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Le premier ellipsoide appartient au faiscean ponctuel de quadriques
défini par Uellipsoide E et la premiére sphére des douze points.

La connaissance de H entraine celle du tétraedre.

Le centre O de la sphére circonscrite, le centre O’ de la deuxieme
sphere des douze points et le point H' inverse de H par rapport au
tétraédre (H’ est le point qui se projette sur chaque face en son centre
de gravité) décrivent respectivement des biquadratiques homothé-
tiques & celui qui est le lieu de 'orthocentre H.

Posons a2 + b2 + ¢2 = 9»? (constante).

La sphére circonscrite est orthogonale & une sphére fixe de centre G
et de rayon 7w 4/3.

La deuxiéme sphére des douze points est orthogonale & une sphere
fixe de centre G, de rayon i—-.;— .

On a les relations suivantes:

. 0 — g
HG" = ¢ + w® | OH™ = R? 4 3%,

RL’ — F2 + 4(‘)2 .

Les hautenrs du tétraédre orthocentrigue sont normales & Uellipsoide
circonscrit B aux quatre sommets du tétraédre.

Les arétes des tétraédres orthocentriques T sont les droites du complexe
tétraédral d’équation

a*p,py + b2p2p5 + psps = 0,

en coordonnées pliickériennes p; de droites. Les arétes appartiennent
ainsi & la congruence commune a ce complexe tétraédral et au com-
plexe spécial attaché a la quadrique E”.

Les milieux des arétes (points de contact de celles-ci avec ’ellipsoide
E”) sont situés sur une biquadratique gauche définie par E” et par
la premiére sphére des douze points.

Si L est le milieu d’une aréte AB, L.” le milieu de I'aréte opposée
d’un de ces tétraédres orthocentriques, l'aréte A A, coincide avec
U'une des directions principales de Uellipsoide K" au point L; de méme
la droite CD, orthogonale a la précédente, est direction principale
du méme ellipsoide en son milieu L.

LA GEOMETRIE DES TRIPLETS.

Trois masses «, (3, y sont respectivement appliquées aux sommets
A, B, C du triangle de référence. Le centre 1" des trois masses a pour
coordonnées barycentriques des expressions proportionnelles & «, (3, 7
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Si le systéme est rapporté aux axes centraux d’inertie, les trois
conditions suivantes sont vérifiées:

axy + fxy + yas = 0,

Yy + BYs +vys = 0,
az1 Yy + By, + Y23ys = 0 ;
les indices 1, 2 et 3 affectent respectivement les deux coordonnées

cartésiennes z; et y; des sommets A, B, G. L’élimination des masses
entre ces trois conditions linéaires et homogénes conduit a la relation

1Yy Lo¥Ys Z3Y3
Xy Zy N = 0 ,
Y Y, Ys i

qui exprime que les sommets du triangle de référence, le centre 1" (et
Uorthocentre H du triangle) appartiennent a une méme hyperbole
équilatére dont les directions asymptotiques sont celles des axes princi-
pauzx et centraux d’inertie.

La construction des axes centraux d’inertie du triplet découle de
cette proposition.

Par le point I', centre des masses, passe une hyperbole du faisceau
des hyperboles équilatéres circonscrites au triangle A B G. Il suffit
de mener par I' les paralléles aux asymptotes de cette hyperbole;
ces deux paralléles sont précisément les axes de symétrie de I'ellipse
centrale d’inertie.

En particulier, lorsque T' est sur un coté, B C par exemple (o = 0),
les axes centraux sont le cdté B C et la paralléle a la hauteur A H.

Lorsque le centre I" est sur une hauteur, A H par exemple, les axes
centraux d’inertie sont la hauteur A H et la paralléle menée par I’
au coté B C.

Cas ou le centre des masses est Uorthocentre. Dans le cas

o p Y

tgA—ﬁ th_th'

le centre T des masses coincide avec Uorthocentre H du triangle. Toutes
les hyperboles équilatéres circonscrites au triangle A B G passant
par H, il y a indétermination pour la construction des axes centraux
d’inertie. L’ellipse d’inertie centrale est donc un cercle.

Réciproquement d’ailleurs pour que Uellipse centrale d’un triplet
(a, B, ) de trois masses non-nulles disposées aux sommets du triangle
A B C soit un cercle il faut que ces masses soient proportionnelles & tg A,
tg B et tg C; le centre des masses est alors Uorthocenire H.
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Prenons
a:tgA, B:th, Y:tgc;

la masse totale est

M=at+f8+y=1tgAf+tgB+tgC = 1gA.tgB.tgC ;

le moment d’inertie par rapport a une droite quelconque passant par
I'orthocentre est égal au double de la surface du triangle:

I = 4R?sinA sinB sinC = 2S ;

Iexpression du rayon de gyration est donc:

K2 :%: 4R2 cosA.cosB.cosC ;

par suite:
K2 T e 92
p désignant le rayon du cercle conjugué au triangle.
Le moment d’inertie polaire en H est
IH == !{S 5
le rayon de gyration par rapport & I'axe normal en H au plan du
triangle est donc:

< désignant la puissance de H par rapport au cercle circonscrit au
triangle A B C:
6f — — 8R%cos A cosB cosC .

Supposons les masses positives; le triangle a tous ses angles aigus.
Dans ce cas, 'ellipsoide d’inertie du triplet est une sphere, au point
sous lequel les trois cotés du triangle sont vus sous des angles droits.

Ce cas remarquable est le seul pour lequel Uellipse d’inertie du triplet
est un cercle, en supposant les trois masses non-nulles. Lorsque I" est
en un sommet (A par exemple, pour 3 = 0 4 = 0), l'ellipse centrale
d’inertie est le cercle-point A. La propriété caractérise donc les quatre
points fondamentaux du faisceau des hyperboles équilatéres.

Tandis qu’a tout point I' du plan sont associées deux droites
A A’ comme axes centraux d’inertie, la question se présente plus
simplement lorsque on se donne au contraire une droite A.

Une droite A étant imposée, il existe sur elle un point I' et un
seul, tel que T' soit centre d’un triplet (« 8y) admettant A comme
axe de symétrie de I’ellipse centrale d’inertie.
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A étant donnée, il existe une hyperbole équilatére du faisceau
ladmettant pour direction asymptotique. L’hyperbole rencontre A
& distance finie en un point I' unique, qui est précisément le point T'.

La construction du point I' s’effectue simplement. L’involution
déterminée sur Ja droite A par J’ensemble des hyperboles équilatéres
du faisceau, associe le point T' au point & l'infini de A. Les points
doubles de I'involution sur A peuvent étre définis par lintersection
de la droite avec le lieu des points de contact des tangentes menées
aux hyperboles par un point déterminé de A: ce lieu, qui est en
général une cubique, dégénére en une conique lorsque le point est
sur 'un des c6tés ou sur 'une des hauteurs du triangle. Par exemple,
avec les notations qui vont étre adoptées par la suite, si le point est.
la trace sur B C de la droite A, ce lieu a pour équation (en bary-
centriques)

0gY? 4+ wrZ? = pX (oY + wiZ) ;

cette conique passant par A, H, les pieds des hauteurs relatives aux
cotés AB, et AC coupe A aux deux points d’intersection de cette
droite avec la conique conjuguée d’équation:

upX? + oqgY?: + wrZ? = 0 .

Voila donc quatre coniques définissant les points doubles sur A.

Cas des droites de Stmson. — Les asymptotes d’une hyperbole du
faisceau équilatére ABGH sont les droites de Simson des deux points
d’intersection du cercle circonscrit avee la droite inverse de I’hyperbole
relativement au triangle. Réciproquement toute droite de Simson est
asymptote d’une hyperbole équilatére circonscrite.

L’involution est donc spéciale lorsque la droite A est une droite de
Simson. I.’un des points doubles est a I'infini; le second est & distance
finie. Dans le faisceau, il y a trois hyperboles dégénérées: chacune
d’elles est constituée par un coté et la hauteur opposée; le point double
a distance finie est donc le milieu du segment déterminé par ces deux
droites sur la droite de Simson.

Nous obtenons ainsi une propriété intéressante des droites de
Simson.

Les trots segments déterminés sur une droite de Svmson par les cotés
et les hauteurs du triangle A B G ont méme milien.

Nous reviendrons avec plus de précisions sur cette questlon apres
I’étude de la relation entre les coniques d’inertie et les coniques conju-
guées au triangle.

Formules générales. — Si 1'équation d’une droite quelconque D
du plan est, en coordonnées bharycentriques,

uX + oY + wZ = 0,
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les distances des sommets du triangle de référence a cette droite sont
respectivement égales & u, ¢, w, sous la condition

a*u? + b%0% -+ *w? — 2bc cos Apw — 2ca cos Bwu — 2ab cos Cup = 45,

qui s’écrit encore:
Ya?(u — o) (u — w) = 4&S% .

Nous introduirons les coefficients
cotgA = p , cotgB = ¢, cotlg C = r ,

et poserons

U=¢p—w, V=w—u, W =uy—vy;

U, V, W sont les coordonnées barycentriques du point a U'infini de
la droite D. La condition précédente prend la forme:

pU% + gV 4+ rW? = 25 .
Nous I’écrirons
d = 285 ,

en posant:
& = pU2 + ¢V2 4 rW?2 ;

= 0 est équation tangentielle des deux points cycliques.
La distance des deux points quelconques du plan de coordonnées
barycentriques M(c 3 y) et M'(«’ B’ y') est alors:

| MM™ = 28[p(8a)* + g(AB)® + r(A7)?]
¢’est-a-dire ’
MM? = 2S®(Aa, A, AY) ,

en posant:
Ao = “ : t
T FE Y etbty °
Equation quadratique des axes centraux d’inertie. — Les distances

des sommets AB C & la droite D d’équation uX + ¢Y +4- wZ = 0
étant u, ¢ et w, sous la condition & = 2S, le moment d’inertie du
triplet par rapport a la droite est:

I = au? + Bo® + yw? .

Pour déterminer les axes principaux A et A’ d’inertie au centre T,
il faut chercher le maximum et le minimum de cette fonction I des
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trois variables u, ¢ et w, en posant qu’elles sont liées par les relations

au + o 4+ yw = 0
® = 25 .
Ces deux conditions dérivées totalement permettent de déterminer

des expressions proportionnelles aux différentielles du, do, dw ; en les
introduisant dans la condition dI = 0 on obtient

S o+ w— 2u) 4 (B — o —w)] = O,
¢’est-a-dire:
1ir_a)_
ZU(B Y> "

Telle est la condition pour que la droite soit un axe central A
d’inertie. Les équations

YuX = 0, Sua = 0

montrent que u, ¢, w sont proportionnelles & SZ — Y, etc.,.. et
par suite que U, V, W ont des expressions proportionnelles a
(¢ + B4+ y) X—a(X + Y + Z), etc... qui portées dans la condi-
tion précédemment formée donnent I’équation quadratique du systéme
des axes centraux d’inertie:

Tp. a2 —yY) . [0+ 4+ VX —a(X + Y +Z)]=0.
Cette équation est identiquement satisfaite lorsque
ap = g =r;

le point T' est alors Porthocentre H (de coordonnées barycentriques
tg A, tg B, tg C). Ce résultat confirme bien la proposition déja signalée:
Pellipse centrale d’inertie est un cercle lorsque I' est en H.

Lorsque T est sur le ¢co6té B G, par exemple, a = 0, 'un des axes est
le coté X = 0 et 'autre la droite

ry —gqé
X — (Z + Y = 0
Py g Y

perpendiculaire au c6té BC. |
Lorsque I' est sur la hauteur AH, (@[}E = t—&—), la hauteur AH
est 'un des axes :
qY = rZ .
Pautre est la droite paralléle au coté BG:

@+ E+ X =aX+Y47).
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Si la masse totale est nulle: « + 5 + y = 0 (le centre des masses I
est alors a I'infini) 'équation des axes montre que I'un des axes est
la droite a I'infini, tandis que 'autre est la droite d’équation

Sotp(3Z —yY) =0,
ou encore:

XEy(g3—ryX =0

on vérifie que ses coordonnées satisfont & ’équation tangentielle
Ypulp —w)? = 0,

qui sera formée plus loin pour 'enveloppe des droites de Simson du
triangle.

Equation aux moments centrauz d’inertie. — 1.’expression du moment
d’inertie du triplet par rapport & une droite prend une forme remar-
quable lorsque la droite passe par le centre I' des masses. Des équations

I = auw® + o2 + yo? ,
0 = au + po + yw ,

on déduit:
(8 B 1T = (x4 5+ 1) (o 4 Bot + 10 — (2 + Bo -+ )3
el ESYU2 s
et par suite:
als T2 Ve We
I o= oY [_ — ] :
«+ b+ yLa B * Y

La condition fondamentale ® = 2S exprime précisément, en appli-
cation de cette formule générale que le triplet (ap = B¢ = yr) dont
le centre est en H a par rapport & toute droite passant par I’ortho-
centre un moment d’inertie I = 28S.

Pour les axes centraux, on aura:

UL VEW=090

tryTw="0
Y¥pU2 = 28
en posant:
l_—_;-—g_’ m__——___p.__.._’_” n _q__£
14 Y Y o ~ o ¢
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Nous prendrons I = 2S. .l 6, d ou
P «+p+v’
12
2
' o=

L’élimination de U, V, W entre les trois équations homogénes du
second degré:
1
T2 I
U (,;e — a) =0,
XU =0 SR
U ]

exprimant le concours de deux coniques et de la droite de I'infini en
un certain point, conduit & la condition

(AL 4+ Bm +Cn)? + (P + m?+ -n2—2lm —2mn—2a) EAG = 0

avec
A =po—o, 63:;,0—%, @_——rf)-i—.
Mais Al + Bm + Cn = 0; il reste donc
TA®B =0

et par suite:

pp_gpdtr et PtY
a

{3y

Comme 6 est une expression égale & 1 & un facteur prés, il en résulte
e} ’

que les moments d’inertie principaux I; et I, au centre I" des masses

sont définies par les deux conditions:

5 '
L+ 1, Zﬁp+y'2(q+”)pY‘
LI, — 450, 2P
a4+ 3+

Le moment d’inertie polaire par rapport au point I' est [, L I,.
Le cercle circonserit au triangle ABC a pour équation

Ya®!YZ = 0,

c’est-a-dire B
g+ rYZ =0,
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puisque les cotés s’expriment en fonction de p ¢ r par des formules
telles que
a? = 2S(q + 1) , elc.

La puissance du centre I" par rapport au cercle circonscrit (centre O,
rayon R) est:

(\'J

{ ’(ﬁ
S

O — R = —

<a+rs

Nous trouvons ainsi la relation

I 2

= — (0T — R

M ( )

le carré du rayon de gyration du triplet par rapport ¢ Uaxe normal au

plan du triangle au centre T' des masses est égal & la puissance, changée

de signe, du point 1" relativement au cercle circonscrit au triangle.
Cette propriété est immédiate, si 'on observe que le moment

polaire du triplet par rapport au centre O du cercle circonscrit est
MR2,

Droite imposée comme axe central d’inertie. - Soit une droite A de
coordonnées absolues u, ¢, w. Soient U, V, W les coordonnées de son
point & I'infini.

Un point M quelconque de la droite A sera représenté au moyen

d’un parameétre ¢. Les coordonnées du point seront proportionnelles
aux expressions suivantes:

1 )
u Y ) W

le parameétre ¢ est proportionnel a la distance du point M & une origine
déterminée sur la droite. La distance entre deux points M M’ de la
droite, de parametres respectifs ¢ et ¢, a pour expression

U
MM = = 2S8(t — 1),
u
c¢’est-a-dire
uYw

MM’ = 2S5, g — ) .
T 5. gvw 7

Les conlques du faisceau ponctuel (A B C H) ont pour équation
générale 2— = 0, avec la condition 2p .’ = 0. L’hyperbole équila-
téere ayant la dr01te A pour direction asymptotique est définie par la

== (. Il faut donc prendre pour coeflicients:

c-| =,

condition X

L2 = U(gV — rW) . et

L'Enscignement mathém., 30¢ année, 1931. 6
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En introduisant la distance H de Porthocentre H a la droite A,
ces expressions des coefficients dans I’équation de ’hyperbole équila-
tére deviennent (& un facteur preés):

g = E(H — u) .
p
Pour définir le point I' — centre de masses tel que A soit axe

central d’inertie — il convient de considérer ce point {' comme étant
le point & distance finie d’intersection de la droite V avec ’hyperbole
équilatere précédente. Le paramétre ¢ de ce point I' est donc la racine
de 'équation

E—L—Z—=O;
-1

u

I'équation

u(H —u)
Zp(ut —y =0

définit une racine ¢ telle que

1 (H—u)(H— ) (H— w)

7= 0 — H? ’
1 . H—u
u_—t_——-qr.\\v.—(:)——'—m,

avee
O = qru® + rpo? + pgw?® ;

H = gru + rpv + pgqw ;

(u, ¢, w sont les distances des sommets & la droite A, H est la distance
de Porthocentre; ® est I'expression du moment d’inertie par rapport
a A de trois masses qr, rp, pg ayant pour centre le point H). Il résulte
que Pon peut prendre pour coordonnées du point I' des expressions
proportionnelles aux suivantes:

— — H —
X — H—u ’ Y — H 0 , g _ w
pu qv rw
On peut encore poser:
9‘\
X =~ y g9
ul’ oV wW

£ 01, 9T étant les coefficients de I'équation de 'hyperbole équilatére
admettant A pour direction asymptotique.
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Cas d’un centre des masses a U'infini. — Le point I" est & I'infini pour:

X+t Y4+Z=0
H —

2 u:O;
pu

on peut encore poser 17 = 0 et la condition prend la forme

H(® — HY) + (H— ) (H— o) (H—w) =0 ;

Iéquation tangentielle de 'enveloppe des droites A telles que I' soit
a I'infini se met sous la forme :

EpuU2 = 0 .

Une droite A (u, ¢, w), quelconque du plan, rencontre le coté BG
du triangle de référence en un point P qui donne lieu & la relation

BP! —CP e 2.0 7.
O —

les droites de Simson, sont définies par la condition

X BP

(4]

2

= X CP",

exprimant le concours des perpendiculaires aux coOtés en P et les
deux autres points analogues. L’équation tangentielle de I’hypo-
cvcloide & trois rebroussements enveloppe les droites- de Simson
est donc

0 +

ECLQ. :0;
()__

S

3

¢’est-a-dire

puisque les carrés des cotés du triangle ont pour expression
a? = 2S(q + r) , ete.
I'équation rendue entiére est:

Spu(p —w)?2 =0,

Ypul? = 0,

Ainsi est reconnue l'identité des droites de Simson et des droites
telles que 1" soit a I'infini.
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Exemples et remarques. — Lorsque T est en G (o = 8 = v cas
de la surface homogéne d’une plaque triangulaire ayant A, B, C pour
milieux des cOtés), les axes principaux sont paralléles aux asymptotes
de I'hyperbole équilatére (A B C G H), d’¢quation (en barycentriques)

QO sin A sin (B — C)

c¢’est ’hyperbole de Kiepert.
Si A est la droite d’équation

XtgA 4+ YtgB + ZtgC = 0

1 1 1 , .
<u =2 0 = 7 W = 7), I' a des coordonnées proportionnelles
aux expressions
X =pl@+r)—qlg+r), et

I est I'intersection de la droite A et de la droite d’Euler.

Si A est I'axe anti-orthique % + }zi o ? = 0, les coordonnées de T

sont
X = sin?A (cos B + cos C — 1) ; cle.

Ie point I" est inverse du point de coordonnées

X : t
= 5 cle,
cos B 4+ cosC — 1

(le point de coordonnées normales cosB 1008 - — > ete. est I'in-
tersection du cercle circonserit avec I’hyperbole de Feuerbach; d’ou
une construction du point I7).

Lieu du point I' tel que I'un des axes centraux associés & ce point
passe par un point imposé F (X, Y, Z).

Le lieu est une cubique passant par A, B, C et F qui est point
double; I'équation de cette cubique est en coordonnées courantes

(afBy):
Ypa(Ply — yYy) [«(Xy + Y, + Zg) — Xole + B+ 7)] = 0

les tangentes au point double sont les axes centraux associés a ce
point.

Il y a décomposition lorsque le point I' est sur les cotés, les hauteurs
ou & l'infini.
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