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SUR LES CONGRUENCES DE COURBES

PAR

0. Pylarinos (Athènes).

Soit
ç(x y z) (1)

un vecteur, fonction des variables x, y, z définie à chaque point
d'une portion de l'espace, et (c) la congruence de courbes définie

par l'équation différentielle

Ç X dr 0 (2)

Les familles de surfaces engendrées par les courbes de cette

congruence se déterminent par l'équation différentielle aux
dérivées partielles

ç grad ç 0

Considérons maintenant deux vecteurs

v[x y 4 et w(x y z) (3)

fonctions continues et dérivables des variables ;r, ?/, z, définies
dans une même portion de l'espace et supposons que les deux

congruences définies par ces vecteurs engendrent les surfaces
d'une même famille; dans ce cas la normale à chaque point
d'une telle surface est parallèle au vecteur

ç x w (4)

en d'autres termes la congruence définie par le vecteur ç x ~w est
une normalie.
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On voit facilement que cette condition est suffisante: en effet,

dans ce cas l'équation de la famille des surfaces normales aux
courbes de cette congruence est une intégrale commune de deux
équations

ç grad cp 0 w grad <p 0

et, par conséquent les surfaces de cette famille sont engendrées
par les courbes des deux congruences.

Il en résulte que la condition nécessaire et suffisante pour que
les courbes des deux congruences définies par les vecteurs v et w
engendrent les surfaces d'une même famille, est que la congruence
définie par le vecteur v x w soit une normalie.

En d'autres termes, il faut qu'il existe entre les deux vecteurs
la relation:

v x w rot p x w 0 (5)

ou, en tenant compte de l'identité

rot ç x w — ç div w — w div ç -f- (w V) p — (o V) w

[y w (cV) w\ [çw(w\7)ç] (6)

Nous allons donner dans ce qui suit quelques applications
de ces résultats.

I. — Supposons d'abord que les deux membres de l'équation
(6) s'annulent simultanément, c'est-à-dire que l'on a

{vwtyVjw, 0 [vw(wV)v\ 0 (7)

Dans ce cas les courbes des deux congruences constituent un
système des courbes conjuguées sur chaque surface engendrée

par ces courbes: parce que la surface réglée engendrée par les

droites parallèles à v(vv) le long d'une courbe de la congruence
définie par w(v) est développable. Il est évident que ces deux
conditions sont suffisantes et par conséquent:

Les deux équations (7) constituent les conditions nécessaires et

suffisantes pour que les courbes des congruences définies par les deux

vecteurs v et w soient des courbes conjuguées sur les surfaces d'une

famille engendrée par elles.
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Si les deux vecteurs v et w, outre les équations (7), vérifient

encore l'équation
v w o (8)

à chaque point du champ des deux vecteuis, les courbes des

deux congruences, étant dans ce cas orthogonales, constituent
les deux séries des lignes de courbure sur les surfaces engendrées

par ces congruences.
En tenant compte maintenant du fait que

grad [v w) ==0
et que

grad (ç w) ç X rot w -f- w X rot ç + (ç V) w + («cV)c

nous tirons des deux équations (7)

[ç. w • v X rot w] — [ç w w X rot v]

OU

w2. ç rot ç ç2. w rot w • (9)

On voit facilement que les trois équations (5), (8) et (9)
constituent les conditions nécessaires et suffisantes pour que les courbes
des deux congruences définies par les vecteurs v et w soient des

lignes de courbure sur les surfaces de la famille engendrée par ces

courbes.
Considérons maintenant le cas où la congruence définie par v

est une normalie; de l'équation (9) nous tirons:

w rot w 0

en d'autres termes la congruence définie par le vecteur w est
aussi une normalie et alors les deux familles normales aux courbes
des congruences définies par les vecteurs ^ et w et la famille
engendrée par les courbes de ces deux congruences constituent
un système orthogonal et par conséquent:

Pour que les trajectoires orthogonales d'une famille des surfaces
f(x, y, z) const, soient des lignes des courbure sur une autre
famille de surfaces il faut et il sufßt que les surfaces f(x. y, z) C

appartiennent à un système orthogonal.
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II. — Supposons maintenant que les courbes de la congruence
définie par le vecteur v constituent l'une des séries des lignes
asymptotiques d'une famille des surfaces 9(2, y, z) const, et
cherchons les conditions exigées pour cela.

A cette fin, considérons le vecteur

(A)c (10)

un vecteur parallèle, à chaque point du champ de v, au plan
osculateur de la courbe de la congruence qui passe par ce point.

Dans le cas ou les courbes de cette congruence sont des

asymptotiques des surfaces 9 — const, nous avons

ç grad © 0

les surfaces de la famille 9 const, étant engendrées par les
courbes de la congruence et

(p V) p grad © 0

grad 9 étant normal au plan osculateur de la courbe de la
congruence qui passe par chaque point de la surface.

Il est clair que ces deux conditions se remplissent seulement
dans le cas ou les deux congruences définies par les vecteurs v

et (yYJ)v engendrent les surfaces d'une même famille: en

conséquence :

La condition nécessaire et suffisante pour que les courbes de la

congruence définie par le vecteur v soient des lignes asymptotiques
d'une famille des surfaces est que la congruence définie par le

vecteur
ç x (p V) p

soit une normalie.
Si la congruence définie par v est constituée par les trajectoires

orthogonales d'une famille des surfaces f(x, y, z) const, et

V grad f
nous avons

(oV)p - grad (grad f)2
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Il en résulte que la congruence définie par le vecteur v X (e V) p

est celle des courbes

f(x y z) const. (gra(^ f')2 — const.

Par conséquent: Pour que les trajectoires orthogonales d'une

famille des surfaces f const, soient des lignes asymptotiques
dune autre famille il est nécessaire et suffisant que la congruence
constituée par les courbes f const, (grad f)2 — const, soit une

normalie.
Si les courbes / const, (grad f)2 const, sont les trajectoires

orthogonales d'une famille des surfaces tp (x, y, z) — const, tandis
qu'en même temps elles sont des lignes de courbure des surfaces

/ (à1, y, z) const., nous avons

grad <l> X (grad V) grad /' 0 1

Mais, comme
grad f. grad d» 0

à chaque point du champ il vient

grad (grad /'. grad 4?) (grad /'V) grad 6 4- (grad •h V) grad f 0

et par suite nous avons aussi

grad |t X (grad /'V) grad 0

en d'autres termes les surfaces ip(x, y, z) — const, sont dévelop-
pables et les trajectoires orthogonales des surfaces / const,
sont des droites 2; excepté le cas où les surfaces const, sont
des plans; dans ce cas il est possible que les trajectoires orthogonales

des surfaces f const, ne soient pas des droites, parce que
grad est constant pour chaque plan.

Réciproquement: Supposons que les trajectoires orthogonales
d'une famille des surfaces soient des droites; si ip (x, y, z) const,
est l'équation de l'une des deux séries des surfaces développables
engendrées par ces droites on a

grad ^ X (grad /'V) grad 0

1 Pylarinos, L'Enseignement mathématique, T, XXIX, p. 42.
2 Pylarinos, l.'Enseignement mathématique, T. XXIX, p. 38.
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et, comme
grad 6 grad /' — 0

on a aussi
grad X (grad ^V) grad f 0 ;

c'est-à-dire les trajectoires orthogonales des surfaces const,
sont les courbes / const, (grad /)2 const, et par conséquent:

Lorsque les trajectoires orthogonales d'une famille des surfaces
f const, sont des droites, les courbes f const, (grad f)2 const.
sont des lignes de courbure sur les surfaces f const.

III. — Supposons enfin que les courbes d'une congruence
sont les trajectoires d'un point matériel qui se meut sur elles

uniformément, avec une vitesse dont la valeur absolue reste
constante le long d'une même courbe, mais varie d'une courbe à

l'autre de la congruence; l'accélération qui correspond à un tel
mouvement, toujours normale à la trajectoire, peut être définie
en fonction des #, y, z dans le cas ou la force vive T du point est

aussi une fonction des #, 2/, s assujettie seulement à conserver
une valeur constante le long de chaque courbe de la congruence,
ou, ce qui est le même, à satisfaire à l'équation

KV)T 0

v0 étant un vecteur unitaire ayant la direction de la tangente à

chaque point d'une quelconque des courbes de la congruence.
Il est ainsi défini un champ de forces correspondant à un tel
mouvement h

1 On voit facilement qu'un tel champ peut être toujours défini:
En effet, considérons un point matériel assujetti à se mouvoir sur une quelconque

des courbes de la congruence définie par les équations:
\ h (x, y, z, a,b) 0

(a)
^ fz (x, V, z, a, b) — 0

sans forces directement appliquées sur lui.
Les liaisons étant holonomes, le mouvement sera uniforme et par conséquent la force

vive du point qui peut varier d'une courbe à l'autre sera une fonction seulement des

paramètres a, b:
T T (a, b) (b)

En éliminant a, b entre les équations (a) et (b) nous obtenons la valeur absolue de la
vitesse et la vitesse même en fonction des x, y, z seuls.

Les forces de liaisons peuvent être déterminées en fonction des x, y, z, des paramètres
a, b et des dérivées de x, y, z par rapport au temps*, qui d'après ce qui précède sont
des fonctions des x, y, z et par conséquent en éliminant a, b entre les composantes
de la résultante de ces forces et les équations (a) nous obtenons aussi la force motrice
en fonction des x, y, z seuls.

* Boultgand, Précis de Mécanique rationnelle, p. 103.
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Après les suppositions faites nous allons démontrer les

théorèmes suivants:
a) La condition nécessaire et suffisante pour que les courbes

d'une congruence soient des lignes géodésiques d'une famille de

surfaces, est que la congruence constituée par les lignes de forces
du champ correspondant au mouvement uniforme d'un point sur
une quelconque des courbes de la congruence soit une normalie.

b) Lorsque la vitesse du point à un tel mouvement, définie en

fonction des x, y, z, dérive d'un potentiel <b, les courbes de la

congruence sont des lignes géodésiques de la série des surfaces
(grad <î>)2 const.

Supposons que la congruence soit définie par un vecteur v et
cherchons les conditions exigées afin que les courbes de cette

congruence soient des géodésiques d'une famille des surfaces
cp (#, y, z) — const.

Dans ce cas les trois vecteurs e, {vS7)v et grad 9 sont compla-
naires, vu que les deux vecteurs v et (v\7)v déterminent à chaque
point du champ le plan osculateur de la courbe de la congruence
qui passe par ce point et grad 9 est situé sur ce plan, la courbe
étant une géodésique de la surface, et par conséquent nous avons

[f(pV)p grad ©1 0 (11)

tandis qu'en même temps on a

ç grad 9 0. (12)

les surfaces de la famille étant engendrées par les courbes de

cette congruence.
Les deux conditions (11) et (12) se remplissent seulement dans

le cas où les surfaces <p(x, y, z) const, sont engendrées par les

courbes des deux congruences définies par les vecteurs v et
c x (cV)c.

Il en résulte que la condition nécessaire et suffisante pour que
les courbes de la congruence définie par un vecteur v soient des

géodésiques d'une famille des surfaces, est que la congruence
définie par le vecteur

ç x | v x (e V) v }

soit une normalie.
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Les surfaces sur lesquelles les courbes de la congruence sont
des géodésiques sont les surfaces normales aux courbes de la
congruence définie par le vecteur v X { v X (v V) e).

Supposons maintenant que les surfaces de la famille v2 const.,
v étant la valeur absolue de e, soient engendrées par les courbes
de la congruence définie par v\ dans ce cas il est

ç grad ç2 0

et
ç (ç V) v o

On en déduit:

ç X | ç X (v V) ç | — — Ç2 (ç V) ç

En conséquence:

Dans le cas où les surfaces de la famille v2 const, sont engendrées

par les courbes de la congruence définie par v, la condition
nécessaire et suffisante pour que les courbes de cette congruence
soient des géodésiques d'une famille de surfaces est que la

congruence définie par le vecteur (vV)v soit une normalie.
Il est facile de montrer qu'étant donné un vecteur v, il est

toujours possible de trouver un vecteur v' kv en déterminant
k de façon que la famille de surfaces c'2 const, soit engendrée

par les courbes de la congruence définie par v ou v\
En effet, le coefficient k sera déterminé par la relation:

ç {vV)hv 0 ou ç2. (ç V) k -f k ç (p V) p 0 ;

en d'autres termes k est l'intégrale d'une équation linéaire aux
dérivées partielles du premier ordre.

Si maintenant v désigne la vitesse du mouvement considéré,
définie en fonction des x, y, 2, l'accélération qui correspond au

mouvement sera
w (pV)p

un vecteur toujours normal à e, le mouvement étant uniforme;

par conséquent on a

ç w v (vV)v 0 et ç grad ç2 0
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En d'autres termes les surfaces de la famille e2 const, sont
engendrées par les courbes de la congruence. Dans le cas où la

congruence constituée par les lignes de forces est une normalie,
les courbes de la congruence sont, d'après ce qui précède, des

géodésiques sur les surfaces normales aux lignes de forces et le
théorème (d) est démontré.

Si la vitesse e dérive d'un potentiel f :

C - — grad 9

l'accélération sera

W ^ grad (grad ç)-

et les courbes de la congruence sont des géodésiques des surfaces

(grad f)2 const.
Le théorème (b) peut être aussi énoncé de la façon suivante:
Pour que les trajectoires orthogonales d'une famille des surfaces
(x, y, z) --- const, soient des géodésiques dune autre famille

de surfaces il est nécessaire et suffisant que les surfaces de la famille
(grad ç)2 const, coupent orthogon(dement les surfaces de la
famille y const.

SUR L'ITÉRATION DE LOG (1 + z)

PAR

A. Vax Hase lex (Loosdrecht, Hollande).

Nous aurons à faire usage du théorème suivant:
Si f (z) est holomorphe dans un cercle C et si toutes ses valeurs sont

dans C, alors les itérés % f (z), z2 f (zx), zn « f (zn-1),
tendent pour n infini vers un point limite unique a, indépendant du
point initial z dans C. Si Véquation f (z) z possède une racine à
Vintérieur de C, alors a coïncide avec cette racine. Si une telle
racine n'existe pas, a est sur la frontière de C L

1 Voir J. Wolff, Sur l'itération des fonctions bornées (C. R., 182, 1926, p. 42).
•T. Wolff, Sur une généralisation d'un théorème de Schwarz (C. R., 182, 1926, p. 918).
Voir aussi A. Den joy, C. R., 182, 25 janvier 1926.
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