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SUR L’EQUIVALENCE EN GEOMETRIE DES MASSES

PAR

Emile Turritre (Montpellier).

Deux systémes de masses seront dits équivalents lorsqu’ils auront
meéme masse totale, méme centre de gravité et méme moment d’inertie
par rapport 4 un élément quelconque (point, droite ou plan) de
Pespace.

Ces conditions sont évidemment surabondantes.

D’une maniére précise, I'équivalence résulte de Uégalité des deux
masses totales et de U'identité des deux ellipsoides ceniraux d’inertie de
Cauchy-Poinsot.

I en résulte I'identité des divers autres ellipsoides centraux
(ellipsoide de Binet, ellipsoide de Mac-Cullagh, ellipsoide de Culmann),
et, ensuite, 'identité des ellipsoides pour n’importe quel point de
I’espace: ces propositions sont des conséquences des théorémes géné-
raux sur les moments d’inertie.

Pratiquement, il y aura lieu d’assurer ou de vérifier, suivant les
cas, ’égalité des masses totales, la coincidence des centres de gravité
ainsi que l'égalité des moments d’inertie par rapport a six droites
quelconques passant par le centre commun de gravité.

Ces six droites pourront d’ailleurs étre prises arbitrairement dans
Pespace, sous la condition que deux d’entre elles ne soient pas paral-
leles: (Cest ainsi que, dans certains cas, les six arétes d’un tétraedre
pourront étre considérées.

Au lieu de six droites quelconques, on pourra prendre six plans de
directions distinctes, et supposer respectivement ¢gaux les moments
d’inertie planaires des deux systémes matériels par rapport aux
six plans.

Dans le cas particulier de la géométrie plane, I’équivalence de deux
systémes matériels situés dans un méme plan est acquise lorsque,
les masses totales étant égales et les centres de gravité confondus,
les moments d’inertie par rapport aux trois cdtés d’un triangle quel-
conque (non dégénéré) sont respectivement égaux. Il y a alors identité
des ellipses centrales d’inertie et par suite des ellipsoides centraux.
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I1 v a équivalence des moments d’inertie par rapport & toutes les
droites. & tous les points et a tous les plans de I'espace.

11 est & remarquer que ’emploi de I'ellipsoide d’inertie de Cauchy-
Poinsot (I'ellipsoide habituellement considéré et qui représente les
moments d’inertie par rapport a des droites) n’est pas indiqué dans
cette théorie. L’ellipsoide qui se présente dans les considérations qui
vont suivre est Vellipsoide de Culmann: étant donné un systeme
matériel I'étude des moments d’inertie planaires, pour les divers plans
passant par un point O se fait au moyen de lellipsoide de Binet
d’équation:

AX2 - BY2 &+ CZ? = 1 ;

ou de lellipsoide réciproque, appelé ellipsoide de Culmann, dont
I'équation est

les axes de ces ellipsoides sont les axes principaux d’inertie au point O;
A, B, C représentent les moments planaires d’inertie par rapport aux
plans X =0, Y =0ouZ = 0.

Il v a lieu, par exemple, de remarquer que, tandis qu’en géométrie
du triangle, l'ellipse centrale d’'inertie est homothétique des ellipses
inscrite ou circonscrite de centre G, centre de gravité du triangle,
il n’en est pas de méme pour le tétraédre quelconque: lellipsoide
central d’inertie du tétraédre n’a pas d’homothétique parmi les
ellipsoides inserits ou circonscrits, en nombre infini, de méme centre.

De méme, pour un choix convenable de densité, I'ellipse centrale
d’inertie de 'aire de l’ellipse homogéne coincide avec ellipse elle-
meme. Il n’en est pas de méme pour le volume homogéne d’un ellip-
soide et son ellipsoide central d’inertie de Cauchy-Poinsot.

Ces contradictions entre le cas du plan et celui de 'espace dispa-
raissent par I'introduction de ellipsoide de Culmann, qui se présente
ainst de lut-méme dans les résultats comme étant la véritable extension
pour Uespace de Uellipse d’inertie du plan.

D’ailleurs, dans les recherches qui vont suivre, 'ellipsoide de
Culmann sera homothétique (dans un rapport imaginaire) a la qua-
drique conjuguée de méme centre par rapport au tétraédre fondamen-
tal: ¢’est la un fait digne d’intérét.

Enfin, il est & remarquer — et ceci peut présenter de sérieux avan-
tages dans certains cas pour la réduction des calculs — que 'enveloppe
des plans de moment d’inertie nuls pour un systéme matériel donné
est précisément l'ellipsoide imaginaire (conjugué par rapport au
tétraédre dans les considérations qui suivent). Alors que les calculs
de moments d’inertie peuvent étre longs et pénibles, enveloppe des
plans de moments d’inertie nuls est aisée & déterminer et Pellipsoide
de Culmann s’en déduit immédiatement. Dans les calculs en coor-
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données triangulaires ou tétraeédriques la forme remarquable de
Iéquation des coniques ou des quadriques conjuguées réduit les
calculs d’éléments principaux au minimum de difficultés ou d’étendue.

Il est entendu que, dans I'étude présente, les masses négatives ne
sont pas écartées. Il s’agit de géométrie du triangle et de géométrie
du tétraedre, ou les faits doivent étre présentés dans toute leur
généralité. Il suffira de substituer a la notion d’ellipsoide d’inertie
celle de quadrique d’inertie (ou de conique d’inertie dans le plan).

Dans certains cas de représentation par équivalence d’un systéme
matériel, il peut se faire que des points affectés de masses négatives
fournissent des solutions simples. Comme il s’agit d’une question
d’ordre pratique, de calculs par des procédés les plus simples possibles,
il n’y a aucune raison de se priver de I'avantage que peuvent offrir
de telles masses négatives.

Lellipsoide de Legendre. — L’ellipsoide de LEGENDRE 7 est 'exemple
le plus ancien d’équivalence entre un systéme matériel quelconque
et la masse d’un ellipsoide fictif, homogéne. Partant de la remarque
qu'un systéme particulier, dont la surface centrale d’inertie est une
sphére de rayon R, est équivalent & une masse sphérique homogéne
de rayon R\/ 5, on est conduit par affinité au théoréme suivant:

Tout systeme de masses est équivalent a un ellipsoide homogéne
(Pellipsoide de LEGENDRE).

L’ellipsoide de Legendre est homotketzgue et concentrique a 'ellipsoide
central de Culmann dans le rapport d'homothétie 4/5.

Cet el]ipsol‘de de Legendre n’ayant aucun intérét, nous n’insisterons
pas. Ce qui est plus important c’est de remplacer par équivalence,
un systéme matériel quelconqup par un nombre limité de masses
disposées en des points, associés d’une maniére simple au systéeme
étudié, et ramenant les calculs de la géométrie des masses a de simples
évaluations de distances de ces points a des plans, a des droites ou a
d’autres points de I'espace.

D’ailleurs I’équivalence d’un systéme matériel avec son ellipsoide
de Legendre découle de Péquivalence du systeme avec un systéme de
quatre points. 11 suffit d’assurer 'identité entre les tétraédres représen-
tatifs du systéme et de Pellipsoide de Legendre.

Inertie dune plaque triangulaire homogéne (SYLVESTER, RouTH). —
Soit un triangle ABC dont la surface homogéne a pour masse M. Le
moment d’inertie par rapport au coté BG est:

I = —z—Mh2 ,

1 LEGENDRE, Fonclions elliptiques et eulériennes, édition 1825, tome I, p. 410.
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h étant la hauteur relative a ce coté. D’autre part le systéme de trois
masses égales a 3 placées aux milieux des cOtés du triangle a méme

masse totale M et méme centre de gravité G que le triangle. Les
moments d’inertie du triplet sont respectivement égaux a ceux du
triangle relativement aux trois cotés. Il y a done équivalence.
Il y a équivalence entre U'aire homogéne du triangle et un systéme
: M . ) T iy 2
de trois masses T Tespectivement placées aux milieux des cotés du
triangle 1.

On peut encore prendre les trois masses 5 aux milieux des droites

qui joignent les sommets du triangle ABC au centre de gravité G.

Inertie d'une barre rectiligne, homogéne. — Soit une barre AB, de
milieu O, de longueur 2/, masse M. La barre est équivalente & un
triplet constitué par une masse p, placée en son milieu O et deux
masses [ placées en deux points P P’ situés & des distances + x de O.
Il y a une infinité de solutions satisfaisant aux deux conditions:

1 M
e .~ M .
’ * 3°M — o

0
En particulier, pour p, = 0, la barre est équivalente au doublet :

M l
e xr — i ————— .
B 2 3

1

On a aussi la solution simple avee deux masses aux extrémités AB
de la barre et une masse en son milieu O:

2M M
P‘0:3 ’ g = =

-, x = +1.
6

Ces formules permettent de former des systémes de points matériels
équivalents au périmétre d’un polygone quelconque, plan ou gauche.
I.a premiére solution permet de constituer, par exemple, dans le cas
du périmeétre d’un polygone de n cotés, un systéme de 27 points.

Inertie du périmeétre du triangle. — Soit un triangle ABC de cotés
a, b, ¢; le périmétre est supposé homogéne. En application des régles

1 Voir & ce sujet: The Quarterly journal of pure and applied mathematics, VI, 1864:

p. 127-128: Mechanical solulions of geometrical problems ;

p. 130-133: J. J. SYLVESTER: Observations on the method for finding the centre of gravity
of a quadrilateral given in the present number of the journal. (Note reproduite aux ceuvres

de Sylvester: Papers, II, p. 338-341), p. 267-269. E. J. RouTH: Note on the moments
of inertia of a triangle.

L’Enseignement mathém., 30¢ annde; 1931, 5
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ci-dessus indiquées, on peut prendre comme équivalents ’'un ou ’autre
des systémes suivants (densité linéaire supposée égale a 1'unité):

1o Un systéme de six masses, trois aux sommets et trois aux milieux
des cotés.
b+ ¢

£ au milieu du

Au sommet A, par exemple, la masse sera

coté BG, elle sera %a

20 Un systéme de six masses, deux sur chaque c6té; sur le coté BC
par exemple, de part et d’autre du milieu M du c6té, on prendra en
A’ et A" avec

a

24/3

BA' 43—

RV

’ Y a
deux masses toutes deux égales a 7

A'’M = MA" =

donc avec le rapport

Inertie du parallélépipéde rectangle, homogéne. — 1° Le parallélépi-

by ’ & by . M ’
peéde rectangle de masse M est équivalent a six masses Y placées aux

centres des faces.
20 Le parallélépipéde rectangle de masse M est équivalent & un

2 M M
systeme de 9 masses : une masse —— placee en son centre et huit masses — 54

placées aux sommets.

Inertie du tétraédre homogéne. — Le moment d’inertie du tétraedre,
solide, homogéne, par rapport au plan d’une face est:

M
— H? ,
10

M étant la masse du solide, H la hauteur relative a cette face.
Considérons un systéme constitué par une masse w, placée au
centre de gravité G du solide et de quatre masses égales a p, placées
en quatre points « (3y ¢ respectivement pris sur les droites GA,
GB, GC, GD, sommets d’un second tétraédre homothétique au
tétraédre ABCD.
Ga Gp Gy Go&
GA~ GB _ GC GD

En écrivant que la masse totale est la méme et que les moments
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planaires d'inertie par rapport aux quatre faces sont les mémes pour
les deux systémes matériels, nous obtenons deux conditions:

A\I:‘,}(J.L!J-

3u(3XR + 1) + u, =M .

Les ellipsoides d’inertie centraux ont méme centre et quatre diametres
communs; 1l est nécessaire d’imposer de nouvelles conditions. On les
obtient en considérant les six plans (en nombre surabondant) menés
par chaque aréte et le milieu de 'aréte opposée.

Par exemple, le plan passant par I'aréte AB et le milieu M de
Paréte CD; ce plan divise le tétraédre en deux volumes équivalents.
Si ¢ désigne la distance de C et D a ce plan, le moment d’inertie du.
solide par rapport & ce plan est la somme des moments d’inertie de

deux tétraeédres de masses %{ et de hauteurs 6 par rapport & une base.

. 1 Lo .
Il est done égal a mMaz. Pour l'équivalence avec les points on a

ainsi 6 équations qui donnent la seule condition: M = 2022 Celle-ci
est du reste une conséquence des deux conditions déja trouvées.
Le probléme admet donc une infinité de solutions. On pourra
se donner » arbitrairement et calculer ensuite w et p, par les formules:
2008 = M u, 4+ 4o = M

\ b
ou encore prendre:

M = 20ui®; we = G (5K — 1)
Comme solutions simples on pourra adopter les suivantes:

1o Un quintuplet constitué par quatre masses 50 placées aux sommets

/

. \ * , o .
du tétraédre et une masse e placée au centre de gravité G du solide

(SYLVESTER):
M 4M

A= 1, Y = — u

' 20 7

o 5

20 Un quadruplet constitué par quatre masses placées aux sommets

af3yd d'un tétraédre homothétique au tétraédre ABCD par rapport au
centre de gravité G.

A= &

Il

| &

’ vy = 0.

1
Ve

JA
3° Un quintuplet constitué par une masse négative —- g—M au centre
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v, 9 , .,
de gravité G et quatre masses Q—OM placées aux centres de gravité des

faces du tétraédre :

9 . 4
P'——Z—OM, P‘():_—':B_M‘

" 1
A= — — |
3

4° A signaler encore pour le tétraédre, solide, homogéne, le systéme

) . 2 , e
de 7 masses suivant: une masse m’' = 5—M placée au centre de gravité G

. M , - p
et S1x masses m = —= placées au milieu des arétes.

Application. — Un pendule composé est constitué par un tétraédre,
solide, homogeéne, tournant autour d’'un axe A. Quelle est la durée
d’oscillation de ce pendule ?

Il s’agit d’évaluer le rayon de gyration autour de A. Le calcul du
moment d’inertie — qui serait fastidieux par les méthodes habituelles
d’intégration — se réduit ici & une question des plus élémentaires:
au calcul des distances des sommets et du centre de gravité a la
droite A. '

Pour fixer les idées, soit un tétraédre régulier tournant autour d’une
aréte.

20 )
ont des moments nuls par rapport & I’axe de suspension, I'aréte AB.
Si ¢ est la longueur commune des arétes, les deux autres masses

Deux des masses du quintuplet <—1\E aux sommets et i au centre>

. ~ * 3 \ A . §
placées aux sommets C et D, situés a la méme distance - 5 de AB

et la masse %\—l placée au centre du tétraédre, centre dont la distance

4 AB est == : 2 donnent ainsi un rayon de gyration K:
7
2 2
K% = 0

Pour le rayon de gyration autour de la paralléle & cette aréte menée
par le centre de gravité:
. a2

re %
K = 3¢ -

D’ou la longueur ! du pendule synchrone:

| — 7_}/0161 — a x 0,49497 .

Dans le tétraédre régulier, les calculs d’inertie sont notablement
simplifiés par le fait que I'on peut ainsi facilement calculer les moments
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d’inertie au centre G et par rapport aux plans de faces. L’ellipsoide
d'inertie central étant une sphére — comme pour tout polyédre régulier
— les moments d’inertie relativement a d’autres éléments en découlent.

Représentation générale d’'un systeme matériel quelcongque par des
systéemes de quatre masses ponctuelles.

I’exemple du tétraédre solide homogéne ABGD de masse M,
montre que ce corps peut étre remplacé par un systéme de quatre

masses égales <de masses —- disposées aux sommets d’un second

tétraedre A’ B’ G’ D', homothétique de ABCD par rapport au centre

de gravité G, dans le rapport T/l—S: d’homothétie. (Il y a méme deux
dispositions symétriques par rapport & G et qui correspondent aux
deux sens de cette homothétie.) '

Nous allons établir que c’est la un fait général.

Tout systéme de masse M peut éire remplacé par une infinité de
. M
systemes de qualre masses .
+

Deux démonstrations peuvent étre données; tout d’abord on peut
observer que les équations de conditions se ramenent immédiatement
a celles du cas ou lellipsoide central d’inertie est une sphére, au
moven d’une affinité transformant en cette sphére I'ellipsoide central
de Culmann. Alors toutes les propriétés projectives découlent de celles
des tétraédres réguliers inscrits dans une sphére et circonscrits a une
autre spheére.

On peut encore ohserver que tout ellipsoide peut étre obtenu d’une
mfinité de maniéres comme ellipsoide de Culmann de 4 masses placées
aux sommets de tétraédres conjugués relativement & un ellipsoide
imaginaire homothétique. L’équivalence se fait ainsi entre le systéme
et cette infinité de tétraedres.

En résumé, voici les propriétés de ces divers tétraédres:

Tout systeme matériel de masse M peut étre remplacé, par équivalence
pour la Géométrie des masses, par une infinité de systémes de quatre

. M
points de masse T

Les pownts d’applications de ces masses — sont les sommets de tétraé-
4

dres T de méme volume.

Les tétraedres obtenus sont inscrits a un ellipsoide E, dont le centre
est le centre de gravité G commun a ces tétraédres ; leur volume est le
volume maximum des tétraedres inscrits dans Uellipsoide B.

volume ellipsoide E 5'\/0T
2 i .

volume d’un tétraedre T =
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Les tétraédres T sont circonscrits a un ellipsoide E’ de centre G.
En chaque sommet d'un tétraédre T, le plan tangent & l’ellipso'ide E
est paralléle a la face opposée de T.

Les points de contact avec E’ des faces de T ne sont autres que les
centres de gravité des faces.

Les arétes des tétraédres T sont tangentes @ un méme ellipsoide E”
de centre G, qu’elles touchent en leurs milieux respectifs.

Les tétraedres T sont autopolaires par rapport & un quatriéme
ellipsoide E'"" de centre G (ellipsoide imaginaire).

Les ellipsoides E E’ E” E'"" sont homothétiques entre eux et a
Uellipsoide de Culmann du systéme matériel.

Les rapports d’homothétie entre ces divers ellipsoides ont les

valeurs suivantes: E’, E”, E’" sont respectivement homothétiques
de E dans les rapports

1 V3 i3
3 3

§ 3

Nour prendrons pour équations de ces divers ellipsoides rapportés
a leurs axes:

atpta—t="0 (E)
R )
e Lk el
- DL (5")

M étant la masse du systéme, A, B, C, les moments d’inertie planaires
principaux, 'équation de I'ellipsoide de Culmann est:

et S T [
A B C

avec c
A B
— = =—=M.
a? b? c?

Entre les axes de Dellipsoide E et les éléments d’un quelconque de
ces tétraedres T existent les relations suivantes:

15 2 %
u,Z ,

- 243 _
a2b“C' - —GZ*—V' i

a2+b2+02

H

atb? + bic* + c?a’

H
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(V est le volume des tétraédres T; a;; sont les six arétes et A; les
quatre faces de I'un quelconque d’entre eux).

Dans les tétraédres T, indépendamment de leur volume, sont constantes :
la somme des carrés des arétes ; la somme des carrés des quatre faces;
la somme des carrés des distances de G aux sommets :

IR L

somme des carrés des aréles = —
3]

. 16
somme des carrés des faces = 3 (a?b? 4 b%c® + c?a®) ;

(a2+ b2+ C2>~

w] W~

YGA? =

Le centre de la sphére circonscrite n’est pas assujetti & rester sur une
surface déterminée. Mais la sphére circonscrite est déterminée par son
centre: la sphére circonscrite reste orthogonale & une sphére tmaginaire
fixe de centre G, qui n’est auire que la sphére orthoptique de Uellipsoide E'.
On a en effet:

2 a4 b2+ ¢

R?2 — OG
3

Les lignes médianes d'un tétraédre T — droites joignant les milieux
d’arétes opposées — constituent un systéme de trois diamétres con-
jugués par rapport & ces diverses quadriques. La somme des carrés des
longueurs des lignes médianes (somme qui est égale au quart de la
somme des carrés des arétes) reste constante.

Parmi les différentes quadriques circonscrites & un méme tétraedre
quelconque, ayant pour centre le centre de gravité G du tétraédre,
I'ellipsoide dont les plans tangents aux sommets sont paralleles aux
faces opposées se présente comme généralisant seul 'ellipse circons-
crite de Steiner, dans la géométrie du triangle. De méme, parmi les
différentes quadriques inscrites de centre G, I'ellipsoide dont les
points de contact avec les faces sont les centres de gravité des faces
généralise seul I'ellipse inscrite de Steiner. Ces deux ellipsoides, qui
sont précisément les ellipsoides E et E’, seront par la suite appelés
Vellipsoide circonscrit de Steiner et lellipsoide inscrit de Steiner.

Cas du triangle. — Dans le plan tout systéme matériel, peut étre
remplacé, par équivalence dans la géométrie des masses par une infinité
de systemes de trots points formant des triangles de méme cenire de
gravité G et de méme aire.

Ces triangles sont inscrits dans une ellipse E, et circonscrits a une
ellipse E, de centre G: ce sont les ellipses circonscrite et inscrite de
Steiner. :

Ces triangles constituent le systéme bien connu de triangles d’ aire
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maximum inscrits dans Uellipse E,. Ils ont méme surface qui est a celle
. 4 -
de I'ellipse E; dans le rapport 5 m+/3.

Ils sont conjugués par rapport ¢ une ellipse tmaginaire de centre G.

Les tétraedres T orthocentriques. — Parmi % 3 de tétraédres T,

dont les sommets affectés de masses %— constituent un quadruplet

équivalent & un systéme matériel donné de masse M, ceux de ces
tétraedres T qui sont orthocentriques méritent, par leurs propriétés,
un examen particulier.

La question d’existence d’au moins un tétraédre orthocentrique
parmi l'infinité de tétraedres T sera d’ailleurs posée a I'occasion de
I'étude analytique de I'équation aux moments principaux centraux
d’un systeme matériel quelconque.

Supposons donc qu'un tétraédre T soit orthocentrique; soit H
Iorthocentre de coordonnées z,, y,, z, par rapport aux axes de
Iellipsoide E’ de Steiner et p le rayon de la sphére conjuguée. En
écrivant que la sphére conjuguée d’équation ponctuelle

92:0,

X2 4+ Y2 4 Z* — 22,X — 29, Y — 25,2 + @ + ¥ + 20 —
et d’équation tangentielle
Yu(s? — ap) — 2Xwoayy, — 2Xuz, = 1,

est harmoniquement inscrite & Dellipsoide E et harmoniquement
circonscrite & E’, on obtient les conditions:

La puissance du centre de gravité G relativement a la sphére con-
juguée est constante pour les divers tétraédres orthocentriques du
systéme T. La sphére conjuguée reste orthogonale a une sphére fixe de
centre G, la premiére sphere de 12 points.

La premiére sphére des 12 points est la sphére orthoptique de
Iellipsoide inscrit E’.

L’orthocentre H a pour lieu une biguadratique gauche définie par des
ellipsoides, coaxiauz aux ellipsoides E E' de Stewner, d'équations :

1 1 9/ 1 1 o /1 I
xi(ﬁ + ?> 3 yo(*zg-f‘-a—g) + Zo(g; + f)
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Le premier ellipsoide appartient au faiscean ponctuel de quadriques
défini par Uellipsoide E et la premiére sphére des douze points.

La connaissance de H entraine celle du tétraedre.

Le centre O de la sphére circonscrite, le centre O’ de la deuxieme
sphere des douze points et le point H' inverse de H par rapport au
tétraédre (H’ est le point qui se projette sur chaque face en son centre
de gravité) décrivent respectivement des biquadratiques homothé-
tiques & celui qui est le lieu de 'orthocentre H.

Posons a2 + b2 + ¢2 = 9»? (constante).

La sphére circonscrite est orthogonale & une sphére fixe de centre G
et de rayon 7w 4/3.

La deuxiéme sphére des douze points est orthogonale & une sphere
fixe de centre G, de rayon i—-.;— .

On a les relations suivantes:

. 0 — g
HG" = ¢ + w® | OH™ = R? 4 3%,

RL’ — F2 + 4(‘)2 .

Les hautenrs du tétraédre orthocentrigue sont normales & Uellipsoide
circonscrit B aux quatre sommets du tétraédre.

Les arétes des tétraédres orthocentriques T sont les droites du complexe
tétraédral d’équation

a*p,py + b2p2p5 + psps = 0,

en coordonnées pliickériennes p; de droites. Les arétes appartiennent
ainsi & la congruence commune a ce complexe tétraédral et au com-
plexe spécial attaché a la quadrique E”.

Les milieux des arétes (points de contact de celles-ci avec ’ellipsoide
E”) sont situés sur une biquadratique gauche définie par E” et par
la premiére sphére des douze points.

Si L est le milieu d’une aréte AB, L.” le milieu de I'aréte opposée
d’un de ces tétraédres orthocentriques, l'aréte A A, coincide avec
U'une des directions principales de Uellipsoide K" au point L; de méme
la droite CD, orthogonale a la précédente, est direction principale
du méme ellipsoide en son milieu L.

LA GEOMETRIE DES TRIPLETS.

Trois masses «, (3, y sont respectivement appliquées aux sommets
A, B, C du triangle de référence. Le centre 1" des trois masses a pour
coordonnées barycentriques des expressions proportionnelles & «, (3, 7



74 E. TURRIERE

Si le systéme est rapporté aux axes centraux d’inertie, les trois
conditions suivantes sont vérifiées:

axy + fxy + yas = 0,

Yy + BYs +vys = 0,
az1 Yy + By, + Y23ys = 0 ;
les indices 1, 2 et 3 affectent respectivement les deux coordonnées

cartésiennes z; et y; des sommets A, B, G. L’élimination des masses
entre ces trois conditions linéaires et homogénes conduit a la relation

1Yy Lo¥Ys Z3Y3
Xy Zy N = 0 ,
Y Y, Ys i

qui exprime que les sommets du triangle de référence, le centre 1" (et
Uorthocentre H du triangle) appartiennent a une méme hyperbole
équilatére dont les directions asymptotiques sont celles des axes princi-
pauzx et centraux d’inertie.

La construction des axes centraux d’inertie du triplet découle de
cette proposition.

Par le point I', centre des masses, passe une hyperbole du faisceau
des hyperboles équilatéres circonscrites au triangle A B G. Il suffit
de mener par I' les paralléles aux asymptotes de cette hyperbole;
ces deux paralléles sont précisément les axes de symétrie de I'ellipse
centrale d’inertie.

En particulier, lorsque T' est sur un coté, B C par exemple (o = 0),
les axes centraux sont le cdté B C et la paralléle a la hauteur A H.

Lorsque le centre I" est sur une hauteur, A H par exemple, les axes
centraux d’inertie sont la hauteur A H et la paralléle menée par I’
au coté B C.

Cas ou le centre des masses est Uorthocentre. Dans le cas

o p Y

tgA—ﬁ th_th'

le centre T des masses coincide avec Uorthocentre H du triangle. Toutes
les hyperboles équilatéres circonscrites au triangle A B G passant
par H, il y a indétermination pour la construction des axes centraux
d’inertie. L’ellipse d’inertie centrale est donc un cercle.

Réciproquement d’ailleurs pour que Uellipse centrale d’un triplet
(a, B, ) de trois masses non-nulles disposées aux sommets du triangle
A B C soit un cercle il faut que ces masses soient proportionnelles & tg A,
tg B et tg C; le centre des masses est alors Uorthocenire H.
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Prenons
a:tgA, B:th, Y:tgc;

la masse totale est

M=at+f8+y=1tgAf+tgB+tgC = 1gA.tgB.tgC ;

le moment d’inertie par rapport a une droite quelconque passant par
I'orthocentre est égal au double de la surface du triangle:

I = 4R?sinA sinB sinC = 2S ;

Iexpression du rayon de gyration est donc:

K2 :%: 4R2 cosA.cosB.cosC ;

par suite:
K2 T e 92
p désignant le rayon du cercle conjugué au triangle.
Le moment d’inertie polaire en H est
IH == !{S 5
le rayon de gyration par rapport & I'axe normal en H au plan du
triangle est donc:

< désignant la puissance de H par rapport au cercle circonscrit au
triangle A B C:
6f — — 8R%cos A cosB cosC .

Supposons les masses positives; le triangle a tous ses angles aigus.
Dans ce cas, 'ellipsoide d’inertie du triplet est une sphere, au point
sous lequel les trois cotés du triangle sont vus sous des angles droits.

Ce cas remarquable est le seul pour lequel Uellipse d’inertie du triplet
est un cercle, en supposant les trois masses non-nulles. Lorsque I" est
en un sommet (A par exemple, pour 3 = 0 4 = 0), l'ellipse centrale
d’inertie est le cercle-point A. La propriété caractérise donc les quatre
points fondamentaux du faisceau des hyperboles équilatéres.

Tandis qu’a tout point I' du plan sont associées deux droites
A A’ comme axes centraux d’inertie, la question se présente plus
simplement lorsque on se donne au contraire une droite A.

Une droite A étant imposée, il existe sur elle un point I' et un
seul, tel que T' soit centre d’un triplet (« 8y) admettant A comme
axe de symétrie de I’ellipse centrale d’inertie.
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A étant donnée, il existe une hyperbole équilatére du faisceau
ladmettant pour direction asymptotique. L’hyperbole rencontre A
& distance finie en un point I' unique, qui est précisément le point T'.

La construction du point I' s’effectue simplement. L’involution
déterminée sur Ja droite A par J’ensemble des hyperboles équilatéres
du faisceau, associe le point T' au point & l'infini de A. Les points
doubles de I'involution sur A peuvent étre définis par lintersection
de la droite avec le lieu des points de contact des tangentes menées
aux hyperboles par un point déterminé de A: ce lieu, qui est en
général une cubique, dégénére en une conique lorsque le point est
sur 'un des c6tés ou sur 'une des hauteurs du triangle. Par exemple,
avec les notations qui vont étre adoptées par la suite, si le point est.
la trace sur B C de la droite A, ce lieu a pour équation (en bary-
centriques)

0gY? 4+ wrZ? = pX (oY + wiZ) ;

cette conique passant par A, H, les pieds des hauteurs relatives aux
cotés AB, et AC coupe A aux deux points d’intersection de cette
droite avec la conique conjuguée d’équation:

upX? + oqgY?: + wrZ? = 0 .

Voila donc quatre coniques définissant les points doubles sur A.

Cas des droites de Stmson. — Les asymptotes d’une hyperbole du
faisceau équilatére ABGH sont les droites de Simson des deux points
d’intersection du cercle circonscrit avee la droite inverse de I’hyperbole
relativement au triangle. Réciproquement toute droite de Simson est
asymptote d’une hyperbole équilatére circonscrite.

L’involution est donc spéciale lorsque la droite A est une droite de
Simson. I.’un des points doubles est a I'infini; le second est & distance
finie. Dans le faisceau, il y a trois hyperboles dégénérées: chacune
d’elles est constituée par un coté et la hauteur opposée; le point double
a distance finie est donc le milieu du segment déterminé par ces deux
droites sur la droite de Simson.

Nous obtenons ainsi une propriété intéressante des droites de
Simson.

Les trots segments déterminés sur une droite de Svmson par les cotés
et les hauteurs du triangle A B G ont méme milien.

Nous reviendrons avec plus de précisions sur cette questlon apres
I’étude de la relation entre les coniques d’inertie et les coniques conju-
guées au triangle.

Formules générales. — Si 1'équation d’une droite quelconque D
du plan est, en coordonnées bharycentriques,

uX + oY + wZ = 0,
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les distances des sommets du triangle de référence a cette droite sont
respectivement égales & u, ¢, w, sous la condition

a*u? + b%0% -+ *w? — 2bc cos Apw — 2ca cos Bwu — 2ab cos Cup = 45,

qui s’écrit encore:
Ya?(u — o) (u — w) = 4&S% .

Nous introduirons les coefficients
cotgA = p , cotgB = ¢, cotlg C = r ,

et poserons

U=¢p—w, V=w—u, W =uy—vy;

U, V, W sont les coordonnées barycentriques du point a U'infini de
la droite D. La condition précédente prend la forme:

pU% + gV 4+ rW? = 25 .
Nous I’écrirons
d = 285 ,

en posant:
& = pU2 + ¢V2 4 rW?2 ;

= 0 est équation tangentielle des deux points cycliques.
La distance des deux points quelconques du plan de coordonnées
barycentriques M(c 3 y) et M'(«’ B’ y') est alors:

| MM™ = 28[p(8a)* + g(AB)® + r(A7)?]
¢’est-a-dire ’
MM? = 2S®(Aa, A, AY) ,

en posant:
Ao = “ : t
T FE Y etbty °
Equation quadratique des axes centraux d’inertie. — Les distances

des sommets AB C & la droite D d’équation uX + ¢Y +4- wZ = 0
étant u, ¢ et w, sous la condition & = 2S, le moment d’inertie du
triplet par rapport a la droite est:

I = au? + Bo® + yw? .

Pour déterminer les axes principaux A et A’ d’inertie au centre T,
il faut chercher le maximum et le minimum de cette fonction I des
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trois variables u, ¢ et w, en posant qu’elles sont liées par les relations

au + o 4+ yw = 0
® = 25 .
Ces deux conditions dérivées totalement permettent de déterminer

des expressions proportionnelles aux différentielles du, do, dw ; en les
introduisant dans la condition dI = 0 on obtient

S o+ w— 2u) 4 (B — o —w)] = O,
¢’est-a-dire:
1ir_a)_
ZU(B Y> "

Telle est la condition pour que la droite soit un axe central A
d’inertie. Les équations

YuX = 0, Sua = 0

montrent que u, ¢, w sont proportionnelles & SZ — Y, etc.,.. et
par suite que U, V, W ont des expressions proportionnelles a
(¢ + B4+ y) X—a(X + Y + Z), etc... qui portées dans la condi-
tion précédemment formée donnent I’équation quadratique du systéme
des axes centraux d’inertie:

Tp. a2 —yY) . [0+ 4+ VX —a(X + Y +Z)]=0.
Cette équation est identiquement satisfaite lorsque
ap = g =r;

le point T' est alors Porthocentre H (de coordonnées barycentriques
tg A, tg B, tg C). Ce résultat confirme bien la proposition déja signalée:
Pellipse centrale d’inertie est un cercle lorsque I' est en H.

Lorsque T est sur le ¢co6té B G, par exemple, a = 0, 'un des axes est
le coté X = 0 et 'autre la droite

ry —gqé
X — (Z + Y = 0
Py g Y

perpendiculaire au c6té BC. |
Lorsque I' est sur la hauteur AH, (@[}E = t—&—), la hauteur AH
est 'un des axes :
qY = rZ .
Pautre est la droite paralléle au coté BG:

@+ E+ X =aX+Y47).
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Si la masse totale est nulle: « + 5 + y = 0 (le centre des masses I
est alors a I'infini) 'équation des axes montre que I'un des axes est
la droite a I'infini, tandis que 'autre est la droite d’équation

Sotp(3Z —yY) =0,
ou encore:

XEy(g3—ryX =0

on vérifie que ses coordonnées satisfont & ’équation tangentielle
Ypulp —w)? = 0,

qui sera formée plus loin pour 'enveloppe des droites de Simson du
triangle.

Equation aux moments centrauz d’inertie. — 1.’expression du moment
d’inertie du triplet par rapport & une droite prend une forme remar-
quable lorsque la droite passe par le centre I' des masses. Des équations

I = auw® + o2 + yo? ,
0 = au + po + yw ,

on déduit:
(8 B 1T = (x4 5+ 1) (o 4 Bot + 10 — (2 + Bo -+ )3
el ESYU2 s
et par suite:
als T2 Ve We
I o= oY [_ — ] :
«+ b+ yLa B * Y

La condition fondamentale ® = 2S exprime précisément, en appli-
cation de cette formule générale que le triplet (ap = B¢ = yr) dont
le centre est en H a par rapport & toute droite passant par I’ortho-
centre un moment d’inertie I = 28S.

Pour les axes centraux, on aura:

UL VEW=090

tryTw="0
Y¥pU2 = 28
en posant:
l_—_;-—g_’ m__——___p.__.._’_” n _q__£
14 Y Y o ~ o ¢
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Nous prendrons I = 2S. .l 6, d ou
P «+p+v’
12
2
' o=

L’élimination de U, V, W entre les trois équations homogénes du
second degré:
1
T2 I
U (,;e — a) =0,
XU =0 SR
U ]

exprimant le concours de deux coniques et de la droite de I'infini en
un certain point, conduit & la condition

(AL 4+ Bm +Cn)? + (P + m?+ -n2—2lm —2mn—2a) EAG = 0

avec
A =po—o, 63:;,0—%, @_——rf)-i—.
Mais Al + Bm + Cn = 0; il reste donc
TA®B =0

et par suite:

pp_gpdtr et PtY
a

{3y

Comme 6 est une expression égale & 1 & un facteur prés, il en résulte
e} ’

que les moments d’inertie principaux I; et I, au centre I" des masses

sont définies par les deux conditions:

5 '
L+ 1, Zﬁp+y'2(q+”)pY‘
LI, — 450, 2P
a4+ 3+

Le moment d’inertie polaire par rapport au point I' est [, L I,.
Le cercle circonserit au triangle ABC a pour équation

Ya®!YZ = 0,

c’est-a-dire B
g+ rYZ =0,



GEOMETRIE DES MASSES 81

puisque les cotés s’expriment en fonction de p ¢ r par des formules
telles que
a? = 2S(q + 1) , elc.

La puissance du centre I" par rapport au cercle circonscrit (centre O,
rayon R) est:

(\'J

{ ’(ﬁ
S

O — R = —

<a+rs

Nous trouvons ainsi la relation

I 2

= — (0T — R

M ( )

le carré du rayon de gyration du triplet par rapport ¢ Uaxe normal au

plan du triangle au centre T' des masses est égal & la puissance, changée

de signe, du point 1" relativement au cercle circonscrit au triangle.
Cette propriété est immédiate, si 'on observe que le moment

polaire du triplet par rapport au centre O du cercle circonscrit est
MR2,

Droite imposée comme axe central d’inertie. - Soit une droite A de
coordonnées absolues u, ¢, w. Soient U, V, W les coordonnées de son
point & I'infini.

Un point M quelconque de la droite A sera représenté au moyen

d’un parameétre ¢. Les coordonnées du point seront proportionnelles
aux expressions suivantes:

1 )
u Y ) W

le parameétre ¢ est proportionnel a la distance du point M & une origine
déterminée sur la droite. La distance entre deux points M M’ de la
droite, de parametres respectifs ¢ et ¢, a pour expression

U
MM = = 2S8(t — 1),
u
c¢’est-a-dire
uYw

MM’ = 2S5, g — ) .
T 5. gvw 7

Les conlques du faisceau ponctuel (A B C H) ont pour équation
générale 2— = 0, avec la condition 2p .’ = 0. L’hyperbole équila-
téere ayant la dr01te A pour direction asymptotique est définie par la

== (. Il faut donc prendre pour coeflicients:

c-| =,

condition X

L2 = U(gV — rW) . et

L'Enscignement mathém., 30¢ année, 1931. 6
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En introduisant la distance H de Porthocentre H a la droite A,
ces expressions des coefficients dans I’équation de ’hyperbole équila-
tére deviennent (& un facteur preés):

g = E(H — u) .
p
Pour définir le point I' — centre de masses tel que A soit axe

central d’inertie — il convient de considérer ce point {' comme étant
le point & distance finie d’intersection de la droite V avec ’hyperbole
équilatere précédente. Le paramétre ¢ de ce point I' est donc la racine
de 'équation

E—L—Z—=O;
-1

u

I'équation

u(H —u)
Zp(ut —y =0

définit une racine ¢ telle que

1 (H—u)(H— ) (H— w)

7= 0 — H? ’
1 . H—u
u_—t_——-qr.\\v.—(:)——'—m,

avee
O = qru® + rpo? + pgw?® ;

H = gru + rpv + pgqw ;

(u, ¢, w sont les distances des sommets & la droite A, H est la distance
de Porthocentre; ® est I'expression du moment d’inertie par rapport
a A de trois masses qr, rp, pg ayant pour centre le point H). Il résulte
que Pon peut prendre pour coordonnées du point I' des expressions
proportionnelles aux suivantes:

— — H —
X — H—u ’ Y — H 0 , g _ w
pu qv rw
On peut encore poser:
9‘\
X =~ y g9
ul’ oV wW

£ 01, 9T étant les coefficients de I'équation de 'hyperbole équilatére
admettant A pour direction asymptotique.
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Cas d’un centre des masses a U'infini. — Le point I" est & I'infini pour:

X+t Y4+Z=0
H —

2 u:O;
pu

on peut encore poser 17 = 0 et la condition prend la forme

H(® — HY) + (H— ) (H— o) (H—w) =0 ;

Iéquation tangentielle de 'enveloppe des droites A telles que I' soit
a I'infini se met sous la forme :

EpuU2 = 0 .

Une droite A (u, ¢, w), quelconque du plan, rencontre le coté BG
du triangle de référence en un point P qui donne lieu & la relation

BP! —CP e 2.0 7.
O —

les droites de Simson, sont définies par la condition

X BP

(4]

2

= X CP",

exprimant le concours des perpendiculaires aux coOtés en P et les
deux autres points analogues. L’équation tangentielle de I’hypo-
cvcloide & trois rebroussements enveloppe les droites- de Simson
est donc

0 +

ECLQ. :0;
()__

S

3

¢’est-a-dire

puisque les carrés des cotés du triangle ont pour expression
a? = 2S(q + r) , ete.
I'équation rendue entiére est:

Spu(p —w)?2 =0,

Ypul? = 0,

Ainsi est reconnue l'identité des droites de Simson et des droites
telles que 1" soit a I'infini.
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Exemples et remarques. — Lorsque T est en G (o = 8 = v cas
de la surface homogéne d’une plaque triangulaire ayant A, B, C pour
milieux des cOtés), les axes principaux sont paralléles aux asymptotes
de I'hyperbole équilatére (A B C G H), d’¢quation (en barycentriques)

QO sin A sin (B — C)

c¢’est ’hyperbole de Kiepert.
Si A est la droite d’équation

XtgA 4+ YtgB + ZtgC = 0

1 1 1 , .
<u =2 0 = 7 W = 7), I' a des coordonnées proportionnelles
aux expressions
X =pl@+r)—qlg+r), et

I est I'intersection de la droite A et de la droite d’Euler.

Si A est I'axe anti-orthique % + }zi o ? = 0, les coordonnées de T

sont
X = sin?A (cos B + cos C — 1) ; cle.

Ie point I" est inverse du point de coordonnées

X : t
= 5 cle,
cos B 4+ cosC — 1

(le point de coordonnées normales cosB 1008 - — > ete. est I'in-
tersection du cercle circonserit avec I’hyperbole de Feuerbach; d’ou
une construction du point I7).

Lieu du point I' tel que I'un des axes centraux associés & ce point
passe par un point imposé F (X, Y, Z).

Le lieu est une cubique passant par A, B, C et F qui est point
double; I'équation de cette cubique est en coordonnées courantes

(afBy):
Ypa(Ply — yYy) [«(Xy + Y, + Zg) — Xole + B+ 7)] = 0

les tangentes au point double sont les axes centraux associés a ce
point.

Il y a décomposition lorsque le point I' est sur les cotés, les hauteurs
ou & l'infini.
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RELATION ENTRE LES CONIQUES D’ INERTIE
ET LES CONIQUES CONJUGUEES RELATIVEMENT AU TRIANGLE.

L’enveloppe des droites du plan par rapport auxquelles le moment
d’inertie du triplet est nul est la conique d’équation tangentielle

au? + fo? 4yt =0,

et par conséquent d’équation ponctuelle

C’est la conique conjuguée par rapport aw triangle ayant le point T
pour centre.

I1 existe, d’'une maniére générale, une relation remarquable entre la
conique d’inertie d’un systéme matériel quelconque du plan et la
conique enveloppe des droites de moment d’inertie nul.

Si l'on considére le systéeme rapporté a ses axes centraux
d’inertie, le moment d’inertie par rapport a une droite quelconque
xcos ¢ + y sin g == 5 du plan a une expression de la forme.

¥ . ; 2
[ = Xm,(z; cos¢ + y, sine — @)? |
= (L cos’¢ + (B sin?o - Mm? ;

I'enveloppe des droites de moment d’inertie nul est donc la conique
d’équation tangentielle
Qu? + Bo? + M =0 .

D’autre part le moment d’inertie du systéme par rapport a la droite
paralléle & la précédente, passant par le centre I' des masses, est

[ = A cos?o 4 (B sin?o
et la conique d’inertie a pour équation ponctuelle
Ly + Bz =1 .

La conique enveloppe des droites de moment nul ayant pour équation

ponctuelle

1

o 9 {

QA @ AaA®B’
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on pourra prendre A =1,, @ =1,, I, et I, étant les moments
d’inertie principaux au centre de gravité. La conique enveloppe
des droites de moment d’inertie nul se déduit donc de la conique
d’inertie par une homothétie, dont le péle est au centre des masses, et
dont le rapport A est défini par la condition

I,.1

1

M

)\2:” 2

Cette remarque permet de déterminer la conique d’inertie & partir
de 'enveloppe des droites de moment d’inertie nul. Dans le cas
actuel, nous obtenons ainsi une proposition simple.

La conique centrale d’'inertie du triplet de centre 1" est homothétique
a la convque de centre T' conjuguée par rapport au triangle.

Il est ainsi possible de retrouver les expressions I; + I, et I,1,
a partir de celles bien connues qui donnent les demi-axes d’une
conique conjuguée par rapport au triangle de référence.

Dans le cas ou I' est I'orthocentre H, ’enveloppe des droites de
moments d’inertie nuls est le cercle conjugué. Réciproquement, pour
que lellipse centrale d’inertie d’un triplet soit une circonférence,
il faut que le centre des masses soit 'orthocentre. Cette proposition
établie plus haut est une conséquence directe du théoréme plus
général ci-dessus donné.

Cas de la masse totale nulle. — Lorsque la masse totale est nulle
I'enveloppe des droites de moment d’inertie est encore une conique
conjuguée. Mais, dans I’hypothése « - 3 + 7 = 0, cette parabole

au? 4 Bo? + yw? = 0 ;

est la parabole dont 'axe a la direction du point T' a I'infini de coor-
données (o, 3, ).
Les coordonnées du foyer I de la parabole conjuguée sont

X=afp—ap) .  Y=E0—Fg), L=l —1

20 = ap + fg + 10 -

L’axe de la parabole conjuguée est la droite de Simson associée au
point I' (au titre d’axe principal d’inertie). Cette droite est définie
par le foyer F et par un point ¢ dont les coordonncées sont:

2 2

2 1A
pa* g5 ry?.

En remarquant que les coordonnées du foyer de la parabole con-
juguée donnent lieu & des relations telles que

Y+ Z—X = {(¢q+rpy, etc.
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et par suite
o 5 Y
q+r r+p P T4
¥ L & X Z - X—Y X - Y —Z

il résulte de ¢ + B + y = 0, I'équation

S
Y L Z—X
du lieu de ce foyer F; ¢’est 'équation

IN(g + NYE = (X + Y + Z) (pX + ¢¥ + 17)

du cercle des neuf points du triangle de référence. ‘
La droite de Simson contenant le point F et le point ¢, les équations

o

{ = y{p — ry)

t=alp—pa) n=fle—4qp
représentent en fonction d’un parameétre p les coordonnées d’un point
courant; la distance de deux points quelconques de la droite est
proportionnelle a la différence de leurs parametres p — p

La droite de Simson, représentée par ces formules, rencontre le
co6té BC au point de paramétre p, = pa; la hauteur correspondante
est rencontrée au point de parameétre p, = ¢35 + ry; le milieu du
segment ayant ces deux points pour extrémités a pour paramétre p

20 = pa+gqB+ry;

ce milieu est donc identique au fover de la parabole conjuguée. Les
trots segments déterminés sur toute droite de Stmson par les cétés et les
hauteurs du triangle de référence ont pour miliew commun le foyer F
de la parabole conjugude.
Le point ¢ (de coordonnées pa® ¢f3% ryz) assocle a tout point
Uo Yo Wo
I'(a, B, ) décrit une conique inscrite de centre —, i , d’équa-
p
tion,
2
Uy

pu
lorsque le point I' décrit une droite D (u,, Y0 w,). La polaire,
2p2X =0, de ¢ par rapport & la conique conjuguée de centre T’
passe par un point fixe <%, %, 7) lorsque I' décrit la droite D,

Nous sommes dans le cas ou D est la droite de I'infini. Le point o
a pour liew la conique inscrite au triangle,
1
pu

concentrique au cercle circonserit au triangle.
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Ladirectrice de la parabole conjuguée, directrice dont I’équation est

SIN 4z —-X) =0,
p

passe, on le sait, par le centre O du cercle circonscrit; et la polaire
de O passe donc par le point F. La polaire de H par rapport a la
parabole conjuguée a pour équation

X,

p X
elle passe par ¢, qui est donc défini géométriquement par Uintersection
de cette polaire avec la droite de Simson et avec la conique inscrite concen-
trique au cercle circonscrit.

La tangente en ¢ a cette conique inscrite est précisément la polaire
de H par rapport @ la parabole conjuguée.

La condition de coincidence des points ¢ et ¥ est 3px = 0. Le
point I" est alors le point a I'infini de la polaire trilinéaire de I'ortho-
centre H.

Si d’autre part, on considére une parabole inscrite d’équation

== 0 A+ +-C =0,

le foyer M de cette parabole inscrite a pour coordonnées barycen-
triques:

z=2T" y:r%—}z, Z:Q%;q;
A ) c

la condition U + @ -+ € = 0 rend manifeste le fait que le lieu
du foyer M de la parabole inscrite est le cercle circonscrit:

2“”:0.

x

La directrice, étant la polaire du foyer M par rapport a cette
parabole inscrite, son équation est

par suite, toute droite perpendiculaire & I'axe de la parabole aura
pour coordonnées (& un facteur pres)

u:p(ﬂ,—{—c, ():q(’?)-%_g’ “):"C—*"J;

¢ est un parameétre arbitraire.
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La paramétre de la tangente au sommet de la parabole inscrite
a pour expression g:

5. (pCL2 + q(d° +7 = A®BC

Cette tangente au sommet est une droite de Simson, pédale du foyer M
de la parabole inscrite.

La confrontation des résultats obtenus séparément pour la parabole
conjugués d’axe A, et pour la parabole inscrite de tangente au som-
met \, cette droite A étant la méme droite de Slmson montre qu’il
conv 1ent d’introduire trois paramétres [, m, n et de poser ensuite:

pr = 1. g = m , = R,
L =m—n, 0 =n—1, C=1l—m,
avec la condition
Lym.n_y
p q ¥
X
Au moven d’un point figuratif, décrivant la droite $— = 0, on

représente ainsi et en méme temps U'infinité de droites de Simson,
les paraboles conjuguées les admettant pour axes, les paraboles
inscrites les touchant en leurs sommets.

La droite M H — joignant 'orthocentre H au foyer M de la parabole
inscrite — a pour équation

Sp(m+n—10)X = 0 ;

le parameétre p du point d’intersection de cette droite MH avec la
droite de Simson
= ap — pa) , elc.

a pour valeur:

1
5 —2~l~l~m,n)EQ—(poc+q{3+ry)

et par suite nous vérifions que ce point est bien le foyer F de la para-
bole conjuguée.

Ainsi done F — foyer de la parabole conjuguée -— est le milien de la
drotte MH et des trois segments déterminés sur la droite de Simson A
par les cotés et les hauteurs du triangle de référence.

La droite A -— associée & un point I' a 'infini, comme axe central
d’inertie — rencontre le cercle des neuf points en deux points; dont
I'un est le centre de I'hyperbole équilatére admettant A pour asymp-
tote et dont I'autre est le point I ainsi défini géométriquement et
qui est associé a I" comme point double a distance finie de 'involution
tracée sur A par les hyperboles équilatéres circonscrites au triangle.
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Constructions géométriques. — Pour conclure, nous pouvons donner
la construction suivante.

Une droite A est imposée comme devant étre axe central d’inertie
pour un choix convenable de trois masses (« ) du triplet A B C.

Chaque couple constitué par un coté et la hau‘rour correspondante
du triangle ABC détermine sur la droite A un segment A’ H, etc.
dont les extrémités sont un couple de points conjugués de l'invo-
lution.

Soit alors A’ ’axe radical des trois cercles déerits sur les segments
A'H,, B'H,, C'H,.

A’ rencontre A au point I" qui doit étre associé & A comme centre
des trois masses.

Les axes centraux en I" sont A et A’. |

Le cercle de centre I' coupe A en deux points qui ne sont autres
que les points doubles de I'involution sur cette droite A.

On sait que l'enveloppe des droites de méme moment d’inertie,
pour un systéme matériel donné, est une conique appartenant a un
systéme homofocal. Ce systéme comprend la conique conjuguée,
enveloppe des droites de moment d’'inertie nul. Les foyers de cette
conique conjuguée sont des coniques dégénérescentes du systeme:
Pellipse d’inertie du triplet de centre I' est un cercle en chacun de
ces foyers.

Ces foyers sont les points doubles des involutions respectives
sur A et sur A"

I.a construction précédente fait connaitre immédiatement les deux
foyers réels de la conique conjuguée, par application & 'une des deux
droites A ou A’

Dans un second mémoire, j’exposeral la question des systemes de
quatre masses disposées aux sommets d’un tétraédre, en particulier
du systéme de quatre masses ponctuelles égales entre elles et consti-
tuant un quadruplet équivalent a un systéme matériel quelconque.
Par l'emploi systématique des coordonnées barycentriques tétra-
édriques et par la considération des quadriques conjuguées au tétraédre
fondamental, les calculs de la géométrie des masses peuvent ainsi
étre présentés sous une forme remarquable.
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