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SUR L'ÉQUIVALENCE EN GÉOMÉTRIE DES MASSES

PAR

Ëmile Turrière (Montpellier).

Deux systèmes de masses seront dits équivalents lorsqu'ils auront
même masse totale, même centre de gravité et même moment d'inertie
par rapport à un élément quelconque (point, droite ou plan) de
l'espace.

Ces conditions sont évidemment surabondantes.
D'une manière précise, Y équivalence résulte de V égalité des deux

masses totales et de V identité des deux ellipsoïdes centraux iï inertie de

Cauchy-Poinsot.
Il en résulte l'identité des divers autres ellipsoïdes centraux

(ellipsoïde de Binet, ellipsoïde de Mac-Cullagh, ellipsoïde de Culmann),
et, ensuite, l'identité des ellipsoïdes pour n'importe quel point de

l'espace: ces propositions sont des conséquences des théorèmes généraux

sur les moments d'inertie.
Pratiquement, il y aura lieu d'assurer ou de vérifier, suivant les

cas, l'égalité des masses totales, la coïncidence des centres de gravité
ainsi que l'égalité des moments d'inertie par rapport à six droites
quelconques passant par le centre commun de gravité.

Ces six droites pourront d'ailleurs être prises arbitrairement dans
l'espace, sous la condition que deux d'entre elles ne soient pas parallèles.

C'est ainsi que, dans certains cas, les six arêtes d'un tétraèdre
pourront être considérées.

Au lieu de six droites quelconques, on pourra prendre six plans de

directions distinctes, et supposer respectivement égaux les moments
d'inertie planaires des deux systèmes matériels par rapport aux
six plans.

Dans le cas particulier de la géométrie plane, l'équivalence de deux
systèmes matériels situés dans un même plan est acquise lorsque,
les masses totales étant égales et les centres de gravité confondus,
les moments d'inertie par rapport aux trois côtés d'un triangle
quelconque (non dégénéré) sont respectivement égaux. Il y a alors identité
des ellipses centrales d'inertie et par suite des ellipsoïdes centraux.
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Il y a équivalence des moments d'inertie par rapport à toutes les

droites, à tous les points et à tous les plans de l'espace.
Il est à remarquer que l'emploi de l'ellipsoïde d'inertie de Cauchy-

Poinsot (l'ellipsoïde habituellement considéré et qui représente les

moments d'inertie par rapport à des droites) n'est pas indiqué dans
cette théorie. L'ellipsoïde qui se présente dans les considérations qui
vont suivre est Y ellipsoïde de Culmann: étant donné un système
matériel l'étude des moments d'inertie planaires, pour les divers plans
passant par un point 0 se fait au moyen de Y ellipsoïde de Binet
d'équation:

AX2 + BY2 + CZ2 1 ;

ou de l'ellipsoïde réciproque, appelé ellipsoïde de Culmann, dont
l'équation est

x + x + X ^!A B
1

C '

les axes de ces ellipsoïdes sont les axes principaux d'inertie au point 0;
A, B, G représentent les moments planaires d'inertie par rapport aux
plans X 0, Y 0 ou Z 0.

Il y a lieu, par exemple, de remarquer que, tandis qu'en géométrie
du triangle, l'ellipse centrale d'inertie est homothétique des ellipses
inscrite ou circonscrite de centre G, centre de gravité du triangle,
il n'en est pas de même pour le tétraèdre quelconque: l'ellipsoïde
central d'inertie du tétraèdre n'a pas d'homothétique parmi les

ellipsoïdes inscrits ou circonscrits, en nombre infini, de même centre.
De même, pour un choix convenable de densité, l'ellipse centrale

d'inertie de l'aire de l'ellipse homogène coïncide avec l'ellipse elle-
même. Il n'en est pas de même pour le volume homogène d'un ellipsoïde

et son ellipsoïde central d'inertie de Cauchy-Poinsot.
Ces contradictions entre le cas du plan et celui de l'espace

disparaissent par l'introduction de Y ellipsoïde de Culmann, qui se présente
ainsi de lui-même dans les résultats comme étant la véritable extension

pour Vespace de Vellipse d"1 inertie du plan.
D'ailleurs, dans les recherches qui vont suivre, l'ellipsoïde de

Culmann sera homothétique (dans un rapport imaginaire) à la qua-
drique conjuguée de même centre par rapport au tétraèdre fondamental:

c'est là un fait digne d'intérêt.
Enfin, il est à remarquer —• et ceci peut présenter de sérieux avantages

dans certains cas pour la réduction des calculs —- que l'enveloppe
des plans de moment d'inertie nuls pour un système matériel donné
est précisément l'ellipsoïde imaginaire (conjugué par rapport au
tétraèdre dans les considérations qui suivent). Alors que les calculs
de moments d'inertie peuvent être longs et pénibles, l'enveloppe des
plans de moments d'inertie nuls est aisée à déterminer et l'ellipsoïde
de Culmann s'en déduit immédiatement. Dans les calculs en coor-
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données triangulaires ou tétraèdriques la forme remarquable de
l'équation des coniques ou des quadriques conjuguées réduit les
calculs d'éléments principaux au minimum de difficultés ou d'étendue.

Il est entendu que, dans l'étude présente, les masses négatives ne
sont pas écartées. Il s'agit de géométrie du triangle et de géométrie
du tétraèdre, où les faits doivent être présentés dans toute leur
généralité. Il suffira de substituer à la notion d'ellipsoïde d'inertie
celle de quadrique d'inertie (ou de conique d'inertie dans le plan).

Dans certains cas de représentation par équivalence d'un système
matériel, il peut se faire que des points affectés de masses négatives
fournissent des solutions simples. Gomme il s'agit d'une question
d'ordre pratique, de calculs par des procédés les plus simples possibles,
il n'y a aucune raison de se priver de l'avantage que peuvent offrir
de telles masses négatives.

L'ellipsoïde de Legendre. — L'ellipsoïde de Legend re 3 est l'exemple
le plus ancien d'équivalence entre un système matériel quelconque
et la masse d'un ellipsoïde fictif, homogène. Partant de la remarque
qu'un système particulier, dont la surface centrale d'inertie est une
sphère de rayon R, est équivalent à une masse sphérique homogène
de rayon R\/5, on est conduit par affinité au théorème suivant:

Tout système de masses est équivalent à un ellipsoïde homogène
(l'ellipsoïde de Legendre).

Lellipsoïde de Legendre est homothétique et concentrique à Vellipsoïde
central de Culmann dans le rapport dhomothétie y's.

Cet ellipsoïde de Legendre n'ayant aucun intérêt, nous n'insisterons
pas. Ce qui est plus important c'est de remplacer par équivalence,
un système matériel quelconque par un nombre limité de masses
disposées en des points, associés d'une manière simple au système
étudié, et ramenant les calculs de la géométrie des masses à de simples
évaluations de distances de ces points à des plans, à des droites ou à

d'autres points de l'espace.
D'ailleurs l'équivalence d'un système matériel avec son ellipsoïde

de Legendre découle de Y équivalence du système avec un système de

quatre points. Il suffit d'assurer l'identité entre les tétraèdres représentatifs

du système et de l'ellipsoïde de Legendre.

Inertie dune plaque triangulaire homogène (Sylvester, Routh). —
Soit un triangle ARG dont la surface homogène a pour masse M. Le
moment d'inertie par rapport au côté RG est:

I L MA2
6

1 Legendre, Fonctions elliptiques et eulériennes, édition 1825, tome I, p. 410.
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h étant la hauteur relative à ce côté. D'autre part le système de trois

masses égales à y placées aux milieux des côtés du triangle a même

masse totale M et même centre de gravité G que le triangle. Les
moments d'inertie du triplet sont respectivement égaux à ceux du
triangle relativement aux trois côtés. Il y a donc équivalence.

Il y a équivalence entre Faire homogène du triangle et un système
M

de trois masses — respectivement placées aux milieux des côtés du

triangle 1.

M
On peut encore prendre les trois masses y aux milieux des droites

qui joignent les sommets du triangle ABC au centre de gravité G.

Inertie d'une harre rectiligne, homogène. — Soit une barre AB, de
milieu 0, de longueur 21, masse M. La barre est équivalente à un
triplet constitué par une masse fji0 placée en son milieu 0 et deux
masses q placées en deux points P P' situés à des distances dt x de 0.
Il y a une infinité de solutions satisfaisant aux deux conditions:

1 M
a0 + 2a M 3°

3 ' M — (j-o
'

En particulier, pour p,0 0, la harre est équivalente au doublet:

M /

Y, * xw-
On a aussi la solution simple avec deux masses aux extrémités AB

de la barre et une masse en son milieu 0:

2 M M
F-o -3- » F- ~ x ± /

Ces formules permettent de former des systèmes de points matériels
équivalents au périmètre d'un polygone quelconque, plan ou gauche.
La première solution permet de constituer, par exemple, dans le cas
du périmètre d'un polygone de n côtés, un système de 2n points.

Inertie du périmètre du triangle. — Soit un triangle ABC de côtés
a, G c; le périmètre est supposé homogène. En application des règles

1 Voir à ce sujet: The Quarterly journal of pure and applied mathematics, VI, 1864:
p. 127-128: Mechanical solutions of geometrical problems;
p. 130-133 : J. J. Sylvester: Observations on the method for finding the centre of gravity

of a quadrilateral given in the present number of the journal. (Note reproduite aux œuvres
de Sylvester: Papers, II, p. 338-341), p. 267-269. E. J. Routh: Note on the moments
of inertia of a triangle.

L'Enseignement mathéin., 30e année; 1931. 5
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ci-dessus indiquées, on peut prendre comme équivalents l'un ou l'autre
des systèmes suivants (densité linéaire supposée égale à l'unité):

1° Un système de six masses, trois aux sommets et trois aux milieux
des côtés.

Au sommet A, par exemple, la masse sera - ~ c
; au milieu du

côté BC, elle sera^.
O

2° Un système de six masses, deux sur chaque côté; sur le côté BG
par exemple, de part et d'autre du milieu M du côté, on prendra en
A' et A" avec

A'M MA" —%=
2 \/3 '

donc avec le rapport
BA' _ yT— l
A' c ~~

+ i

deux masses toutes deux égales à

Inertie du parallélépipède rectangle, homogène. — 1° Le parallélépi-
M

pède rectangle de masse M est équivalent à six masses — placées aux

centres des faces.
2° Le parallélépipède rectangle de masse M est équivalent à un

système de 9 masses : une masse ^ placée en son centre et huit masses

placées aux sommets.

Inertie du tétraèdre homogène. — Le moment d'inertie du tétraèdre,
solide, homogène, par rapport au plan d'une face est:

M étant la masse du solide, H la hauteur relative à cette face.
Considérons un système constitué par une masse (jl0 placée au

centre de gravité G du solide et de quatre masses égales à p, placées
en quatre points a ß y â respectivement pris sur les droites GA,
GB, GC, GD, sommets d'un second tétraèdre homothétique au
tétraèdre ABGD.

Ga G(3 Gy G5
GA GB — G G ~ GÜ ~ "

En écrivant que la masse totale est la même et que les moments
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planaires d'inertie par rapport aux quatre faces sont les mêmes pour
les deux systèmes matériels, nous obtenons deux conditions:

M 4 ;j. -j- Ü.Q

4a(3X2 -f- 1) -f ;j-0 — M

Les ellipsoïdes d'inertie centraux ont même centre et quatre diamètres
communs; il est nécessaire d'imposer de nouvelles conditions. On les
obtient en considérant les six plans (en nombre surabondant) menés

par chaque arête et le milieu de l'arête opposée.
Par exemple, le plan passant par l'arête AB et le milieu M de

l'arête CD; ce plan divise le tétraèdre en deux volumes équivalents.
Si 6 désigne la distance de C et D à ce plan, le moment d'inertie du
solide par rapport à ce plan est la somme des moments d'inertie de

Mdeux tétraèdres de masses — et de hauteurs o par rapport à une base.

Il est donc égal à p^Mö2. Pour l'équivalence avec les points on a

ainsi 6 équations qui donnent la seule condition: M 20p72. Celle-ci
est du reste une conséquence des deux conditions déjà trouvées.

Le problème admet donc une infinité de solutions. On pourra
se donner 7. arbitrairement et calculer ensuite p et p0 par les formules:

20 u.À2 M u0 -j- 4 (j. M

ou encore prendre:

M 20 uA2 ; p0 4 [j. (5X2 — 1)

Comme solutions simples on pourra adopter les suivantes:

M
1° Un quintuplet constitué par quatre masses — placées aux sommets

4M
du tétraèdre et une masse — placée au centre de gravité G du solide

(Sylvester):
M 4M

A 1
• ^ 20 ' ^=~T

2° Un quadruplet constitué par quatre masses placées aux sommets
aßyr) d'un tétraèdre homothétique au tétraèdre ABCD par rapport au
centre de gravité G.

A ± g ~ u.0 0

V o *

4
3° Un quintuplet constitué par une masse négative — au centre
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9_

20
de gravité G et quatre masses ~ M placées aux centres de gravité des

faces du tétraèdre :

1 9 4

3. ^ 2ÔM-

4° A signaler encore pour le tétraèdre, solide, homogène, le système
2

de 7 masses suivant: une masse m' —M placée au centre de gravité G

et six masses m — placées au milieu des arêtes.

Application. — Un pendule composé est constitué par un tétraèdre,
solide, homogène, tournant autour d'un axe A. Quelle est la durée
d'oscillation de ce pendule

Il s'agit d'évaluer le rayon de gyration autour de A. Le calcul du
moment d'inertie — qui serait fastidieux par les méthodes habituelles
d'intégration — se réduit ici à une question des plus élémentaires:
au calcul des distances des sommets et du centre de gravité à la
droite A.

Pour fixer les idées, soit un tétraèdre régulier tournant autour dune
arête.

Deux des masses du quintuplet aux sommets et ^ au centre^

ont des moments nuls par rapport à l'axe de suspension, l'arête AB.
Si a est la longueur commune des arêtes, les deux autres masses

placées aux sommets G et D, situés à la même distance de AB

et la masse placée au centre du tétraèdre, centre dont la distance

à AB est donnent ainsi un rayon de gyration K:

K2=â"2-

Pour le rayon de gyration autour de la parallèle à cette arête menée

par le centre de gravité:
d"K/2 —
20

D'où la longueur l du pendule synchrone:

i 1~~w~ax °.49/'97 •

Dans le tétraèdre régulier, les calculs d'inertie sont notablement
simplifiés par le fait que l'on peut ainsi facilement calculer les moments
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d'inertie au centre G et par rapport aux plans de faces. L'ellipsoïde
d'inertie central étant une sphère —• comme pour tout polyèdre régulier
— les moments d'inertie relativement à d'autres éléments en découlent.

Représentation générale d'un système matériel quelconque par des

systèmes de quatre masses ponctuelles.

L'exemple du tétraèdre solide homogène ABCD de masse M,
montre que ce corps peut être remplacé par un système de quatre

masses égales ^de masses disposées aux sommets d'un second

tétraèdre À'B'C'D', homothétique de ABCD par rapport au centre

de gravité G, dans le rapport —d'homothétie. (Il y a même deux
V 5

dispositions symétriques par rapport à G et qui correspondent aux
deux sens de cette homothétie.)

Nous allons établir que c'est là un fait général.
Tout système de masse M peut être remplacé par une infinité de

M
systèmes de (quatre masses —.

Deux démonstrations peuvent être données; tout d'abord on peut
observer que les équations de conditions se ramènent immédiatement
à celles du cas où l'ellipsoïde central d'inertie est une sphère, au
moyen d'une affinité transformant en cette sphère l'ellipsoïde central
de Culmann. Alors toutes les propriétés projektives découlent de celles
des tétraèdres réguliers inscrits dans une sphère et circonscrits à une
autre sphère.

On peut encore observer que tout ellipsoïde peut être obtenu d'une
infinité de manières comme ellipsoïde de Culmann de 4 masses placées
aux sommets de tétraèdres conjugués relativement à un ellipsoïde
imaginaire homothétique. L'équivalence se fait ainsi entre le système
et cette infinité de tétraèdres.

En résumé, voici les propriétés de ces divers tétraèdres:
Tout système matériel de masse M peut être remplacé, par équivalence

pour la Géométrie des masses, par une infinité de systèmes de quatre
M

points de masse —.
M

Les points d'applications de ces masses — sont les sommets de tétraèdres

T de même volume.
Les tétraèdres obtenus sont inscrits à un ellipsoïde E, dont le centre

est le centre de gravité G commun à ces tétraèdres; leur volume est le
volume maximum des tétraèdres inscrits dans l'ellipsoïde E.

volume ellipsoïde E 3 *\/3
volume d'un tétraèdre T 2



70 E. TURRIÈRE
Les tétraèdres T sont circonscrits à un ellipsoïde E' de centre G.
En chaque sommet d'un tétraèdre T, le plan tangent à Vellipsoïde E

est parallèle à la face opposée de T.
Les points de contact avec E' des faces de T ne sont autres que les

centres de gravité des faces.
Les arêtes des tétraèdres T sont tangentes à un même ellipsoïde E"

de centre G, qu'elles touchent en leurs milieux respectifs.
Les tétraèdres T sont autopolaires par rapport ci un quatrième

ellipsoïde E'" de centre G (ellipsoïde imaginaire).
Les ellipsoïdes E E' E" E'" sont homothétiques entre eux et à

Vellipsoïde de Culmann du système matériel.
Les rapports d'homothétie entre ces divers ellipsoïdes ont les

valeurs suivantes: E', E", E'" sont respectivement homothétiques
de E dans les rapports

1 <\/¥ i VT
3* ' 3 ' 3

'

Nour prendrons pour équations de ces divers ellipsoïdes rapportés
à leurs axes:

X2 Y2 z2
(E)1? + 4-

T2" ~~ 1 0

X2 Y2 z2 1
0 (E')—2Cl* + 1? ~ E

X2
h

Y2
+

z2 i
0 (E")"F c2 3*

X2 Y2 Z2 I
0 (E'")+ ~¥ + ~2~ "L

c2 3~

M étant la masse du système, A, B, G, les moments d'inertie planaires
principaux, l'équation de l'ellipsoïde de Culmann est:

< I! 4. E iABC
avec a2b2c2

Entre les axes de l'ellipsoïde E et les éléments d'un quelconque de

ces tétraèdres T existent les relations suivantes:

a2+ b2+ c2 2 ;

an2 + iV + c'a2 '

243
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(V est le volume des tétraèdres T ; sont les six arêtes et Ai les

quatre faces de l'un quelconque d'entre eux).
Dans les tétraèdres T, indépendamment de leur volume, sont constantes :

la somme des carrés des arêtes; la somme des carrés des quatre faces;
la somme des carrés des distances de G aux sommets:

somme des carrés des a l'êtes — (a2 + b2 + c2)

16
somme des carrés des faces (a2 b2 + b2c2 + c2a2) ;

SGA2 + è2 + c2)

Le centre de la sphère circonscrite n'est pas assujetti à rester sur une
surface déterminée. Mais la sphère circonscrite est déterminée par son
centre: la sphère circonscrite reste orthogonale à une sphère imaginaire
fixe de centre G, qui n'est autre que la sphère orthoptique de F ellipsoïde E/;/.

On a en effet:

Les lignes médianes d'un tétraèdre T —-droites joignant les milieux
d'arêtes opposées *—• constituent un système de trois diamètres
conjugués par rapport à ces diverses quadriques. La somme des carrés des

longueurs des lignes médianes (somme qui est égale au quart de la
somme des carrés des arêtes) reste constante.

Parmi les différentes quadriques circonscrites à un même tétraèdre
quelconque, ayant pour centre le centre de gravité G du tétraèdre,
l'ellipsoïde dont les plans tangents aux sommets sont parallèles aux
faces opposées se présente comme généralisant seul l'ellipse circonscrite

de Steiner, dans la géométrie du triangle. De même, parmi les
différentes quadriques inscrites de centre G, l'ellipsoïde dont les

points de contact avec les faces sont les centres de gravité des faces
généralise seul l'ellipse inscrite de Steiner. Ces deux ellipsoïdes, qui
sont précisément les ellipsoïdes E et E', seront par la suite appelés
Y ellipsoïde circonscrit de Steiner et Yellipsoïde inscrit de Steiner.

Cas du triangle. — Dans le plan tout système matériel, peut être

remplacé, par équivalence dans la géométrie des masses par une infinité
de systèmes de trois poùits formant des triangles de même centre de

gravité G et de même aire.
Ces triangles sont inscrits dans une ellipse E1 et circonscrits à une

ellipse E2 de centre G: ce sont les ellipses circonscrite et inscrite de

Steiner.
Ces triangles constituent le système bien connu de triangles d'aire
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maximum inscrits dans V ellipseErIls ont même surface qui est à celle

4 _de l'ellipse E1 dans le rapport —ti: -a/3

Ils sont conjugués par rapport à une ellipse imaginaire de centre G.

Les tétraèdres T orthocentriques. —• Parmi l'co 3 de tétraèdres T,
Mdont les sommets affectés de masses — constituent un quadruplet

équivalent à un système matériel donné de masse M, ceux de ces
tétraèdres T qui sont orthocentriques méritent, par leurs propriétés,
un examen particulier.

La question d'existence d'au moins un tétraèdre orthocentrique
parmi l'infinité de tétraèdres T sera d'ailleurs posée à l'occasion de
l'étude analytique de l'équation aux moments principaux centraux
d'un système matériel quelconque.

Supposons donc qu'un tétraèdre T soit orthocentrique; soit H
l'orthocentre de coordonnées x0, y0, z0 par rapport aux axes de

l'ellipsoïde E' de Steiner et p le rayon de la sphère conjuguée. En
écrivant que la sphère conjuguée d'équation ponctuelle

X2 + Y2 + Z2 - 2*0X _ 2y0Y-2z0Zx\ + + 4 - f2 0

et d'équation tangentielle

Su2(p2 — xl) — 2 Huvx0y0 — 2 Hux0 1

est harmoniquement inscrite à l'ellipsoïde E et harmoniquement
circonscrite à E', on obtient les conditions:

+ 2/0 + 4 — p* ^(a2 + b2 + c2)

La puissance du centre de gravité G relativement à la sphère
conjuguée est constante pour les divers tétraèdres orthocentriques du

système T. La sphère conjuguée reste orthogonale à une sphère fixe de

centre G, la première sphère de 12 points.
La première sphère des 12 points est la sphère orthoptique de

l'ellipsoïde inscrit E'.
Lorthocentre H a pour lieu une biquadratique gauche définie par des

ellipsoïdes, coaxiaux aux ellipsoïdes EE 'de Steiner, d'équations:

'•{t?+ + "•(? + + =•(? + v)

£<• + »•+ '•>(? + £ + ?)- >

X2 X2

const. ^ - 9. const.
a- a4
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Le premier ellipsoïde appartient au faisceau ponctuel de quadriques
défini par Vellipsoïde E et la première sphère des douze points.

La connaissance de H entraîne celle du tétraèdre.
Le centre 0 de la sphère circonscrite, le centre O' de la deuxième

sphère des douze points et le point H' inverse de H par rapport au
tétraèdre (IL est le point qui se projette sur chaque face en son centre
de gravité) décrivent respectivement des biquadratiques homothé-
tiques à celui qui est le lieu de l'orthocentre H.

Posons a2 + h2 + c2 9w2 (constante).
La sphère circonscrite est orthogonale à une sphère fixe de centre G

et de rayon fw a/3-

La deuxième sphère des douze points est orthogonale à une sphère

fixe de centre G, de rayon i^~~.(A.

On a les relations suivantes:

R2 + 3o2

— (R2 — 3to2)
y

v '

Les hauteurs du tétraèdre orthocentrique sont normales à Vellipsoïde
circonscrit E aux quatre sommets du tétraèdre.

Les arêtes des tétraèdres orthocentriques T sont les droites du complexe
tétraédral dé équation

d2p1pi + b2p2pb + c2p3pe 0

en coordonnées pliickériennes p{ de droites. Les arêtes appartiennent
ainsi à la congruence commune à ce complexe tétraédral et au
complexe spécial attaché à la quadrique E".

Les milieux des arêtes (points de contact de celles-ci avec l'ellipsoïde
E") sont situés sur une biquadratique gauche définie par E" et par
la première sphère des douze points.

Si L est le milieu d'une arête AB, L' le milieu de l'arête opposée
d'un de ces tétraèdres orthocentriques, Varête A1A2 coïncide avec
Pune des directions principales de F ellipsoïde E" au point L; de même
la droite CD, orthogonale à la précédente, est direction principale
du même ellipsoïde en son milieu L'.

La géométrie des triplets,

Trois masses «, /3, y sont respectivement appliquées aux sommets
A, B, G du triangle de référence. Le centre Y des trois masses a pour
coordonnées barycentriques des expressions proportionnelles à a, ß, y.

HG2 g2 + cA un2

OG" mm R2 — 3 co2 O'G"

R2 p2 + 4 (o2
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Si le système est rapporté aux axes centraux d'inertie, les trois

conditions suivantes sont vérifiées:

*xt + + ï^3 0
»

aVl + f%2 + T2/3 0
>

axiVi + ßX2y2 + T^32/3 *= 0 ;

les indices 1, 2 et 3 affectent respectivement les deux coordonnées
cartésiennes Xi et y\ des sommets A, B, G. L'élimination des masses
entre ces trois conditions linéaires et homogènes conduit à la relation

xiVi X2 y2 x3 y3

x± X2 X3 0

Vi V2 ys

qui exprime que les sommets du triangle de référence, le centre L (et
Vorthocentre H du triangle) appartiennent à une même hyperbole
équilatère dont les directions asymptotiques sont celles des axes principaux

et centraux d'inertie.
La construction des axes centraux d'inertie du triplet découle de

cette proposition.
Par le point F, centre des masses, passe une hyperbole du faisceau

des hyperboles équilatères circonscrites au triangle ABC. Il suffit
de mener par T les parallèles aux asymptotes de cette hyperbole;
ces deux parallèles sont précisément les axes de symétrie de l'ellipse
centrale d'inertie.

En particulier, lorsque T est sur un côté, B G par exemple (a =0),
les axes centraux sont le côté B C et la parallèle à la hauteur A H.

Lorsque le centre T est sur une hauteur, A H par exemple, les axes
centraux d'inertie sont la hauteur A H et la parallèle menée par T
au côté B C.

Cas où le centre des masses est Vorthocentre. Dans le cas
L

$
a _ ß _ Y

j
«g A lg B tgC'

le centre T des masses coïncide avec Vorthocentre H du triangle. Toutes
les hyperboles équilatères circonscrites au triangle A B G passant

f par H, il y a indétermination pour la construction des axes centraux
d'inertie. Vellipse dinertie centrale est donc un cercle.

Réciproquement d'ailleurs pour que Vellipse centrale dun triplet
(a, /3, y) de trois masses non-nulles disposées aux sommets du triangle
A B G soit un cercle il faut que ces masses soient proportionnelles à tg A,
tg B et tg G; le centre des masses est alors Vorthocentre H.
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Prenons

a tg A ß tg B y tg G ;

la masse totale est

M a + p + y tg A + tg B + tg G tg A. tg B. tg C ;

le moment d'inertie par rapport à une droite quelconque passant par
l'orthocentre est égal au double de la surface du triangle:

I 4 R2 sin A sin B sin G 2 S ;

l'expression du rayon de gyration est donc:

K2 rr= -î- 4 R2 cos A cos B cos C ;
M

par suite:
K2 — p2

p désignant le rayon du cercle conjugué au triangle.
Le moment d'inertie polaire en H est

le rayon de gyration par rapport à l'axe normal en H au plan du
triangle est donc:

k'h ~®.

î? désignant la puissance de H par rapport au cercle circonscrit au
triangle ABC:

— — 8 R2 cos A cos B cos G

Supposons les masses positives; le triangle a tous ses angles aigus.
Dans ce cas, l'ellipsoïde d'inertie du triplet est une sphère, au point
sous lequel les trois côtés du triangle sont vus sous des angles droits.

Ce cas remarquable est le seul pour lequel Vellipse (T inertie du triplet
est un cercle, en supposant les trois masses non-nulles. Lorsque T est
en un sommet (A par exemple, pour ß 0 y — 0), l'ellipse centrale
d'inertie est le cercle-point A. La propriété caractérise donc les quatre
points fondamentaux du faisceau des hyperboles équilatères.

Tandis qu'à tout point T du plan sont associées deux droites
À À' comme axes centraux d'inertie, la question se présente plus
simplement lorsque on se donne au contraire une droite A.

Une droite A étant imposée, il existe sur elle un point T et un
seul, tel que T soit centre d'un triplet (a ß y) admettant A comme
axe de symétrie de l'ellipse centrale d'inertie.
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A étant donnée, il existe une hyperbole équilatère du faisceau
l'admettant pour direction asymptotique. L'hyperbole rencontre A
à distance finie en un point T unique, qui est précisément le point T.

La construction du point T s'effectue simplement. L'involution
déterminée sur la droite A par l'ensemble des hyperboles équilatères
du faisceau, associe le point F au point à l'infini de A. Les points
doubles de l'involution sur A peuvent être définis par l'intersection
de la droite avec le lieu des points de contact des tangentes menées
aux hyperboles par un point déterminé de A : ce lieu, qui est en
général une cubique, dégénère en une conique lorsque le point est
sur l'un des côtés ou sur l'une des hauteurs du triangle. Par exemple,
avec les notations qui vont être adoptées par la suite, si le point est
la trace sur B G de la droite A, ce lieu a pour équation (en bary-
centriques)

vqY2 + wrZ2 pX(vY + wZ) ;

cette conique passant par A, H, les pieds des hauteurs relatives aux
côtés AB, et AG coupe A aux deux points d'intersection de cette
droite avec la conique conjuguée d'équation:

up X2 -f vqY2 + wrZ2 0

Voilà donc quatre coniques définissant les points doubles sur A.

Cas des droites de Simson. — Les asymptotes d'une hyperbole du
faisceau équilatère ABGH sont les droites de Simson des deux points
d'intersection du cercle circonscrit avec la droite inverse de l'hyperbole
relativement au triangle. Réciproquement toute droite de Simson est

asymptote d'une hyperbole équilatère circonscrite.
L'involution est donc spéciale lorsque la droite A est une droite de

Simson. L'un des points doubles est à l'infini; le second est à distance
finie. Dans le faisceau, il y a trois hyperboles dégénérées: chacune
d'elles est constituée par un côté et la hauteur opposée; le point double
à distance finie est donc le milieu du segment déterminé par ces deux
droites sur la droite de Simson.

Nous obtenons ainsi une propriété intéressante des droites de
Simson.

Les trois segments déterminés sur une droite de Simson par les côtés

et les hauteurs du triangle A B G ont même milieu.
Nous reviendrons avec plus de précisions sur cette question, après

l'étude de la relation entre les coniques d'inertie et les coniques conjuguées

au triangle.

Formules générales. — Si l'équation d'une droite quelconque D

du plan est, en coordonnées barycentriques,

uX -j- pY + <vZ 0
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les distances des sommets du triangle de référence à cette droite sont
respectivement égales à u, v, w, sous ia condition

a2u2 + b2v2 -f- e2w2 — 2 be cos A vw — 2ca cos Bwu — 2ab cos C uv — 4S2

qui s'écrit encore:
Za2(u — c) (u — w) 4S2

Nous introduirons les coefficients

cotg A p cotg B q cotg C r

et poserons

U v — w N w — w, W u — c;

U, V, W sont les coordonnées barycentriques du point à l'infini de
la droite D. La condition précédente prend la forme:

p\]2 + q\2 + rW2 — 2S

Nous l'écrirons
d» 2S

en posant:
pU2 + q\2 -f rW2 ;

0 est l'équation tangentielle des deux points cycliques.
La distance des deux points quelconques du plan de coordonnées

barycentriques M(<x ß y) et M'(a' ß' y') est alors :

mm'2 2S[>(Aa)2 + g(Aß)2 + r(Ay)2]
c'est-à-dire

mm'2 2 S<J> (Aa, Aß, Ay)

en posant:
Aa _ + Y + Y a + ß + Y

etC>

Equation quadratique des axes centraux d'inertie. — Les distances
des sommets A B G à la droite D d'équation uX + cY + wL 0
étant u, c et w, sous la condition <I> 2S, le moment d'inertie du
triplet par rapport à la droite est:

I OLU2 -f- ßc2 + Y w2

Pour déterminer les axes principaux A et A' d'inertie au centre T,
il faut chercher le maximum et le minimum de cette fonction I des
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trois variables u,v et w,enposant qu'elles sont liées par les relations

au + ßc 4* y a? 0

$ 2S

Ces deux conditions dérivées totalement permettent de déterminer
des expressions proportionnelles aux différentielles du, de, dw ; en les
introduisant dans la condition dl 0 on obtient

20 — vu

—-— [a2 (v -f (V — 2 u) + (b2 — c2) (c — <v)] 0

c'est-à-dire:

yL(L_±
Telle est la condition pour que la droite soit un axe central A

d'inertie. Les équations

SuX 0 Hua 0

montrent que u, e, w sont proportionnelles à ßZ— y Y, etc.,.. et
par suite que U, V, W ont des expressions proportionnelles à
(oc + ß + y) X —• «(X + Y + Z), etc... qui portées dans la condition

précédemment formée donnent Yéquation quadratique du système
des axes centraux d'inertie:

Sp a(ßZ y Y) [(a + ß + T) X - a(X + Y + Z)] 0

Cette équation est identiquement satisfaite lorsque

clP [iq yr ;

le point T est alors l'orthocentre H (de coordonnées barycentriques
tg A, tg B, tg C). Ce résultat confirme bien la proposition déjà signalée :

l'ellipse centrale d'inertie est un cercle lorsque T est en H.
Lorsque T est sur le côté B C, par exemple, a 0, l'un des axes est

le côté X 0 et l'autre la droite

xrr — gß _ pZ + y o
q + r

1 ^ 1

perpendiculaire au côté BC.

Lorsque T est sur la hauteur AH, tgc)' ^auteur

est l'un des axes :

qH rZ

l'autre est la droite parallèle au côté BC:

(a + ß + y) X a (X + Y + Z)



GÉOMÉTRIE DES MASSES 79

Si la masse totale est nulle: a + ß + y 0 (le centre des masses T
est alors à l'infini) l'équation des axes montre que l'un des axes est
la droite à l'infini, tandis que l'autre est la droite d'équation

2a2p(ß Z-yY) 0

ou encore:
~ßy(?ß — h)x 0 ;

on vérifie que ses coordonnées satisfont à l'équation tangentielle

*LPu{v — w)2 0

qui sera formée plus loin pour l'enveloppe des droites de Simson du
triangle.

Equation aux moments centraux d'inertie. — L'expression du moment
d'inertie du triplet par rapport à une droite prend une forme remarquable

lorsque la droite passe par le centre T des masses. Des équations

I au2 -f ßp2 -f jw2

o au + ßp + yw
on déduit:

(a 4- ß H- t) I (a + ß + y) (a^2 + ß^2 + y^2) — (a^ + ßc + yw)2

XßyU2 ;

et par suite:
t -Ii [H! l2 w2]

a Hb ß y |_ - ß y ]*

La condition fondamentale — 2S exprime précisément, en
application de cette formule générale que le triplet (ocp — ßq y r) dont
le centre est en H a par rapport à toute droite passant par l'orthocentre

un moment d'inertie I 2S.
Pour les axes centraux, on aura:

U 4- V + W 0 ;

/ m n

ü + T + w
0 '

SpU2 2S

en posant:
r _cL m ~ — - n — 1 — R
i y y a aß
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Nous prendrons I 2S — 0, d'où
a + ß + y

s H!

G

L'élimination de U, V, W entre les trois équations homogènes du
second degré:

SO-(p.-i) 0

su 0 s^ 0
u

exprimant le concours de deux coniques et de la droite de l'infini en
un certain point, conduit à la condition

((X l 4* (Jhm + Gn)2 -f- (l2 -p m2 -j- rr — 2lm — 2mn — 2 ni) S X6h 0

avec

Cl dO — -, (33 ?0 — i,« ß T

Mais (XI + 6hm + 0 ; il reste donc

HiXûh 0

et par suite:

62_e.s^+ g + f + T 0
a aßy

Gomme 0 est une expression égale à I à un facteur près, il en résulte

que les moments d'inertie principaux l1 et I2 au centre T des masses
sont définies par les deux conditions:

h + 1,
a

'ff -2<g + r)ßT

1,1, 4S*.

« + ß + Y

aßy'
a + ß + y

Le moment d'inertie polaire par rapport au point T est Ix + I2.

Le cercle circonscrit au triangle ABC a pour équation

Za2 YZ 0

c'est-à-dire
S (q +'r)YZ 0
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puisque les côtés s'expriment en fonction de p q r par des formules
telles que

a2 2 S (q A r) etc.

La puissance du centre Y par rapport au cercle circonscrit (centre 0,
rayon R) est:

Or2 — R2 —
(a + ß + y)2

ISous trouvons ainsi la relation

J_ _ (ÔT2 _ R») ;

le carré du rayon de gyration du triplet par rapport à Faxe normal au
plan du triangle au centre Y des masses est égal à la puissance, changée
de signe, du point Y relativement au cercle circonscrit au triangle.

Cette propriété est immédiate, si l'on observe que le moment
polaire du triplet par rapport au centre 0 du cercle circonscrit est
MR2.

Droite imposée comme axe central d1 inertie. —- Soit une droite A de
coordonnées absolues w, e, w. Soient U, V, W les coordonnées de son
point à l'infini.

Un point M quelconque de la droite A sera représenté au moyen
d'un paramètre t. Les coordonnées du point seront proportionnelles
aux expressions suivantes:

ï-v(,-i). z-w
le paramètre t est proportionnel à la distance du point M à une origine
déterminée sur la droite. La distance entre deux points MM' de la
droite, de paramètres respectifs t et t\ a pour expression

M M '. 2 Y 2S(« —

c'est-à-dire

Les coniques du faisceau ponctuel (ABC H) ont pour équation

générale 2~ 0, avec la condition 1 p JA ~~ 0. L'hyperbole équila-
tère ayant la droite A pour direction asymptotique est définie par la

E
condition Ayr 0. Il faut donc prendre pour coefficients:

Li

JA U (qW — r\V)
L'Hnsei<rneinent triathcm., 30e année, 1931.

etc.

6
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En introduisant la distance H de l'orthocentre H à la droite À,
ces expressions des coefficients dans l'équation de l'hyperbole équila-
tère deviennent (à un facteur près):

£ - (H — u).Pour définir le point T — centre de masses tel que A soit axe
central d'inertie —- il convient de considérer ce point V comme étant
le point à distance finie d'intersection de la droite V avec l'hyperbole
équilatère précédente. Le paramètre t de ce point T est donc la racine
de l'équation

y H - ", o

P\t 77

l'équation
» u (H — u)

-y
u)

T)(ut — L

définit une racine t telle que

1
T1 (H - u) (H — ç) (H -J= H +— ©LTTP

u _ ar vw
H ~

—u
t — qr. g) _ H2

avec
0 qru2 + rpv2 + pqw2 ;

H qru + rpç + pqw ;

(u, ç>, w sont les distances des sommets à la droite A, H est la distance
de l'orthocentre; 0 est l'expression du moment d'inertie par rapport
à A de trois masses qr, rp, pq ayant pour centre le point H). Il résulte

que l'on peut prendre pour coordonnées du point T des expressions

proportionnelles aux suivantes:

X —
H ~ u Y

H ~ p
Z

H
—

W

pu
'

qv rw

On peut encore poser:

ï=®uti ' cv w\\

£, Jll, 91étant les coefficients de l'équation de l'hyperbole équilatère
admettant A pour direction asymptotique.
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Cas d'un centre des masses à l'infini. — Le point T est à l'infini pour:

X + Y + Z 0

yH- " 0 ;

pu

on peut encore poser ~ 0 et la condition prend la forme

H (0 — H2) + (H — u) (H — v) (H — w) 0 ;

l'équation tangentielle de l'enveloppe des droites A telles que T soit
à l'infini se met sous la forme :

SpuU2 0

Une droite A (u, e, ce), quelconque du plan, rencontre le côté BG
du triangle de référence en un point P qui donne lieu à la relation

BP2 — CP2 t-OL
;

c — w

les droites de Simson, sont définies par la condition

X BP2 XCP2

exprimant le concours des perpendiculaires aux côtés en P et les
deux autres points analogues. L'équation tangentielle de l'hypo-
cycloïde à trois rebroussements enveloppe les droites de Simson
est donc

V 9 p + W AX a2. 0 ;
v — w

c'est-à-dire

2(2 + r)V-±J0 ;

v — w

puisque les carrés des côtés du triangle ont pour expression

a2 — 2 S (q -|- r) etc.

l'équation rendue entière est:

?pu(v — w)2 0,
XpuU2 0

Ainsi est reconnue l'identité des droites de Simson et des droites
telles que Y soit à l'infini.
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Exemples et remarques. — Lorsque T est en G (a ß y; cas
de la surface homogène d'une plaque triangulaire ayant A, B, G pour
milieux des côtés), les axes principaux sont parallèles aux asymptotes
de l'hyperbole équilatère (ABGG H), d'équation (en barycentriques)

2 sin A sin (ß — C)
—£ - 0 ;

c'est l'hyperbole de Kiepert.
Si À est la droite d'équation

XtgA-}-YtgB-{-ZtgC 0

/ 1 1 1 \^ —, v — —, w —), r a des coordonnées proportionnelles
aux expressions

X p{q2 + r2) — qr(q + r) elc.

T est l'intersection de la droite A et de la droite d'Euler.
X Y Z

Si A est l'axe anti-orthique — + + — 0, les coordonnées de T

sont
X sin2 A (cos B -f- c°s C — 1) ; elc.

le point T est inverse du point de coordonnées

cos B -f- cos C — 1

1
(le point de coordonnées normales — ^ 7, etc. est l'in-x 1 cos B -)- cos C, — 1 7

tersection du cercle circonscrit avec l'hyperbole de Feuerbach; d'où
une construction du point F).

Lieu du point T tel que l'un des axes centraux associés à ce point
passe par un point imposé F (Xc, Yc, Z0).

Le lieu est une cubique passant par A, B, C et F qui est point
double; l'équation de cette cubique est en coordonnées courantes
(ctßy):

Xpa([3Z0 — yY0) [*(X0 + Y0 -j- Z0) — X0(a + fi + «j)] 0 ;

les tangentes au point double sont les axes centraux associés à ce

point.
Il y a décomposition lorsque le point F est sur les côtés, les hauteurs

ou à l'infini.
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Relation entre les coniques d'inertie
ET LES CONIQUES CONJUGUÉES RELATIVEMENT AU TRIANGLE.

L'enveloppe des droites du plan par rapport auxquelles le moment
d'inertie du triplet est nul est la conique d'équation tangentielle

au2 + [îp2 + yw2 0

et par conséquent d'équation ponctuelle

X2 Y2 Z2- + ~ + - 0
a ß y

C'est la conique conjuguée par rapport au triangle ayant le point T
pour centre.

Il existe, d'une manière générale, une relation remarquable entre la
conique d'inertie d'un système matériel quelconque du plan et la
conique enveloppe des droites de moment d'inertie nul.

Si l'on considère le système rapporté à ses axes centraux
d'inertie, le moment d'inertie par rapport à une droite quelconque
x cos <p + y sin cp — to du plan a une expression de la forme.

I X />q (xt cos ç -f yt sin o — ût)2

Ci cos2 y -{- 6b sin2 9 -[- M m2 ;

l'enveloppe des droites de moment d'inertie nul est donc la conique
d'équation tangentielle

Cl U2 + 6b C2 A M =: 0

D'autre part le moment d'inertie du système par rapport à la droite
parallèle à la précédente, passant par le centre F des masses, est

I CL cos2 9 S (Jj sin2 9

et la conique d'inertie a pour équation ponctuelle

Ci y2 -p üb x2 — 1

La conique enveloppe des droites de moment nul ayant pour équation
ponctuelle

X + Y +1 0;
Cl (B M

est donc homothôtique à la conique d'inertie

x2 y2 1

cl 6b döb 1
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on pourra prendre ÖL Il5 6b I2, Ix et I2 étant les momeuts
d'inertie principaux au centre de gravité. La conique enveloppe
des droites de moment d'inertie nul se déduit donc de la conique
d'inertie par une homothétie, dont le pôle est au centre des masses, et
dont le rapport 1 est défini par la condition

-j 9, L • L
v — M '

Cette remarque permet de déterminer la conique d'inertie à partir
de l'enveloppe des droites de moment d'inertie nul. Dans le cas
actuel, nous obtenons ainsi une proposition simple.

La conique centrale d'inertie du triplet de centre T est homothétique
à la conique de centre T conjuguée par rapport au triangle.

Il est ainsi possible de retrouver les expressions l± + I2 eI I x ï2
à partir de celles bien connues qui donnent les demi-axes d'une
conique conjuguée par rapport au triangle de référence.

Dans le cas où T est l'orthocentre H, l'enveloppe des droites de
moments d'inertie nuls est le cercle conjugué. Réciproquement, pour
que l'ellipse centrale d'inertie d'un triplet soit une circonférence,
il faut que le centre des masses soit l'orthocentre. Cette proposition
établie plus haut est une conséquence directe du théorème plus
général ci-dessus donné.

Cas de la masse totale nulle. — Lorsque la masse totale est nulle
l'enveloppe des droites de moment d'inertie est encore une conique
conjuguée. Mais, dans l'hypothèse a -h ß + y 0, cette parabole

au2 + ße2 -f y<v2 0 ;

est la parabole dont l'axe a la direction du point T à l'infini de
coordonnées (a, /3, y).

Les coordonnées du foyer F de la parabole conjuguée sont

X a(£ — ap) Y ß(ö — ßg) Z y (è — y /*)

avec
2$ ap + ßg + fr

L'axe de la parabole conjuguée est la droite de Simson associée au

point F (au titre d'axe principal d'inertie). Cette droite est définie

par le foyer F et par un point <p dont les coordonnées sont:

P a2 qrC /-y2.

En remarquant que les coordonnées du foyer de la parabole
conjuguée donnent lieu à des relations telles que

Y -f Z — X (g + r) ßy ele.
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et par suite
a ß T

q î~ r
~~ r + P

~~
P + <ï

y 4, z — X Z 4- X — Y X + Y — Z

il résulte de a + ß + y — 0, l'équation

y 1 ± -0Zj y -f Z — X

du lieu de ce foyer F; c'est l'équation
2 E(q 4- r) YZ (X + Y + Z) (pX + qX + rZ)

du cercle des neuf points du triangle de référence.
La droite de Simson contenant le point F et le point 9, les équations

£ a (0 — p a) y] ß (0 — grß) X Y (P — rï)

représentent en fonction d'un paramètre p les coordonnées d'un point
courant; la distance de deux points quelconques de la droite est

proportionnelle à la différence de leurs paramètres p — p'.
La droite de Simson, représentée par ces formules, rencontre le

côté BG au point de paramètre p1 la hauteur correspondante
est rencontrée au point de paramètre p2 qß -\- ry; le milieu du
segment ayant ces deux points pour extrémités a pour paramètre p

2o =s pcL 4- 4- ry ;

ce milieu est donc identique au foyer de la parabole conjuguée. Les
trois segments déterminés sur toute droite de Simson par les côtés et les
hauteurs du triangle de référence ont pour milieu commun le foyer F
de la parabole conjuguée.

Le point 9 (de coordonnées pa2, qß2, rv2), associé à tout point'222r(ft, ß1 y) décrit une conique inscrite de centre — —, y, d'équation,

2^=0,^ pu

lorsque le point T décrit une droite D0(u{), e0, w0). La polaire,
Ipy.X 0, de 9 par rapport à la conique conjuguée de centre T

passe par un point fixe lorsque T décrit la droite D0.

Nous sommes dans le cas 011 D0 est la droite de l'infini. Le point 9
a pour lieu la conique inscrite au triangle,

2— =0.pu

concentrique au cercle circonscrit au triangle.
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La directrice de la parabole conjuguée, directrice dont l'équation est

2^<Y + z - X) 0

passe, on le sait, par le centre 0 du cercle circonscrit; et la polaire
de 0 passe donc par le point F. La polaire de H par rapport à la
parabole conjuguée a pour équation

S-= 0 ;

p a

elle passe par <p, qui est donc défini géométriquement par V intersection
de cette polaire avec la droite de Simson et avec la conique inscrite concentrique

au cercle circonscrit.
La tangente en <p à cette conique inscrite est précisément la polaire

de H par rapport à la parabole conjuguée.
La condition de coïncidence des points f et F est 2pz 0. Le

point F est alors le point à l'infini de la polaire trilinéaire de l'ortho-
centre H.

Si d'autre part, on considère une parabole inscrite d'équation

— + — + — o Cl + <3+ <2 o,
U V W

le foyer M de cette parabole inscrite a pour coordonnées barycen-
triques:

g + r + P P + 9x~ci ' y~ 6b~'ze '

la condition Cl + 6b + £ 0 rend manifeste le fait que le lieu
du foyer M de la parabole inscrite est le cercle circonscrit:

o.-—1 x

La directrice, étant la polaire du foyer M par rapport à cette
parabole inscrite, son équation est

2p£LX 0

par suite, toute droite perpendiculaire à l'axe de la parabole aura

pour coordonnées (à un facteur près)

u =2 p(3L + CT v qüb + a w — r £ + a ;

g est un paramètre arbitraire.
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La paramètre de la tangente au sommet de la parabole inscrite
a pour expression <7:

a. (p cX2 + qÔ32 -f rC2) cXd3(3

Cette tangente au sommet est une droite de Simson, pédale du foyer M
de la parabole inscrite.

La confrontation des résultats obtenus séparément pour la parabole
conjugués d'axe À, et pour la parabole inscrite de tangente au sommet

A, cette droite A étant la même droite de Simson, montre qu'il
convient d'introduire trois paramètres L m, n et de poser ensuite:

p a l qß m ry n

cl ni — n üb n — l (3 l — m

avec la condition

Au moyen d'un point figuratif, décrivant la droite 3 — 0, on

représente ainsi et en même temps l'infinité de droites de Simson,
les paraboles conjuguées les admettant pour axes, les paraboles
inscrites les touchant en leurs sommets.

La droite M H — joignant l'orthocentre H au foyer M de la parabole
inscrite —- a pour équation

^ p CX (m -f- n — Z) X 0 ;

le paramètre p du point d'intersection de cette droite MH avec la
droite de Simson

£ — a (p — p a) etc.

a pour valeur:

y + m + n) y(Pa + qß + H)

et par suite nous vérifions que ce point est bien le foyer F de la parabole

conjuguée.
Ainsi donc F — foyer de la parabole conjuguée — est le milieu de la

droite M H et des trois segments déterminés sur la droite de Simson A
par les côtés et les hauteurs du triangle de référence.

La droite A — associée a un point F à l'infini, comme axe central
d'inertie — rencontre le cercle des neuf points en deux points; dont
l'un est le centre de l'hyperbole équilatère admettant A pour asymptote

et dont l'autre est le point F ainsi défini géométriquement et
qui est associé à F comme point double à distance finie de l'involution
tracée sur A par les hyperboles équilatères circonscrites au triangle.
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Constructions géométriques. —• Pour conclure, nous pouvons donner
la construction suivante.

Une droite A est imposée comme devant être axe central d'inertie
pour un choix convenable de trois masses (oc ß y) du triplet ABG.

Chaque couple constitué par un côté et la hauteur correspondante
du triangle ABC détermine sur la droite À un segment A' H, etc.
dont les extrémités sont un couple de points conjugués de l'invo-
lution.

Soit alors A' l'axe radical des trois cercles décrits sur les segments
A'RV B'H2, C'H3.

A' rencontre A au point F qui doit être associé à A comme centre
des trois masses.

Les axes centraux en T sont A et A'.
Le cercle de centre T coupe A en deux points qui ne sont autres

que les points doubles de l'involution sur cette droite A.
On sait que l'enveloppe des droites de même moment d'inertie,

pour un système matériel donné, est une conique appartenant à un
système homofocal. Ce système comprend la conique conjuguée,
enveloppe des droites de moment d'inertie nul. Les foyers de cette
conique conjuguée sont des coniques dégénérescentes du système:
l'ellipse d'inertie du triplet de centre F est un cercle en chacun de

ces foyers.
Ces foyers sont les points doubles des involutions respectives

sur A et sur A'.
La construction précédente fait connaître immédiatement les deux

foyers réels de la conique conjuguée, par application à l'une des deux
droites A ou A'.

Dans un second mémoire, j'exposerai la question des systèmes de

quatre masses disposées aux sommets d'un tétraèdre, en particulier
du système de quatre masses ponctuelles égales entre elles et constituant

un quadruplet équivalent à un système matériel quelconque.
Par l'emploi systématique des coordonnées barycentriques tétra-
èdriques et par la considération des quadriques conjuguées au tétraèdre
fondamental, les calculs de la géométrie des masses peuvent ainsi
être présentés sous une forme remarquable.
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