Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 30 (1931)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: CARRÉS LATINS ET CARRÉS D'EULER (MODULES IMPAIRS)

Autor: Margossian, M. A. Kapitel: I. — Carrés latins.

DOI: https://doi.org/10.5169/seals-23882

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CARRÉS LATINS ET CARRÉS D'EULER ¹ (MODULES IMPAIRS)

PAR

M. A. Margossian (Vienne, Autriche).

I. — CARRÉS LATINS.

Si l'on dispose (n) nombres différents dans chacune des rangées (lignes et colonnes) d'un carré de (n²) cases, de façon qu'un même nombre ne figure qu'une seule fois dans une quelconque de ces rangées, on aura formé un carré latin de module (n). On adopte habituellement à cet effet, les (n) premiers nombres naturels. Les carrés latins présentent deux catégories essentiellement distinctes: 1º Carrés réguliers; 2º Carrés irréguliers.

Les premiers sont caractérisés par le fait que leurs diverses lignes se déduisent les unes des autres suivant une règle uniforme et invariable. Dans les carrés irréguliers, qui sont infiniment plus nombreux, les lignes n'ont entre elles aucune relation apparente.

Après avoir adopté une base arbitraire quelconque, base qui, pour plus de facilité, sera la série naturelle des (n) premiers nombres, la régularité ou uniformité de la construction consiste tout d'abord à constituer une deuxième ligne par une permutation, qui ne peut pas être arbitraire, des éléments de cette série.

Une permutation identique, appliquée à cette deuxième ligne, en donnera une troisième et, ainsi de suite, jusqu'à la $n^{\rm me}$ ou dernière; après quoi, les opérations se ferment, c'est-à-dire qu'en

¹ Consulter, dans l'édition française de l'*Encyclopédie des Sciences mathématiques*, le chapitre consacré aux carrés magiques, par M. E. MAILLET, ingénieur en chef des Ponts et Chaussées.

continuant, on retrouve la base. La formation régulière par excellence est fournie par les permutations circulaires. En voici un exemple littéral. Soit la base

$$a$$
 b c d e f g

Chacune des six lignes suivantes s'en déduira en lui donnant pour premier élément un quelconque des éléments de cette base. Le carré sera complété comme suit:

Le nombre des permutations de la base, a priori possibles étant n!, on démontre que celui des permutations ou formations régulières que l'on peut adopter et qui donneront des carrés absolument distincts ne sera que de (n-2)! si n est premier.

On doit retenir que toutes les formations régulières possibles productives de carrés latins, peuvent se ramener à l'une quelconque d'entre elles choisie à volonté et, par conséquent, aux permutations circulaires. Nous l'illustrerons par un exemple.

Soit

la première ligne ou base d'un carré de module 9. Réunissons par couples les éléments qui suivent le premier et donnons à ces couples des numéros d'ordre, en se dirigeant de droite à gauche. Inscrivons maintenant ces quatre couples dans l'ordre de leurs numéros et écrivons à leur suite l'élément origine (1) qui avait été précédemment écarté. Nous obtiendrons

Ce sera la deuxième ligne du carré. On en déduira la troisième de la même manière que cette deuxième a été tirée de la première. En opérant successivement de même sur chacune des lignes que l'on aura construite, on aura constitué le carré ci-après:

Adoptons maintenant pour base la série

1 2 4 6 8 9 7 5 3

et formons par permutations circulaires le carré latin qu'elle détermine en lui donnant pour première colonne celle du carré précédent. On aura

Il suffit de permuter les colonnes de ce carré de façon à ramener sa base à l'ordre naturel pour constater l'identité des deux carrés.

On remarquera que les colonnes du carré (a) se déduisent aussi de l'une quelconque d'entre elles par permutations circulaires.

Il importe de retenir que la nature d'un carré ne peut pas être modifiée quand on effectue une permutation dans ses colonnes ou bien dans ses lignes. Les modifications ainsi introduites ne portent que sur la forme du carré et non sur sa nature. Il restera régulier s'il était régulier.

Les carrés réguliers présentent une particularité caractéristique. Elle consiste en une symétrie constitutionnelle qu'il est facile de faire apparaître. Quand le première colonne a la même ordonnance que la base, la ligne débutant par un élément donné est identique à la colonne qui débute par le même élément. On s'en rendra compte en étudiant les carrés construits par permutations circulaires.

Soit (a) la première colonne d'un carré construit par permutations circulaires, la série naturelle étant prise pour base.

Inscrivons sous les éléments de (a) ceux de la série ordonnée

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \dots \quad (n-1)$$

et faisons la somme des éléments superposés; il est clair que ces sommes sont les éléments de la diagonale partant de l'origine, dans l'ordre même où on les rencontre en descendant. Si ces sommes sont toutes différentes, le carré sera pour le moins semidiagonal.

Les éléments de la deuxième diagonale s'obtiendront aussi facilement en retranchant des termes de la série (a) respectivement ceux de la série naturelle des (n) premiers nombres ¹. Si ces différences présentent toute la série des nombres 1 à n, c'est la seconde diagonale qui sera magique. Pour distinguer cette semi-diagonale de la précédente, je propose de qualifier la première de droite et la dernière de gauche.

Pour faire comprendre tout l'intérêt qui s'attache à ces considérations, il suffira de dire que tout carré latin semi-diagonal gauche correspond à un carré d'Euler et réciproquement. C'est ce qui sera expliqué plus loin.

¹ Il faut observer que $n \equiv 0$.

Etudions le carré latin régulier ci-après:

1	2	3	4	5	6	7	8	9		
4	5	6	7	8	9	1	2	3		
9	1	2	3	4	5	6	7	8		
3	4	5	6	7	8	9	1	2		
5	6	7	8	9	1	2	3	4		
7	8	9	1	2	3	4	5	6		
2	3	4	5	6	7	8	9	1		
6	7	8	9	1	2	3	4	5		
8	9	1	2	3	4	5	6	7		

Nous constatons que la diagonale partant de l'origine contient, tous les nombres 1 à 9 et qu'il en est de même des diagonales brisées qui lui sont parallèles. Ce carré est donc, non seulement semi-diagonal, mais encore semi-diabolique droit.

Supprimons la base du carré et inscrivons-la sous ce carré même pour le lire de bas en haut. Nous constaterons que la semi-diabolie droite a fait place à une semi-diabolie gauche. On pourrait le démontrer facilement.

Ces caractères que l'on chercherait vainement dans les modules pairs, ont une grande généralité. On les trouvera dans tous les modules impairs.

La détermination des carrés de cette nature est assez rapide. La place dont nous pouvons disposer ici ne nous permet pas de nous étendre sur la question.

Une série définissant la semi-diagonalité droite étant connue, il suffira donc de renverser bout pour bout l'ordre de ses (n-1) derniers termes pour obtenir la première colonne d'un carré semi-diagonal gauche qui définira, ainsi qu'il sera montré, un carré d'Euler.

La même série donne un nouveau carré différant du précédent. Reprenons le carré (A) et formons la figure ci-après dans laquelle on a reproduit à droite le petit triangle des nombres qui sont sous la diagonale magique

Abstraction faite de la déformation, le parallélogramme ainsi constitué est un carré semi-diagonal gauche, la diagonale magique étant la dernière colonne du carré générateur.

Ainsi, tout carré semi-diagonal droit donne naissance à deux carrés semi-diagonaux gauches qui sont différents.

II. — CARRÉS D'EULER.

Considérons le tableau suivant de (n^2) éléments constitués chacun de deux nombres ou indices pouvant respectivement prendre toutes les valeurs 1 à n.

Il s'agit de disposer tous ces éléments dans un carré de (n^2) cases de manières qu'un indice de même ordre, premier ou bien second, ne se présente pas deux fois dans une quelconque des rangées (lignes ou colonnes) du carré. En d'autres termes, on