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SUR LES CONGRUENCES DE COURBES

PAR

O. PyrariNos (Athenes).

Soit
oz, y. 2) (1)

un vecteur, fonction des variables xz, y, z définie a chaque point
d’une portion de 'espace, et (c) la congruence de courbes définie
par I’équation différentielle

pXdr=10. (2)

Les familles de surfaces engendrées par les courbes de cette
congruence se déterminent par 1’équation différentielle aux
dérivées partielles

9. grade = 0 .

Considérons maintenant deux vecteurs

ole, y. 2 et wlx, y, 2 (3)

fonctions continues et dérivables des variables x, y, z, définies
dans une méme portion de ’espace et supposons que les deux
congruences définies par ces vecteurs engendrent les surfaces
d’une méme famille; dans ce cas la normale a chaque point
d’une telle surface est parallele au vecteur

o X w . (&)

en d’autres termes la congruence définie par le vecteur ¢ X w est
une normalie.
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On voit facilement que cette condition est suffisante: en effet,
dans ce cas I’équation de la famille des surfaces normales aux
courbes de cette congruence est une intégrale commune de deux
équations

;.g'radm:(), ;).grad:p_

4

et, par conséquent les surfaces de cette famille sont engendrées
par les courbes des deux congruences.

Il en résulte que la condition nécessaire et suffisante pour que
les courbes des deux congruences définies par les vecteurs v et w
engendrent les surfaces d’une méme famille, est que la congruence
définie par le vecteur v X w sott une normalie.

En d’autres termes, il faut qu'il existe entre les deux vecteurs
la relation:

o X w.roto X w =0 (5)

ou, en tenant compte de 'identité

rol 9 X w = o.divw —w.dive + @V)o — (0V)w ,
[ow(EV)w] = [ow(@wV)0)] . (6)

Nous allons donner dans ce qui suit quelques applications
de ces résultats.

I. — Supposons d’abord que les deux membres de ’équation
(6) s’annulent simultanément, c’est-a-dire que 1’on a

[bw(EV)w, =0. [ow@V)o] =0 . (7)

Dans ce cas les courbes des deux congruences constituent un
systéme des courbes conjuguées sur chaque surface engendrée
par ces courbes: parce que la surface réglée engendrée par les
droites paralléles & ¢(w) le long d’une courbe de la congruence
définie par w(v) est développable. Il est évident que ces deux
conditions sont suffisantes et par conséquent:

Les deux équations (7) constituent les conditions nécessatres et
suffisantes pour que les courbes des congruences définies par les dewx
vecteurs v et w soitent des courbes conjuguées sur les surfaces d’'une
famille engendrée par elles.
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Si les deux vecteurs ¢ et w, outre les équations (7), vérifient

encore ’équation
o.w =10 (8)

a chaque point du champ des deux vectews, les courbes des
deux congruences, étant dans ce cas orthogonales, constituent
les deux séries des lignes de courbure sur les surfaces engendrées
par ces congruences.

En tenant compte maintenant du fait que

grad (¢.w) = 0
et que

grad (0. w) = ¢ X rotw - w X rote + (pV)w + (wV)o

nous tirons des deux équations (7)

[0.w.9 X rot ] = — [p.w.w X rot ¢
ou
.w.rot w . (9)

On voit facilement que les trois équations (5), (8) et (9) cons-
tituent les conditions nécessaires et suffisantes pour que les courbes
des deux congruences définies par les vecteurs v el W soient des
lignes de courbure sur les surfaces de la famille engendrée par ces
courbes.

Considérons maintenant le cas ou la congruence définie par ¢
est une normalie; de I’équation (9) nous tirons:

W.rot;)z(),

en d’autres termes la congruence définie par le vecteur w est
aussi une normalie et alors les deux familles normales aux courbes
des congruences définies par les vecteurs v et w et la famille
engendrée par les courbes de ces deux congruences constituent
un systéme orthogonal et par conséquent:

Pour que les trajectoires orthogonales d’une famille des surfaces
f(x, v, z) = const. soient des lignes des courbure sur une autre
famille de surfaces il faut et il suffit que les surfaces f(x. v, z) = G
appeartiennent a un systéme orthogonal.
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II. — Supposons maintenant que les courbes de la congruence
définie par le vecteur ¢ constituent 1'une des séries des lignes
asymptotiques d’une famille des surfaces ¢(z, y, z) = const. et
cherchons les conditions exigées pour cela.

A cette fin, considérons le vecteur

(eV)e, (10)

un vecteur parallele, & chaque point du champ de ¢, au plan
osculateur de la courbe de la congruence qui passe par ce point.

Dans le cas ou les courbes de cette congruence sont des asymp-
totiques des surfaces ¢ = const. nous avons

;-gradcp:(),

les surfaces de la famille ¢ = const. étant engendrées par les
courbes de la congruence et

(»V)p.grad o = 0,

grad ¢ étant normal au plan osculateur de la courbe de la con-
gruence qul passe par chaque point de la surface.

Il est clair que ces deux conditions se remplissent seulement
dans le cas ou les deux congruences définies par les vecteurs ¢
et (¢\/)¢ engendrent les surfaces d’'une méme famille: en
conséquence:

La condition nécessaire et suffisante pour que les courbes de la
congruence définie par le vecteur v soient des lignes asymptotiques
d’une famille des surfaces est que la congruence définie par le
vecteur

p X (¢V)o
soit une normalie.

Si la congruence définie par ¢ est constituée par les trajectoires
orthogonales d’une famille des surfaces f(x, y, z) = const. et

o = grad [

nous avons

- 1
(vV)o = 4 grad (grad /)

2
.
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I1 en résulte que la congruence définie par le vecteur 0 X (v7)
est celle des courbes "

[(x, y, z) = const. (grad f)? = const.

Par conséquent: Pour que les irajectoires orthogonales d’ une
famille des surfaces f = const. sotent des lignes asymptotiques
d’une autre famille il est nécessaire et suffisant que la congruence
constituée par les courbes f = const. (grad f)2 = const. soif une
normalze.

Siles courbes f = const. (grad /)2 = const. sont les trajectoires
orthogonales d’une famille des surfaces ¢ (z, y, z) = const. tandis
qu’en méme temps elles sont des lignes de courbure des surfaces
f(z, y, z) = const., nous avons

grad ¢ X (grad JV) grad [ = 0" .

Mais, comme
grad f.grad y = 0

a chaque point du champ il vient
grad (grad f. grad 4) = (grad fV) grad ¢ + (grad ¢V) grad { = 0
et par suite nous avons aussi
grad ¥ X (grad fV) grad y = 0,

en d’autres termes les surfaces ¥ (z, y, z) = const. sont dévelop-
pables et les trajectoires orthogonales des surfaces f = const.
sont des droites 2; excepté le cas ou les surfaces ¢ = const. sont
des plans; dans ce cas il est possible que les trajectoires orthogo-
nales des surfaces f = const. ne soient pas des droites, parce que
erad ¢ est constant pour chaque plan.

Réciproquement: Supposons que les trajectoires orthogonales
d’une famille des surfaces soient des droites; si ¢ (x, y, z) = const.
est I’équation de I'une des deux séries des surfaces développables
engendrées par ces droites on a

grad ¢ X (grad fV) grad b o= 0

1 PYLARINOS, L’Enseignement mathématique, T. XXIX, p. 42.
2 PyLARINOS, [’Enseignement mathématique, T. XXIX, p. 38.
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et, comme
grad ¢ . grad /' = 0 ,
on a aussi
grad ¢ x (grad ¢V) grad [ = 0

c¢’est-a-dire les trajectoires orthogonales des surfaces ¢ = const.
sont les courbes f = const. (grad f)2 = const. et par conséquent:

Lorsque les trajectoires orthogonales d’une famille des surfaces
f = const. sont des droites, les courbes f = const. (grad f)? = const.
sont des lignes de courbure sur les surfaces f = const.

II1. — Supposons enfin que les courbes d’une congruence
sont les trajectoires d’'un point matériel qui se meut sur elles
untformément, avec une vitesse dont la valeur absolue reste
constante le long d’une méme courbe, mais varie d’'une courbe a
I’autre de la congruence; I'accélération qui correspond a un tel
mouvement, toujours normale & la trajectoire, peut étre définie
en fonction des z, y, z dans le cas ou la force vive T du point est
aussi une fonction des z, y, z assujettie seulement & conserver
une valeur constante le long de chaque courbe de la congruence,
ou, ce qui est le méme, & satisfaire a I’équation

(0, V)T = 0,
v, étant un vecteur unitaire ayant la direction de la tangente a
chaque point d’une quelconque des courbes de la congruence.

Il est ainsi défini un champ de forces correspondant & un tel
mouvement L.

1 On voit facilement qu’un tel champ peut étre toujours défini:
En effet, considérons un point matériel assujetti & se mouvoir sur une quelconque
des courbes de la congruence détinie par les équations:
‘ fl(x,y,Z,a, b) = 0
? fg(x,y,Z,a, b) =0 y
sans forces directement appliquées sur lui.
Les liaisons étant holonomes, le mouvement sera uniforme et par conséquent la force
vive du point qui peut varier d’une courbe & l’autre sera une fonction seulement des
parametres a, b:

(a)

T =T(a,b) . (b

En éliminant a, b entre les équations (a) et (b) nous obtenons la valeur absolue de la
vitesse et la vitesse méme en fonction des x, y, z seuls.

Les forces de liaisons peuvent étre déterminées en fonction des x, y, z, des paramétres
a, b et des dérivées de x, y, z par rapport au temps*, qui d’aprés ce qui précéde sont
des fonctions des x, y, z et par conséquent en éliminant a, b entre les composantes
de 1a résultante de ces forces et les équations (a) nous obtenons aussi la force motrice
en fonction des x, y, z seuls.

* BOULIGAND, Précis de Mdécanique rationnelle, p. 103.
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Apres les suppositions faites nous allons démontrer les théo-
remes suivants:

a) La condition nécessaire et suffisante pour que les courbes
d’une congruence sotent des lignes géodésiques d’une famille de
surfaces, est que la congruence constituée par les lignes de forces
du champ correspondant aw mouvement uniforme d’'un point sur
une quelconque des courbes de la congruence soit une normalte.

b) Lorsque la vitesse du point a un tel mouvement, définie en
fonction des x, vy, z, dérive d'un potentiel &, les courbes de la
congruence sont des lignes géodésiques de la série des surfaces
(grad ®)? = const.

Supposons que la congruence soit définie par un vecteur ¢ et
cherchons les conditions exigées afin que les courbes de cette
congruence soient des géodésiques d’une famille des surfaces
¢(x, y, z) = const. .

Dans ce cas les trois vecteurs ¢, (v</)¢ et grad ¢ sont compla-
naires, vu que les deux vecteurs ¢ et (¢5/)¢ déterminent a chaque
point du champ le plan osculateur de la courbe de la congruence
qui passe par ce point et grad ¢ est situé sur ce plan, la courbe
étant une géodésique de la surface, et par conséquent nous avons

[0(vV)p grad 9] = 0 . (11)
tandis qu’en méme temps on a

;grad ¢ == 0, (12)

/

les surfaces de la famille étant engendrées par les courbes de
cette congruence.

Les deux conditions (11) et (12) se remplissent seulement dans
le cas ou les surfaces ¢ (z, y, z) = const. sont engendrées par les
courbes des deux congruences définies par les vecteurs ¢ et
v X (vV).

Il en résulte que la condition nécessaire et suffisante pour que
les courbes de la congruence définte par un vecteur v soient des
géodésiques d’'une famille des surfaces, est que la congruence
définie par le vecteur

o x{ex (099}

soit une normalie.
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Les surfaces sur lesquelles les courbes de la congruence sont
des géodésiques sont les surfaces normales aux courbes de la
congruence définie par le vecteur ¢ X { v X (¢ V) 0}

Supposons maintenant que les surfaces de la famille ¢* = const.,
¢ étant la valeur absolue de ¢, soient engendrées par les courbes
de la congruence définie par ¢; dans ce cas il est

;.grad p? = 0
et ]
0. (9o =0 .
On en déduit:

9 X {; X (vV)o}:—o’*.(vV)o

En conséquence:

Dans le cas ou les surfaces de la famille v = const. sont engen-
drées par les courbes de la congruence définie par v, la condition
nécessaire et suffisante pour que les courbes de celte congruence
sotent des géodésiques d’une famille de surfaces est que la con-
gruence définie par le vecteur (v\/)v soit une normalie.

Il est facile de montrer qu’étant donné un vecteur ¢, il est
toujours possible de trouver un vecteur ¢’ = k¢ en déterminant
k de facon que la famille de surfaces ¢'2 = const. soit engendrée
par les courbes de la congruence définie par ¢ ou ¢'.

En effet, le coefficient k£ sera déterminé par la relation:

0. (0Vko =0  ou 9. (0V)k + ko.(¢V)p = 0 ;

en d’autres termes k est I'intégrale d’une équation linéaire aux
dérivées partielles du premier ordre.

Si maintenant ¢ désigne la vitesse du mouvement considéré,
définie en fonction des z, y, z, 'accélération qui correspond au
mouvement sera

un vecteur toujours normal & ¢, le mouvement étant uniforme;

par conséquent on a

o.w=y9p.0OV)p =0 et g.grad 92 = 0 .
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En d’autres termes les surfaces de la famille ¢ = const. sont
engendrées par les courbes de la congruence. Dans le cas ou la
congruence constituée par les lignes de forces est une normalie,
les courbes de la congruence sont, d’aprés ce qui précede, des
géodésiques sur les surfaces normales aux lignes de forces et le
théoréme (d) est démontreé.

Si la vitesse ¢ dérive d'un potentiel ¢:

¢ = — grad ¢

I'accélération sera
+ grad (grad g)*
et les courbes de la congruence sont des géodésiques des surfaces
(grad @)% = const.
Le théoreme (b) peut étre aussi énoncé de la facon suivante:
Pour que les trajectoires orthogonales d’une famille des surfaces
¢ (X, v, z) = const. sotent des géodésiques d’une autre famille
de surfaces il est nécessaire et suffisant que les surfaces de la famille
(erad 2)* = const. coupent orthogonalement les surfaces de la
famille 9 = const.

SUR LITERATION DE LOG (1 + z)

PAR

A, vay Haseren (Loosdrecht, Hollande).

Nous aurons a faire usage du théoréme suivant:

St (z) est holomorphe dans un cercle C et si toutes ses valeurs sont
dans C, alors les itérés 7, = f (z), z, = f (z), ... z, = { (z,), ...
tendent pour n infini vers un point limite unique o, indépendant du
point initial z dans C. St 'égquation f (z) = z posséde une racine a
Pintérieur de C, alors « coincide avec cette racine. Si une telle
racine n’existe pas, « est sur la frontiére de C 1.

1 Voir J. WoLrr, Sur I'itération des fonctions bornées (C. R., 182, 1926, p. 42).
J. WoLrF, Sur une généralisation d’un théoréme de Schwarz (C. R., 182, 1926, p. 918).
Voir aussi A. DENJoY, C. R., 182, 25 janvier 1926.
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