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Le premier ellipsoïde appartient au faisceau ponctuel de quadriques
défini par Vellipsoïde E et la première sphère des douze points.

La connaissance de H entraîne celle du tétraèdre.
Le centre 0 de la sphère circonscrite, le centre O' de la deuxième

sphère des douze points et le point H' inverse de H par rapport au
tétraèdre (IL est le point qui se projette sur chaque face en son centre
de gravité) décrivent respectivement des biquadratiques homothé-
tiques à celui qui est le lieu de l'orthocentre H.

Posons a2 + h2 + c2 9w2 (constante).
La sphère circonscrite est orthogonale à une sphère fixe de centre G

et de rayon fw a/3-

La deuxième sphère des douze points est orthogonale à une sphère

fixe de centre G, de rayon i^~~.(A.

On a les relations suivantes:

R2 + 3o2

— (R2 — 3to2)
y

v '

Les hauteurs du tétraèdre orthocentrique sont normales à Vellipsoïde
circonscrit E aux quatre sommets du tétraèdre.

Les arêtes des tétraèdres orthocentriques T sont les droites du complexe
tétraédral dé équation

d2p1pi + b2p2pb + c2p3pe 0

en coordonnées pliickériennes p{ de droites. Les arêtes appartiennent
ainsi à la congruence commune à ce complexe tétraédral et au
complexe spécial attaché à la quadrique E".

Les milieux des arêtes (points de contact de celles-ci avec l'ellipsoïde
E") sont situés sur une biquadratique gauche définie par E" et par
la première sphère des douze points.

Si L est le milieu d'une arête AB, L' le milieu de l'arête opposée
d'un de ces tétraèdres orthocentriques, Varête A1A2 coïncide avec
Pune des directions principales de F ellipsoïde E" au point L; de même
la droite CD, orthogonale à la précédente, est direction principale
du même ellipsoïde en son milieu L'.

La géométrie des triplets,

Trois masses «, /3, y sont respectivement appliquées aux sommets
A, B, G du triangle de référence. Le centre Y des trois masses a pour
coordonnées barycentriques des expressions proportionnelles à a, ß, y.

HG2 g2 + cA un2

OG" mm R2 — 3 co2 O'G"

R2 p2 + 4 (o2
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Si le système est rapporté aux axes centraux d'inertie, les trois

conditions suivantes sont vérifiées:

*xt + + ï^3 0
»

aVl + f%2 + T2/3 0
>

axiVi + ßX2y2 + T^32/3 *= 0 ;

les indices 1, 2 et 3 affectent respectivement les deux coordonnées
cartésiennes Xi et y\ des sommets A, B, G. L'élimination des masses
entre ces trois conditions linéaires et homogènes conduit à la relation

xiVi X2 y2 x3 y3

x± X2 X3 0

Vi V2 ys

qui exprime que les sommets du triangle de référence, le centre L (et
Vorthocentre H du triangle) appartiennent à une même hyperbole
équilatère dont les directions asymptotiques sont celles des axes principaux

et centraux d'inertie.
La construction des axes centraux d'inertie du triplet découle de

cette proposition.
Par le point F, centre des masses, passe une hyperbole du faisceau

des hyperboles équilatères circonscrites au triangle ABC. Il suffit
de mener par T les parallèles aux asymptotes de cette hyperbole;
ces deux parallèles sont précisément les axes de symétrie de l'ellipse
centrale d'inertie.

En particulier, lorsque T est sur un côté, B G par exemple (a =0),
les axes centraux sont le côté B C et la parallèle à la hauteur A H.

Lorsque le centre T est sur une hauteur, A H par exemple, les axes
centraux d'inertie sont la hauteur A H et la parallèle menée par T
au côté B C.

Cas où le centre des masses est Vorthocentre. Dans le cas
L

$
a _ ß _ Y

j
«g A lg B tgC'

le centre T des masses coïncide avec Vorthocentre H du triangle. Toutes
les hyperboles équilatères circonscrites au triangle A B G passant

f par H, il y a indétermination pour la construction des axes centraux
d'inertie. Vellipse dinertie centrale est donc un cercle.

Réciproquement d'ailleurs pour que Vellipse centrale dun triplet
(a, /3, y) de trois masses non-nulles disposées aux sommets du triangle
A B G soit un cercle il faut que ces masses soient proportionnelles à tg A,
tg B et tg G; le centre des masses est alors Vorthocentre H.
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Prenons

a tg A ß tg B y tg G ;

la masse totale est

M a + p + y tg A + tg B + tg G tg A. tg B. tg C ;

le moment d'inertie par rapport à une droite quelconque passant par
l'orthocentre est égal au double de la surface du triangle:

I 4 R2 sin A sin B sin G 2 S ;

l'expression du rayon de gyration est donc:

K2 rr= -î- 4 R2 cos A cos B cos C ;
M

par suite:
K2 — p2

p désignant le rayon du cercle conjugué au triangle.
Le moment d'inertie polaire en H est

le rayon de gyration par rapport à l'axe normal en H au plan du
triangle est donc:

k'h ~®.

î? désignant la puissance de H par rapport au cercle circonscrit au
triangle ABC:

— — 8 R2 cos A cos B cos G

Supposons les masses positives; le triangle a tous ses angles aigus.
Dans ce cas, l'ellipsoïde d'inertie du triplet est une sphère, au point
sous lequel les trois côtés du triangle sont vus sous des angles droits.

Ce cas remarquable est le seul pour lequel Vellipse (T inertie du triplet
est un cercle, en supposant les trois masses non-nulles. Lorsque T est
en un sommet (A par exemple, pour ß 0 y — 0), l'ellipse centrale
d'inertie est le cercle-point A. La propriété caractérise donc les quatre
points fondamentaux du faisceau des hyperboles équilatères.

Tandis qu'à tout point T du plan sont associées deux droites
À À' comme axes centraux d'inertie, la question se présente plus
simplement lorsque on se donne au contraire une droite A.

Une droite A étant imposée, il existe sur elle un point T et un
seul, tel que T soit centre d'un triplet (a ß y) admettant A comme
axe de symétrie de l'ellipse centrale d'inertie.
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A étant donnée, il existe une hyperbole équilatère du faisceau
l'admettant pour direction asymptotique. L'hyperbole rencontre A
à distance finie en un point T unique, qui est précisément le point T.

La construction du point T s'effectue simplement. L'involution
déterminée sur la droite A par l'ensemble des hyperboles équilatères
du faisceau, associe le point F au point à l'infini de A. Les points
doubles de l'involution sur A peuvent être définis par l'intersection
de la droite avec le lieu des points de contact des tangentes menées
aux hyperboles par un point déterminé de A : ce lieu, qui est en
général une cubique, dégénère en une conique lorsque le point est
sur l'un des côtés ou sur l'une des hauteurs du triangle. Par exemple,
avec les notations qui vont être adoptées par la suite, si le point est
la trace sur B G de la droite A, ce lieu a pour équation (en bary-
centriques)

vqY2 + wrZ2 pX(vY + wZ) ;

cette conique passant par A, H, les pieds des hauteurs relatives aux
côtés AB, et AG coupe A aux deux points d'intersection de cette
droite avec la conique conjuguée d'équation:

up X2 -f vqY2 + wrZ2 0

Voilà donc quatre coniques définissant les points doubles sur A.

Cas des droites de Simson. — Les asymptotes d'une hyperbole du
faisceau équilatère ABGH sont les droites de Simson des deux points
d'intersection du cercle circonscrit avec la droite inverse de l'hyperbole
relativement au triangle. Réciproquement toute droite de Simson est

asymptote d'une hyperbole équilatère circonscrite.
L'involution est donc spéciale lorsque la droite A est une droite de

Simson. L'un des points doubles est à l'infini; le second est à distance
finie. Dans le faisceau, il y a trois hyperboles dégénérées: chacune
d'elles est constituée par un côté et la hauteur opposée; le point double
à distance finie est donc le milieu du segment déterminé par ces deux
droites sur la droite de Simson.

Nous obtenons ainsi une propriété intéressante des droites de
Simson.

Les trois segments déterminés sur une droite de Simson par les côtés

et les hauteurs du triangle A B G ont même milieu.
Nous reviendrons avec plus de précisions sur cette question, après

l'étude de la relation entre les coniques d'inertie et les coniques conjuguées

au triangle.

Formules générales. — Si l'équation d'une droite quelconque D

du plan est, en coordonnées barycentriques,

uX -j- pY + <vZ 0
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les distances des sommets du triangle de référence à cette droite sont
respectivement égales à u, v, w, sous ia condition

a2u2 + b2v2 -f- e2w2 — 2 be cos A vw — 2ca cos Bwu — 2ab cos C uv — 4S2

qui s'écrit encore:
Za2(u — c) (u — w) 4S2

Nous introduirons les coefficients

cotg A p cotg B q cotg C r

et poserons

U v — w N w — w, W u — c;

U, V, W sont les coordonnées barycentriques du point à l'infini de
la droite D. La condition précédente prend la forme:

p\]2 + q\2 + rW2 — 2S

Nous l'écrirons
d» 2S

en posant:
pU2 + q\2 -f rW2 ;

0 est l'équation tangentielle des deux points cycliques.
La distance des deux points quelconques du plan de coordonnées

barycentriques M(<x ß y) et M'(a' ß' y') est alors :

mm'2 2S[>(Aa)2 + g(Aß)2 + r(Ay)2]
c'est-à-dire

mm'2 2 S<J> (Aa, Aß, Ay)

en posant:
Aa _ + Y + Y a + ß + Y

etC>

Equation quadratique des axes centraux d'inertie. — Les distances
des sommets A B G à la droite D d'équation uX + cY + wL 0
étant u, c et w, sous la condition <I> 2S, le moment d'inertie du
triplet par rapport à la droite est:

I OLU2 -f- ßc2 + Y w2

Pour déterminer les axes principaux A et A' d'inertie au centre T,
il faut chercher le maximum et le minimum de cette fonction I des
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trois variables u,v et w,enposant qu'elles sont liées par les relations

au + ßc 4* y a? 0

$ 2S

Ces deux conditions dérivées totalement permettent de déterminer
des expressions proportionnelles aux différentielles du, de, dw ; en les
introduisant dans la condition dl 0 on obtient

20 — vu

—-— [a2 (v -f (V — 2 u) + (b2 — c2) (c — <v)] 0

c'est-à-dire:

yL(L_±
Telle est la condition pour que la droite soit un axe central A

d'inertie. Les équations

SuX 0 Hua 0

montrent que u, e, w sont proportionnelles à ßZ— y Y, etc.,.. et
par suite que U, V, W ont des expressions proportionnelles à
(oc + ß + y) X —• «(X + Y + Z), etc... qui portées dans la condition

précédemment formée donnent Yéquation quadratique du système
des axes centraux d'inertie:

Sp a(ßZ y Y) [(a + ß + T) X - a(X + Y + Z)] 0

Cette équation est identiquement satisfaite lorsque

clP [iq yr ;

le point T est alors l'orthocentre H (de coordonnées barycentriques
tg A, tg B, tg C). Ce résultat confirme bien la proposition déjà signalée :

l'ellipse centrale d'inertie est un cercle lorsque T est en H.
Lorsque T est sur le côté B C, par exemple, a 0, l'un des axes est

le côté X 0 et l'autre la droite

xrr — gß _ pZ + y o
q + r

1 ^ 1

perpendiculaire au côté BC.

Lorsque T est sur la hauteur AH, tgc)' ^auteur

est l'un des axes :

qH rZ

l'autre est la droite parallèle au côté BC:

(a + ß + y) X a (X + Y + Z)
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Si la masse totale est nulle: a + ß + y 0 (le centre des masses T
est alors à l'infini) l'équation des axes montre que l'un des axes est
la droite à l'infini, tandis que l'autre est la droite d'équation

2a2p(ß Z-yY) 0

ou encore:
~ßy(?ß — h)x 0 ;

on vérifie que ses coordonnées satisfont à l'équation tangentielle

*LPu{v — w)2 0

qui sera formée plus loin pour l'enveloppe des droites de Simson du
triangle.

Equation aux moments centraux d'inertie. — L'expression du moment
d'inertie du triplet par rapport à une droite prend une forme remarquable

lorsque la droite passe par le centre T des masses. Des équations

I au2 -f ßp2 -f jw2

o au + ßp + yw
on déduit:

(a 4- ß H- t) I (a + ß + y) (a^2 + ß^2 + y^2) — (a^ + ßc + yw)2

XßyU2 ;

et par suite:
t -Ii [H! l2 w2]

a Hb ß y |_ - ß y ]*

La condition fondamentale — 2S exprime précisément, en
application de cette formule générale que le triplet (ocp — ßq y r) dont
le centre est en H a par rapport à toute droite passant par l'orthocentre

un moment d'inertie I 2S.
Pour les axes centraux, on aura:

U 4- V + W 0 ;

/ m n

ü + T + w
0 '

SpU2 2S

en posant:
r _cL m ~ — - n — 1 — R
i y y a aß
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Nous prendrons I 2S — 0, d'où
a + ß + y

s H!

G

L'élimination de U, V, W entre les trois équations homogènes du
second degré:

SO-(p.-i) 0

su 0 s^ 0
u

exprimant le concours de deux coniques et de la droite de l'infini en
un certain point, conduit à la condition

((X l 4* (Jhm + Gn)2 -f- (l2 -p m2 -j- rr — 2lm — 2mn — 2 ni) S X6h 0

avec

Cl dO — -, (33 ?0 — i,« ß T

Mais (XI + 6hm + 0 ; il reste donc

HiXûh 0

et par suite:

62_e.s^+ g + f + T 0
a aßy

Gomme 0 est une expression égale à I à un facteur près, il en résulte

que les moments d'inertie principaux l1 et I2 au centre T des masses
sont définies par les deux conditions:

h + 1,
a

'ff -2<g + r)ßT

1,1, 4S*.

« + ß + Y

aßy'
a + ß + y

Le moment d'inertie polaire par rapport au point T est Ix + I2.

Le cercle circonscrit au triangle ABC a pour équation

Za2 YZ 0

c'est-à-dire
S (q +'r)YZ 0
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puisque les côtés s'expriment en fonction de p q r par des formules
telles que

a2 2 S (q A r) etc.

La puissance du centre Y par rapport au cercle circonscrit (centre 0,
rayon R) est:

Or2 — R2 —
(a + ß + y)2

ISous trouvons ainsi la relation

J_ _ (ÔT2 _ R») ;

le carré du rayon de gyration du triplet par rapport à Faxe normal au
plan du triangle au centre Y des masses est égal à la puissance, changée
de signe, du point Y relativement au cercle circonscrit au triangle.

Cette propriété est immédiate, si l'on observe que le moment
polaire du triplet par rapport au centre 0 du cercle circonscrit est
MR2.

Droite imposée comme axe central d1 inertie. —- Soit une droite A de
coordonnées absolues w, e, w. Soient U, V, W les coordonnées de son
point à l'infini.

Un point M quelconque de la droite A sera représenté au moyen
d'un paramètre t. Les coordonnées du point seront proportionnelles
aux expressions suivantes:

ï-v(,-i). z-w
le paramètre t est proportionnel à la distance du point M à une origine
déterminée sur la droite. La distance entre deux points MM' de la
droite, de paramètres respectifs t et t\ a pour expression

M M '. 2 Y 2S(« —

c'est-à-dire

Les coniques du faisceau ponctuel (ABC H) ont pour équation

générale 2~ 0, avec la condition 1 p JA ~~ 0. L'hyperbole équila-
tère ayant la droite A pour direction asymptotique est définie par la

E
condition Ayr 0. Il faut donc prendre pour coefficients:

Li

JA U (qW — r\V)
L'Hnsei<rneinent triathcm., 30e année, 1931.

etc.

6
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En introduisant la distance H de l'orthocentre H à la droite À,
ces expressions des coefficients dans l'équation de l'hyperbole équila-
tère deviennent (à un facteur près):

£ - (H — u).Pour définir le point T — centre de masses tel que A soit axe
central d'inertie —- il convient de considérer ce point V comme étant
le point à distance finie d'intersection de la droite V avec l'hyperbole
équilatère précédente. Le paramètre t de ce point T est donc la racine
de l'équation

y H - ", o

P\t 77

l'équation
» u (H — u)

-y
u)

T)(ut — L

définit une racine t telle que

1
T1 (H - u) (H — ç) (H -J= H +— ©LTTP

u _ ar vw
H ~

—u
t — qr. g) _ H2

avec
0 qru2 + rpv2 + pqw2 ;

H qru + rpç + pqw ;

(u, ç>, w sont les distances des sommets à la droite A, H est la distance
de l'orthocentre; 0 est l'expression du moment d'inertie par rapport
à A de trois masses qr, rp, pq ayant pour centre le point H). Il résulte

que l'on peut prendre pour coordonnées du point T des expressions

proportionnelles aux suivantes:

X —
H ~ u Y

H ~ p
Z

H
—

W

pu
'

qv rw

On peut encore poser:

ï=®uti ' cv w\\

£, Jll, 91étant les coefficients de l'équation de l'hyperbole équilatère
admettant A pour direction asymptotique.
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Cas d'un centre des masses à l'infini. — Le point T est à l'infini pour:

X + Y + Z 0

yH- " 0 ;

pu

on peut encore poser ~ 0 et la condition prend la forme

H (0 — H2) + (H — u) (H — v) (H — w) 0 ;

l'équation tangentielle de l'enveloppe des droites A telles que T soit
à l'infini se met sous la forme :

SpuU2 0

Une droite A (u, e, ce), quelconque du plan, rencontre le côté BG
du triangle de référence en un point P qui donne lieu à la relation

BP2 — CP2 t-OL
;

c — w

les droites de Simson, sont définies par la condition

X BP2 XCP2

exprimant le concours des perpendiculaires aux côtés en P et les
deux autres points analogues. L'équation tangentielle de l'hypo-
cycloïde à trois rebroussements enveloppe les droites de Simson
est donc

V 9 p + W AX a2. 0 ;
v — w

c'est-à-dire

2(2 + r)V-±J0 ;

v — w

puisque les carrés des côtés du triangle ont pour expression

a2 — 2 S (q -|- r) etc.

l'équation rendue entière est:

?pu(v — w)2 0,
XpuU2 0

Ainsi est reconnue l'identité des droites de Simson et des droites
telles que Y soit à l'infini.
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Exemples et remarques. — Lorsque T est en G (a ß y; cas
de la surface homogène d'une plaque triangulaire ayant A, B, G pour
milieux des côtés), les axes principaux sont parallèles aux asymptotes
de l'hyperbole équilatère (ABGG H), d'équation (en barycentriques)

2 sin A sin (ß — C)
—£ - 0 ;

c'est l'hyperbole de Kiepert.
Si À est la droite d'équation

XtgA-}-YtgB-{-ZtgC 0

/ 1 1 1 \^ —, v — —, w —), r a des coordonnées proportionnelles
aux expressions

X p{q2 + r2) — qr(q + r) elc.

T est l'intersection de la droite A et de la droite d'Euler.
X Y Z

Si A est l'axe anti-orthique — + + — 0, les coordonnées de T

sont
X sin2 A (cos B -f- c°s C — 1) ; elc.

le point T est inverse du point de coordonnées

cos B -f- cos C — 1

1
(le point de coordonnées normales — ^ 7, etc. est l'in-x 1 cos B -)- cos C, — 1 7

tersection du cercle circonscrit avec l'hyperbole de Feuerbach; d'où
une construction du point F).

Lieu du point T tel que l'un des axes centraux associés à ce point
passe par un point imposé F (Xc, Yc, Z0).

Le lieu est une cubique passant par A, B, C et F qui est point
double; l'équation de cette cubique est en coordonnées courantes
(ctßy):

Xpa([3Z0 — yY0) [*(X0 + Y0 -j- Z0) — X0(a + fi + «j)] 0 ;

les tangentes au point double sont les axes centraux associés à ce

point.
Il y a décomposition lorsque le point F est sur les côtés, les hauteurs

ou à l'infini.
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