f0 + Vs$ (109)

La propriété géométrique indiquée se traduit aussitôt par

g w x q v x t

donc l'équation différentielle cherchée est

(f0 + V^4>) x t v x t t ^ (110)

ou, avec les formes de Pfafî

wi2 f0 x dm y v x dm

„ _ wia + d<$>

_ x (111)ds ds

Sous forme entière, cette équation s'écrit encore

Ç—yds2 0 (111')

avec
Ç — ds2 (wi2 -f- d(l>) — (tojL -f- W2) W12 ~f" d 0)x

L'équation Ç* 0 est l'équation du réseau des géodésiques
(euclidiennes) de la surface : c'est un cas particulier de réseau cerclé
avec y 0.

30. La transformation conforme

ds2 /2 ds2 g i ^ r)j

donne à l'équation (111) la forme

7. + (d log r)i _ y
ds ds

(112)

ce qui montre que toute transformation conforme change un réseau cerclé

en un autre de même espèce, ou conserve l'ensemble de ces réseaux.
Si yi est une différentielle exacte — à covariant bilinéaire y[ 0,

ou l'invariant D0 de y nul — on peut annuler g, donc le réseau cerclé
est un réseau de géodésiques conformes pour le ds2 convenable.
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D'autre part, dans (111), si ^ a même covariant bilinéaire que

/' W;2 — K[co1ol)2] ou div w divg K (1.13)

K étant la courbure totale du ds2, on a

7. wi2 ~f~ dW

et l'équation du réseau cerclé se réduit à

0 ou > — If) 0 ; (114)
as

par suite ce réseau est alors un réseau angulaire (celui défini par les

lignes coordonnées dans le cas lF const.); cette forme de l'équation
suffît à montrer que la condition (113) est invariante par transformation

conforme. On peut évidemment établir une classification
des réseaux cerclés au point de vue des transformations conformes
superficielles, mais la théorie de ces réseaux peut aussi se baser sur la
géométrie conforme spatiale (géométrie des sphères), ce qui en facilite
l'étude; aussi nous ne donnons pas d'autres applications h

X. Invariants des formes et équations quadratiques.

31. Soit une forme quadratique

a<*> L du2 + 2M dudv + N dv2 (115)

qu'on peut considérer comme décomposable d'une infinité de façons
en un produit de deux formes linéaires

1

m1 x(A1du + dv) m2 — {A 2du + B2dv)

x étant un facteur arbitraire, Al7 Bx, A2, B2 solutions des équations

AxA2 L A,B2 + A2Bt 2M BxB2 N

Nous avons indiqué (Equivalences) la formation régulière des
invariants de la forme a(2) et les relations de ceux-ci avec les invariants des
formes as1 et cu2, et nous avons vu alors qu'on se trouvait amené, en
posant

L — À2 N B2 (116)

1 II est, (l'autre part, intéressant de rapprocher cette théorie de celle des changements
de connexion (avec torsion) des surfaces. Cf. Thèse, Note terminale.

L'Enseignement mathém., 30e année, 1931. 9
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à introduire la forme de Pfafï

m A du E B dv (117)

à laquelle nous joindrons son adjointe positive

uyi i (— A du + B dv)

La forme quadratique

ß(2) — i(Ldu2 — N dv2) WWi (118)

peut être appelée, comme on s'en rend aisément compte, forme
bissectrice de la forme ?S2\ et les formes linéaires dont elle est le produit
seront aussi considérées comme des formes de Pfafî bissectrices
(lre ou 2me) de ab2f Sans reprendre, pour les formes quadratiques, les
calculs faits pour les formes de Pfafî des invariants de formes
proportionnelles, nous allons nous contenter de mettre en évidence l'interprétation

géométrique des invariants. Les indices 1 et 2 étant affectés
respectivement aux formes w1 et en posant

nous prendrons pour les formes a? et

qui est aussi invariant de l'équation ad2) 0, et ne s'annule que si
ab2) est un produit de formes de Pfafî orthogonales; il sera commode
de poser

?i +
2 ?i 9 + 2

et ceci justifie les noms donnés aux formes <xr, ß(2\

32. La forme af-) possède un invariant du 1er ordre

" ra ~K\/q. + V®)*-

(120)

Le cas des formes quadratiques a(2) à invariant p. constant présente

peu d'intérêt, l'étude de telles formes se ramenant aussitôt à celle
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d'une seule forme de Pfafï, ou ou par exemple, et les facteurs
linéaires des formes a(2) et /S(2) entrant dans un même réseau angulaire.

Cependant l'introduction de la forme bissectrice /3(2) attache
à une forme quadratique quelconque une forme de l'espèce prédédente,
dont l'invariant du 1er ordrco est nul.

A partir d'un ds2 arbitraire

ds2 W 2dudv

on pourra comme précédemment traduire les invariants et les opérateurs

de la forme cd2> avec les paramètres différentiels de ce ds2 par
le moyen de seminvariants. La forme <A2) sera semi-normale pour le
ds2 si 4P W2; autrement dit on pourra lui attacher un da2
canonique : d<j2 4P du do.

Les opérateurs différentiels les plus simples de la forme a(2) sont
ceux de sa forme bissectrice eu, soit 3-u, ou ceux que nous en avons
déduit ét), Lq les quatre invariants du 2me ordre ainsi formés sont
D, T, et

H (D <j. — (p + <j)

S ©{i — "y
(p — a)

P *uV-

a «S-,, u
(121)

composantes de la forme invariante

d[x ^ CD [i-. w + fêp. • Wi (122)

Nous ne poussons pas plus loin le calcul des invariants, et ne
revenons pas sur le cas particulier des formes aj2) 2 M du do.

33. Nous avons vu qu'on peut ramener le cas d'une équation
invariante 0 à celui d'une forme invariante normée. En nous
en tenant au cas général, nous prenons pour facteur normant

Q R2 + S2 per (123)

ou, par l'intermédiaire d'un ds2

PuPv W2
Q (1230

d'où la forme normale
*a(2) Q a(2) (124)
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qu'accompagne la forme de Pfafî pseudo-normale *us -%/Q <xr, le
facteur normant n'étant pas défini à partir de la forme 03 seulement.
Considérons alors les formes

l dp \/[j-u uv (e~^> du + e*' dv)
(125)

*07=^u.u uv du -f edv)

et les opérateurs *3W, *3\, ou *'(9 attachés à et de même
<îM, Sv ou Rattachés à dp,, de sorte que

Xz yzA [X ^ A ;J.

d'après les formules (39). On peut alors, pour former les invariants
de suivre deux voies légèrement divergentes (Equivalences, n03
26 et 28). Dans le premier cas, on emploie les opérateurs attachés à

dp,; on rencontre d'abord l'invariant du 2me ordre

T — ^ I _£ (126)

qu'on retrouve de même avec les opérateurs attachés à puis l'on
obtient les invariants du 4me ordre

e Ai n
A^9 ~ ^ <1> 0 (127)

A |j. A iJ. -y \ :

et l'on poursuit de même ]e calcul pour les invariants d'ordre supérieur.
Dans le second cas, on utilise les opérateurs de la forme pour la
forme normale *«<-), on a

*Q =r *p *<J — *R2 -f- *S2 =1 *p — \/T

et en posant
*R cos 0 *S sin 0

on retrouve l'invariant
0 ^ — o (126')

d'où ies invariants suivants, qui s'expriment aussitôt avec ceux
précédemment calculés. Entre les opérateurs de dp, et *c5, on a d'ailleurs

les relations

*$u $u (*(£) cos 0 t — sin 0 1/

(128)

(*$= 8 *^5 — sin 0 -}- cos 0 t/
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Pour une forme *a(2) générale, pour laquelle 0=^0, ou 0'(fx, t)^0,
nous avons montré que les invariants (x, r, (î>, 0 sont suffisants pour
la conservation de l'équation a(2) 0.

34. Au point de vue géométrique, nous considérons que l'équation
a('2) 0 définit un double faisceau, ou faisceau du second ordre, de

lignes tracées sur une surface; l'équation /3(2) 0 définit le double
faisceau bissecteur du précédent, et es ~ 0 est l'équation d'un faisceau
simple, considéré comme premier bissecteur. Le faisceau d'équation
d[L 0 est celui le long duquel l'angle d'ouverture 2o> du faisceau
initial est permanent: 9 est l'inclinaison du faisceau d\i 0 sur le
faisceau bissecteur w 0; dans le cas général 0^0, les lignes
co const, et les lignes 9 const, forment des faisceaux différents.

Il sera d'autre part naturel d'utiliser la représentation sur un
d*i72 canonique défini par

*YVS 4*P (129)

sur lequel les formes *cs et d\± sont semi-normales, donc le faisceau
d\i 0 un faisceau de courbes parallèles, avec À(x 1.

Au point de vue de l'isothermie, on pourra distinguer les cas
suivants:

1° L'invariant I de la forme es est nul, ou Ay 0; le double faisceau
bissecteur est alors isotherme, et nous pourrons dire que le double
faisceau a(2) — 0 est hémi-isotherme.

2° Aco 0; avec [x cos2 2co, 0 û[x, on traduit facilement cette
condition avec les invariants de l'équation <A2) 0. Ceci exprime que
les deux faisceaux simples appartenant à a(2) 0 font partie d'un
même ensemble (Ij).

3° On a simultanément

A 9 0 Aro =s 0 ; (130)

alors les faisceaux simples de l'équation a(2) 0 font partie d'un
même ensemble isotherme, comprenant aussi les faisceaux de /5(2) ~ 0;
nous dirons que ces conditions (130) sont celles iïholo-isothermie
de - 0.

XI. Deux faisceaux quadratiques de lignes.

35. Nous avons, au Chapitre VI, considéré implicitement un double
faisceau orthogonal avec les formes adjointes es et esu et montré les
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relations entre les opérateurs attachés à ces formes: 3"M, et (©,
En particulier, l'expression (90) de I

— 1 — ^ £ log Q 1 log

rappelait que, dans le cas d'isothermie des formes

xdf A du -f- B dv

tf>i= ydg i(— A du + B dv)

A a;
Q Ti <7 — ~B y

on avait simultanément

o — „ _ x (A
^ h t,A Jb(v) 1 Y {g

(67)

d'où la possibilité de réduction simultanée des équations dudv 0
et df dg —- 0 à des formes df2 — dg2 0 et du2 + dv2 — 0.

Considérons plus généralement deux formes quadratiques ds2 et
et pour montrer la symétrie des opérations vis-à-vis de ces formes,

imaginons une transformation générale des variables u, c en £, y-,

telle que
a(2) h du2 + + IW C2<#drj

c7s2 W*dudv EcZP + 2FdU*\ + Gdf]2

Le déterminant de la transformation étant A — u-y.fi — m,F:, on
a les identités

C2
W 2u~v~ — E — L

C2
W2It C G — TT M; N

Y! r, s

W2(^eri + iq,^) 2 F —-^-(u-v^ + ur e,) 2 M

Aux transformations (3) des variables w, e conservant les équations
a(2) 0, tfo2 0, correspondent des transformations de même

espèce en £, yj. On retrouve aussitôt l'invariant du 1er ordre
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et par suite la forme invariante d[i. Pour la jacobienne des formes

et ds2: on a ensuite l'identité

f> - i(Ldu°- - Nrfp2) - G

qui résulte de la syzygie entre deux formes quadratiques et leur

jacobienne
w2oc(2) - 2 M ds2)2 — 4 LN (ds2)2 W4ß(2)2

L'équation /5(2) 0 et la forme d\i étant invariantes, l'emploi des

opérateurs attachés à d\i (n° 33) permet de poursuivre le calcul aussi

bien avec les variables £, y? qu'avec u, e. Ainsi, à l'invariant t de la
formule (126) correspond, en variables ç, r, l'invariant

!J'c /G CT + 1 / IX2 /- — _ 4 / — te avec c é 4 (J.

H-r V P ~ + c V c J

c'est-à-dire où c est la quantité

V Q,

de la formule (119), donc

cos (co — 9)

cos (to -•{— ôj

e

36. Les méthodes analytiques précédentes ne nécessitent évidemment

pas l'introduction des lignes minima et de la représentation
conforme; elles s'appliqueront de même aux théories géométriques
où un faisceau quadratique de lignes particulières jouera un rôle
primordial (lignes asymptotiques, lignes de courbure, etc.), et le
dernier problème que nous avons indiqué est celui de la conservation
de deux faisceaux quadratiques de lignes; on sait qu'à ce problème
se rattache aussi celui de la permutation de deux faisceaux quadratiques,

les faisceaux du 1er ordre constituants de deux faisceaux
quadratiques pouvant être répartis autrement que dans le groupement
primitif. Nous n'entrerons pas dans le détail de ces problèmes.
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